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I. INTRODUCTION

“Secret sharing” refers to an important family of multiparty
cryptographic protocols in both the classical [1,2] and the
quantum [3–6] contexts. A secret-sharing protocol comprises
a dealer and n players who are interconnected by some set of
classical or quantum channels. The “secret” to be shared is a
classical string or quantum state and is distributed among the
players by the dealer in such a way that it can be recovered
only by certain subsets of players acting collaboratively. The
access structure is the set of all subsets of players who can
recover the secret, and the adversary structure corresponds to
those subsets who obtain no knowledge of the secret. There
may, in addition, be external eavesdroppers who should also
gain no knowledge of the secret. Secret-sharing protocols have
practical applications in, for example, money transfer [4] and
voting [7] schemes. Recently, a unified formalism for a range of
protocols for sharing both classical and quantum secrets using
qubit graph states [8] has been proposed [6]. The formalism
allows for both classical and quantum channels between the
dealer and players and covers three common varieties of secret
sharing within a single framework. In this article we develop
an analogous formalism for the case of systems of prime-
dimensional quantum states.

Although qubit systems are generally the most straight-
forward to describe and the theory of qubit graph states is
well developed, there are good reasons to consider higher-
dimensional systems as well. If players’ shares consist of
such systems, it may be more efficient to make direct use
of the larger Hilbert space than to work with encoded qubits.
Additionally, certain access structures are known not to be
possible using the existing secret-sharing schemes on qubit
graph states [6,9] or, in some cases, using any scheme with
qubit shares. An example of the latter (which can, however,
be implemented using qutrits) was given by Cleve, Gottesman,
and Lo [4]. A more broad justification is that one often needs to
consider higher-dimensional states in order to derive rigorous
general results in quantum information theory, such as in
certain no-go theorems [10–12].

Our aim is therefore to find a unified formalism for
secret sharing that is not restricted to the qubit case. As
discussed recently [8,13,14], graph and stabilizer states can
be extended to the qudit case for prime dimensions. Following
this approach, we find direct extensions of the existing qubit
protocols [6] in d dimensions, where d is prime, i.e., we find
protocols for sharing classical secrets with d possible values
and secret quantum states within a d-dimensional Hilbert

space, using graph states shared by a dealer and players,
each with a d-dimensional subsystem. Our work therefore
achieves, in higher-dimensional systems, the goals previously
achieved for qubits [6], namely providing a general graph-state
unification for sharing classical and quantum secrets using
both classical and quantum channels and in this way extends
the protocols to more general access structures. Note that
we are primarily demonstrating how a subset of existing
secret-sharing protocols, already known to be achievable, can
be unified within our formalism; we are not attempting to
address via the formalism any existing limitations in quantum
and classical secret sharing. Additionally, however, we have
demonstrated protocols within our formalism which have not
been previously shown: the case of three parties sharing
classical secrets distributed over quantum channels (secure
or insecure), in which a minimum of two parties are required
to recover the secret.

In general, there are many different possible access struc-
tures for secret-sharing schemes. In our work we consider the
specific case of threshold secret sharing. In such a scheme the
secret can be recovered if and only if any k of the n players
collaborate to do so (and any set of fewer than k players are
denied any knowledge of the secret). All that is required
is that enough players collaborate; i.e., it does not matter
which k players do so. Thus the access structure comprises
any set of at least k players, with the remainder forming
the adversary structure. This is denoted as a (k,n) threshold
secret-sharing scheme. Note that one can construct arbitrary
access structures for both classical [15] and quantum [5]
secret sharing by concatenating threshold protocols; thus it is
sufficient to consider only threshold secret sharing to address
general secret sharing.

Here we consider three specific varieties of such schemes
previously demonstrated in qubit graph states [6]. We note that
all existing forms of secret sharing that have been proposed
fall into one of these categories.

(i) CC schemes: The secret is classical, the dealer is
connected to the players via private quantum channels, and
all players are connected by private classical channels.

(ii) CQ schemes: The secret is classical, the dealer shares
public quantum channels with each player, and the players are
connected to each other by private classical channels.

(iii) QQ schemes: The secret is quantum, the dealer shares
either private or public quantum channels with each player, and
the players are connected to each other by private quantum or
classical channels.
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In Sec. II, we formally define the structure and graphical
representation of graph states for qudits and explain how clas-
sical information can be encoded on to such states and later ac-
cessed. In Sec. II D we show the effect of local (d-dimensional)
Pauli measurements on qudit graphs and derive rules (partially
shown previously [14]) for the form of the consequent-reduced
graph states, analogous to “local complementation” in the
qubit case. In Sec. III we demonstrate specific CC, CQ, and QQ
protocols which may be implemented in qudit graphs given the
properties previously derived [though we note that in the case
of the (n,n) QQ scheme, the secret is not perfectly denied to the
adversary structure]. We present, as an example of the power
of higher dimensions, the (2,3) case, which is not possible with
qubit graph state schemes [6], as well as higher-dimensional
analogs to those presented in Ref. [6].

II. GRAPH STATES FOR QUDITS

Graph states [16] are a class of entangled multipartite states
(including the well-known n-qubit GHZ state) of wide interest
in quantum information. Their useful properties include
a convenient graphical representation and characterization
within the stabilizer formalism [17], as well as their practical
application within information processing, in particular for
computation [18] and error correction [14,19,20], and their
amenability for the representation of information flow [9,21].
Such states have been created and applied in this way for up
to six qubits [22,23], and recent work [14] has considered the
case of higher-dimensional graph states. We employ the same
framework in Secs. II B and II A as that in previous work
[8,13,14] although we use different notation more suited to
secret sharing.

A. Graph states

We now introduce qudit graph states and their graphical
representation. Consider a finite field Fd of order d, where
d is a prime number >2, and a weighted undirected graph,
i.e., a set of n vertices V = {vi} joined by a set of edges
E = {eij = {vi ,vj }}.

Each edge eij has an assigned “weight” Aij ∈ Fd . E
only contains edges with nonzero weights: A weight of zero
corresponds to two vertices not being joined by an edge. No
vertex is joined to itself. We can summarize this information
in an n × n “adjacency matrix” A with elements Aij . We
therefore have Aij = Aji for all vi ,vj ∈ V and Aii = 0 for
all vi ∈ V.

We define the computational basis {|j 〉 | j ∈ Fd}. Then the
graph state represented by the above graphical construction is

|G〉 :=
∏

eij ∈E

C
Aij

ij |0〉⊗n, (1)

where we define the two-qudit controlled-Z operator

Cab|j 〉a|k〉b := ωjk|j 〉a|k〉b, (2)

the operator

U |i〉 :=
∑
j∈Fd

ωij |j 〉 (3)

and the basis

|ī〉 := U−1|i〉 | i ∈ Fd . (4)
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FIG. 1. A five-qudit graph in d = 7 and associated adjacency
matrix A.

An example graph and associated adjacency matrix are
depicted in Fig. 1.

B. Local operators and labeling

Here, in an analogous way to the qubit case [6], we describe
the encoding of classical information onto the graph state
by applying local operators to the individual qudits that are
graphically represented by the vertices of the graph. Here and
later we make use of the generalized Pauli operators [24–26]

Z|j 〉 := ωj |j 〉, (5)

X|j 〉 := |j + 1〉, (6)

where ω = e2πi/d . These operators satisfy Xd = Zd = I .
(It follows that ZX = ωXZ and that the eigenstates of the
operators Z,X,XZ,XZ2 · · · XZd−1 form a set of mutually
unbiased bases [27]. We consider only this subset of the
general operators XmZn as they are sufficient for defining the
graph-state stabilizers and for our secret-sharing protocols.)
We further define the operator

S|j 〉 := ωj (j−1)/2|j 〉, (7)

which satisfies SZ = ZS and SXS−1 = XZ.
In a labeled graph state each vertex vi is assigned a label

�i := (zi,xi,mi), where zi,xi,mi ∈ Fd . Denoting an operator
O acting on a vertex vi as Oi , the graph state is labeled by
applying the operators S

mi

i X
xi

i Z
zi

i to the state |G〉. We describe
the combined labels for all vertices by � := (z,x,m), where
z := (z1,z2 . . . ,zn), and similarly for x and m. We use the
notation

Zz := Z
z1
1 ⊗ Z

z2
2 ⊗ · · · ⊗ Zzn

n (8)

and similarly for X and S. Thus the labeled graph state is

|G�〉 := SmXxZz|G〉. (9)

Note that our definition differs from that used previously for
qubits [6] in that we apply the S operators after the X operators
rather than before.

Finally, we define an encoded graph state as a labeled graph
state with x = 0.

C. Stabilizers

Higher-dimensional graph states can be represented within
the stabilizer formalism [8,13,14]. The encoded graph state
with labels � satisfies, for each vertex vi [14],

Ki |G�〉 = ω−zi |G�〉, (10)

where

Ki := (XZmi )iZ
Ai , (11)
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and we define, for a qudit operator O and scalar multiple k,

OkAi :=
∏
vj ∈V

O
kAij

j . (12)

The {Ki} is thus a set of stabilizers for the encoded
graph state, and |G�〉 is the unique state (up to a global
phase) satisfying (10) for all vertices vi . Note that the {Ki}
are tensor products of local operators; thus, even in the
absence of any quantum communication, the value of Ki

may be measured through local operations and classical
communication (LOCC) by the appropriate subset of parties
combining their local measurement results. Note also that
we need only consider exponents of these local operators
modulo d.

It follows from (11) and (9) and the commutation relations
of Sec. II B that applying the stabilizer Ki to a labeled graph
state |G�〉 is equivalent (up to a global phase) to implementing
the label change xi → xi + 1, zj → zj + Aij (mod d) for all
eij ∈ E; i.e.,

|G�〉 = SmXxZz|G〉 ∝ SmXxXiZ
zZAi |G〉. (13)

Thus the two different labelings correspond to the same
physical state. As in the qubit case [6], we can exploit this
property to determine the state’s dependence on particular
qudit labels.

D. Local measurements

Our CQ and QQ protocols involve one of the parties as a
designated “dealer,” whose local measurement on her own
qudit produces a reduced graph state shared by the other
parties with some access structure and labeling determined
by the dealer’s measurement outcome. We therefore consider
the effect of local measurements on qudit graph states. This
has previously been determined in the qubit case.

We will closely follow the derivation for the effect of
measurements on qubit graphs in Ref. [8], the results of which
were used in Ref. [6]. The results below for the effect of
local measurement on the adjacency matrix were previously
derived [14] in the context of local complementation [8,28],
although here we also explicitly derive the effect of local
measurement on the graph labels. We find the following:

Proposition 1. Given an encoded graph state |G�〉, suppose a
measurement of (XmZ)i yields the value ωs . Then the resultant
labeled graph state is obtained by the following procedure:

(M1) For each pair j,k of distinct neighbors of i, change
Ajk �→ Ajk + mAijAik .

(M2) Relabel each vertex j by zj �→ zj + Aij s +
mAij zi + mAij (Aij + 1)/2 and mj �→ mA2

ij .
(M3) Remove vertex i and corresponding edges.
Proof. We first introduce the operators U and R, defined as

U |k〉 :=
∑
j∈Fd

ωjk|j 〉 (14)

R := U−1S−1U. (15)

It follows that UXU−1 = Z and UZU−1 = X−1. We also
have [R,X] = [S,Z] = 0 and RZR−1 = SXS−1 = XZ; i.e.,
the R operator performs a Z ↔ XZ basis transformation just
as S performs X ↔ XZ.

For each local Pauli operator O = XnZm, we define the
operator PO,j , which is the projection onto the ωj eigenspace
of O:

PO,j := 1

d

∑
k∈Fd

ω−jkOk. (16)

We first consider the case m = 0 where the projective
measurement is of Zi . We have

|G�〉 =
∏
vj ∈V

C
Aij

ij |0̄〉i |G� \ vi〉V\vi
, (17)

where |G� \ vi〉 denotes the graph state with vertex vi and all
its edges removed and V \ vi denotes the set all of players
excluding player i. Next, noting that∏

vj ∈V

C
Aij

ij =
∏
vj ∈V

∑
k∈Fd

(PZ,k)iZ
kAij

j =
∑
k∈Fd

(PZ,k)iZ
k Ai , (18)

we have

(PZ,s)i |G�〉 = (PZ,s)i
∏
vj ∈V

C
Aij

ij |0̄〉i |G� \ vi〉V\vi

= (PZ,s)i

( ∑
k∈Fd

(PZ,k)iZ
kAi

)
|0̄〉i |G� \ vi〉V\vi

= 1√
d

|s〉iZsAi |G� \ vi〉V\vi
. (19)

Now we consider the case m 	= 0. Let

Li := R−1
i S−A2

i . (20)

where we define

OkA2
i :=

∏
vj ∈V

O
kA2

ij

j . (21)

Then, for each vj ∈ V,

Lm
i KjL

−m
i = R−m

i S−mA2
i XjZ

Aj SmA2
i Rm

i

= ωmAij (Aij +1)/2K
−mAij

i K ′
j , (22)

where K ′
j = XjZ

Aj +mAij (Ai )Z
−mA2

ij

j . Equation (22) follows
from the relation

(X−1Z)Aij = ωAij (Aij −1)/2X−Aij ZAij . (23)

Thus, noting that Ki commutes with Li , we have

K ′
j = ω−mAij (Aij +1)/2Lm

i K
mAij

i KjL
−m
i , (24)

so

K ′
jL

m
i |G�〉 = ω−mAij (Aij +1)/2Lm

i K
mAij

i Kj |G�〉
= ω−mAij (Aij +1)/2−mAij zi−zj Lm

i |G�〉. (25)

The state Lm
i |G�〉, which we will denote |τm

i (G�)〉, is therefore
an encoded graph state |τm

i (G�)〉, stabilized by the K ′
j

operators. The structure (i.e., the adjacency matrix) of the
graph τm

a (G�) is given by equating the A′
j for each vertex to

the Ai given in the standard form for graph-state stabilizers in
(11), and we similarly find the labels

z′
j = zj + mAij zi + mAij (Aij + 1)/2. (26)
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We also have

L−m
i (PZ,s)iL

m
i = 1

d

∑
k∈Fd

ω−skRm
i SmA2

i Zk
i S

−mA2
i R−m

i

= 1

d

∑
k∈Fd

ω−sk(XmZ)ki

= (PXmZ,s)i . (27)

Thus we compute

(PXmZ,s)i |G�〉 = L−m
i (PZ,s)iL

m
i |G�〉

= 1√
d

(Rm|s〉)i
(
SmA2

i ZsAi
∣∣τm

i (G�

) \ vi〉)V\vi
.

(28)

Hence a local measurement of XZm on the vertex vi gives
the graph |τm

i (G�)〉 with the vi vertex removed and additional
labeling operators SmA2

i ZsAi applied. �
The reduced-state graph transformation given in M1 can

be regarded as an analog of local complementation for qubit
graphs; note, however, that we have not shown (as is true for the
qubit case) that all graphs equivalent under local Clifford group
operations are similarly equivalent under such transformations.
This has been proven elsewhere [14].

An example of the effect of local measurement is given in
Fig. 2 for a four-party square state with d = 5, all edges of
weight 2 and each vertex having the labels (z,x,m) = (1,0,1).
If player 1 performs a measurement of XZ2 and gets a result
of ω2, the state is transformed as shown.

E. Dependence and access

We now consider conditions such that a subset of players
can independently recover a secret encoded into the labels of
a labeled qudit graph state, using the terminology previously
employed for the qubit case [6]. For a state |G�〉〈G�|, consider
a subset of players V′ ⊆ V. Without any assistance from any
other players the subset V′ only has access to the reduced
state ρV′ = TrV\V′ |G�〉〈G�| and must recover the secret from
this state.

Considering then some secret s ∈ Fd , which is a function
of the labels �, it follows that the set of players V′ are clearly
unable to recover s if the state ρV′ is invariant under changes in

2

2

12 2

2

2

1 2 2

4 3 4 3

(1,0,1)(1,0,1)

(1,0,1) (1,0,1) (0,0,3) (1,0,1)

(XZ2)1 = ω2

d = 5
(0,0,3)

FIG. 2. Effect of a local XZ2 measurement (with result ω2) on
vertex 1 of an encoded-square qudit graph with weight-2 edges
in d = 5. Labels are denoted (z,x,m). Following the measurement,
vertex 1 and all its edges are removed. Vertices 2 and 3 gain an
edge of weight N23 = 0 + 6 = 1 (modulo d = 5) and vertex labels
z = 1 + 4 + 4 + 6 = 0, m = 8 = 3.

k. If this is not the case, we say the reduced state is dependent
on the value s.

However, dependency is generally insufficient for the
players to be able to recover s. We say that a set of players V′
can access s if there is a measurement protocol the players in
V′ can perform on ρV′ such that the value of s is revealed to
them with certainty.

We find the following:
Proposition 2. Given an encoded graph state, if for a

set of vertices V′ ⊆ V, we have some corresponding set of
values {wi} ∈ Fd (with wi = 0 for all vi /∈ V′), then

∑
i wizi

is accessible to the parties in V′ via LOCC if
∑

vj ∈V wiAij = 0
for all vi ∈ V \ V′.

Proof. Each party vi ∈ V′ measures K
wi

i for an overall stabi-
lizer K = ∏

vi∈V′ K
wi

i . The graph state is thus an eigenstate of
K with eigenvalue ω− ∑

i wizi ; thus the parties in V′ can jointly
retrieve

∑
i wizi . �

Corollary 3. In an encoded graph state, the label zk is
accessible via LOCC by V′ if V′ contains vk and all of its
neighbors.

Proof. Apply Proposition 2 with wk = 1 and all wi 	=k =
0 so

∑
i wizi = zk . For any vj ∈ V \ V′, we have that∑

eij ∈e wiAij = Akj = 0 since vj is outside V′ and thus not
a neighbor of vi . The stabilizer K in the proof of Proposition 2
is just Ki in this case; hence measuring Ki gives the value
zi . �

Note that, because labels are applied to a given vertex
via local Pauli operations on that vertex, the reduced graph
state obtainable by tracing out a given vertex (i.e., a given
player) must be independent of that vertex’s labels. Hence
those labels are inaccessible to the remaining players. We
exploit this property to determine the minimum number of
players required to recover a secret in threshold secret-sharing
protocols.

1. Label “shuffling”

As for the qubit case, we demonstrate that a given subset of
parties is independent of a particular qudit label by “shuffling”
the label onto qudits not in the subset. That is, we demonstrate
that the transfer of the label onto a different qudit (such that
the original qudit no longer has any dependence on the label)
results in a physically equivalent state. Thus the label shuffling
procedure does not represent any physical operation or change
in the state: It merely generates an equally valid relabeling of
the same physical state.

Proposition 4. Let |G�〉 be an encoded graph state, and
let players i and j be neighbors. Then |G�〉 is equivalent
to the labeled graph state |G�′ 〉 where vertex i is relabeled
z′
i = 0, vertex j is relabeled (z′

j ,x
′
j ) = (zj , − A−1

ij zi), and each

neighbor k of j is relabeled z′
k = zk − A−1

ij Ajkzi).
Proof. Noting that Kj stabilizes |G�〉, it follows that

K
−A−1

ij zi

j |G�〉 ∝ |G�′ 〉, which, from (11), corresponds to the
above relabeling.

We demonstrate the above concept in Fig. 3 using a four-
qudit square graph with weight-2 edges in d = 5, with a label
of z = 3 on vertex 1 and all other labels equal to zero, and
shuffling player 1’s label to player 2.
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(3,0,0) (0,0,0)

(2,0,0) (0,0,0)

(0,0,0) (0,1,0)

Shuffle 1 → 2

d = 5

FIG. 3. Effect of label shuffling from vertex 1 to 2 on an encoded
square qudit graph with weight-2 edges in d = 5. Labels are denoted
(z,x,m). Vertex 1’s z label is set to 0. Vertex 2’s x label is set to
−3/2 = 1 (mod d = 5), and vertex 3’s z label is set to −6/2 = 2.

III. SECRET-SHARING PROTOCOLS

A. CC scheme

In a (k,n) CC threshold scheme, the players’ shared
quantum state is privately transferred to them by the dealer,
after which a classical secret can be reconstructed by any k

of n players (but no fewer) using classical channels between
the players. We demonstrate the feasibility of such schemes
using labeled graph states by encoding a secret “dit” s on to
the z labels of certain vertices of the graph. We then show that
a subset of m parties may measure s by jointly measuring one
of the graph state’s stabilizers Ki . Finally, to demonstrate that
fewer than m parties cannot obtain s, it is sufficient to show
that we can shuffle the vertices’ z values such that any given
set of fewer than k parties has no dependence on s (for which it
is clearly sufficient to demonstrate the above for k − 1 parties
only).

Note that secret sharing is known to be information-
theoretically secure in the classical case; in our analysis we
are showing that such protocols may be unified within the
graph state formalism. CC protocols within our formalism
also provide a useful basis for the CQ and QQ cases, as shown
later.

We find that such schemes may be implemented for
d-dimensional analogs of all the qubit states for which it
was previously demonstrated [6], using essentially the same
reasoning.

1. (n,n) CC protocol in the tree state

We can implement an (n,n) protocol using a tree state,
consisting of a single vertex connected by weight-1 edges
to n − 1 additional vertices, as illustrated in Fig. 4. (In the
three-party qubit case with all labels set to zero this is the
well-known Greenberger-Horne-Zeilinger-Mermin state). We
set z1 = s and zi = 0 for all i 	= 1.

11
1 1

2 n n3

1

−1

z1 = s → 0

x3 = 0 →−s

FIG. 4. Shuffling of a classical secret s from player 1 to player 3
in a CC protocol for an encoded tree state. As this label can be shuffled
to any player (or remain with player 1), any subset of the parties has
no dependence on s.

11

32

1

(s,0,0)(2s,0,0)

FIG. 5. Encoding of a classical secret s ∈ Fd onto a three-party
state to enable a (2,3) CC protocol. It can be seen that the secret can
be shuffled away from any single qubit. At the same time any two
players can access the secret as explained in the text.

For this state, the stabilizer K1 = (XZm1 )1 ⊗ Z2 ⊗ · · · ⊗
Zn has the eigenvalue ω−s , and the value of s may thus be
accessed through local measurements by all n parties. We
see that s is inaccessible to any smaller number of parties
as follows: The set of n − 1 parties excluding player 1 has
no dependence on s. However, we can also shuffle the s

dependence from player 1 to any other party i as described
in Proposition 4. This leaves us with z1 = 0, xi = −z1 = −s,
and all other labels unchanged, in which case the labels for
all players other than i have no dependence on s. Hence all
n players are necessary to recover s.

2. (2,3) CC protocol

We can implement a (2,3) protocol using the labeled graph
state in Fig. 5. We encode the classical secret s ∈ Fd by setting
z1 = 0, z2 = 2s, and z3 = s and set all other labels to zero as
illustrated.

To see that no single player can access the secret we apply
the shuffling as described in Proposition 3. Player 1 cannot
access the secret, as he has no label dependence on the secret.
The label z2 = 2s can be removed by shuffling it to player 1
and player 3 as per Proposition 3 (explicitly by multiplication
of stabilizer K−2s

1 ); hence player 2 cannot access the secret.
The label z3 = s can be removed by shuffling it to player 1 and
player 3 as per Proposition 3 (explicitly by multiplication of
stabilizer K−s

1 ), hence player 3 also cannot access the secret.
To see that any pair can access the secret, we take each pair

separately. Players 1 and 2 can measure K2 = Z1X2, giving
outcome ω−2s . Players 1 and 3 can measure K3 = Z1X3,
giving outcome ω−s . Players 2 and 3 can measure Kd−1

2 K3 =
Xd−1

2 X3, giving outcome ωs .

3. (3,4) CC protocol in the ring state

We can implement a (3,4) protocol using a square encoded
graph state with weight-1 edges and mi = 0 for all i, by setting
zi = s for all i.

Thus we have Ki = ωs for all i and, e.g., K2 = Z1X2Z3,
so players 1, 2, and 3 can collaborate to measure s. By the
symmetry of the state, this is similarly the case for any set of
three players.

As depicted in Fig. 6, we can shuffle the s dependence
of player 1 to player 2. This sets z1 = 0, x2 = −s, and z3 =
s − s = 0. This leaves the labels of 1 and 3 independent of s;
hence neither they, nor (by symmetry) any two nonadjacent
parties, can obtain s.

If they subsequently perform a 4 → 3 shuffle, this leaves
player 1’s labels unaltered and sets player 4’s z label to 0; hence
1 and 4 (and thus any two adjacent players) cannot obtain Z,
thereby completing the proof.
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1 1

1

1

1 1

1

1

(b)(a)

2

3

2

3

1 1

4 4

x2 →−sz1 → 0

z3 → 0 z4 → 0

z1 = 0

x3 →−s

(x2 = −s)
z2 → 0

FIG. 6. CC protocol in an encoded (3,4) ring state. All players
start with z = s. Dependence on the label s can be shuffled such that
any two (a) nonadjacent or (b) adjacent parties are independent of the
label. Note that the the shuffling in (b) occurs after first performing
that in (a).

4. (3,5) CC protocol in the ring state

We can implement a (3,5) protocol using a five-vertex ring-
shaped encoded graph state with weight-1 edges, as shown in
Figs. 7 and 8, setting mi = 0 for all i and zi = s for all i, so
again a Ki measurement yields ω−s for all i and, for example,
K2 = Z1X2Z3 so players 1, 2, and 3 (hence any three adjacent
parties) can measure s.

The other possibility is where only two of three players are
adjacent, e.g., 1, 2, and 4. For the ring state we have

Ki = XiZi+1Zi−1 (29)

so

K1K2K
−1
4 = X1Z2X2Z4X

−1
4 , (30)

which can be measured by players 1, 2, and 4, giving ω−s .
Hence any three parties can recover s.

In the five-qudit ring state we can always renumber the par-
ties such that for two parties i and j , i + 1 � j � i + 2. In this
case i and j can shuffle their s dependence to the parties i − 1
and j + 1; hence two players are not sufficient to recover s.

B. The CQ scheme

As in Ref. [6], we implement CQ schemes by performing a
quantum key distribution (QKD) protocol, wherein the dealer
and a subset of the players end up securely sharing a random
secret dit s. This shared random classical information can
then be used by these parties to securely share any specified
secret of the same length via standard classical cryptography
protocols.

We implement such QKD protocols in graph states by
having the dealer distribute the players’ qudits to them
over public channels, after which the dealer and the players

3

1

5

4

2

1

1

z5 →−s

x4 →−s z3 → 0

1

1

1

z2 → 0

x1 →−s

FIG. 7. CC protocol for an encoded (3,5) ring state. All players
start with z = s. Dependence on the label s can be shuffled such
that any two adjacent parties are independent of s (see Fig. 8 for
nonadjacent parties.

3

1

5

4

2

1

1

z4 → 0

1

1

1

z2 → 0

x1 →−s

(z5,x5) → (0,−s)

FIG. 8. Shuffling of the label s such that any two nonadjacent
parties are independent of s, for the (3,5) ring state.

measure their own qudits using bases chosen at random. After
measurement the dealer and players publicly announce their
bases and retain their measurement results only for certain
combinations of chosen bases, such that m of the players may
collaborate to obtain a classical secret shared with the dealer.

The CQ protocols we have found follow a pattern whereby
the result of the dealer’s measurement is a projection of the
resultant reduced graph into a labeled state whose labels are
correlated with the dealer’s measurement and for which the
players can perform a CC protocol. As in Ref. [6], our protocol
is based on that of Hillery, Bužek, and Berthiaume [3] and has
the same limitation of being secure against certain classes of
attack such as intercept-resend attacks by an eavesdropper or
certain classes of attack by dishonest participants [3] but not
against all attacks by dishonest participants [29]. Additionally,
we do not consider the case of noisy channels, although
existing protocols which do [30] could potentially be adapted
to our model.

1. (n,n) CQ protocol in the extended tree state

We can construct an (n,n) CQ protocol using an “extended”
tree state, consisting of an n-party tree state (as in the CC
protocol) with the dealer’s qudit connected to player 1’s qudit
by a weight-1 edge and all labels set to 0, as illustrated in
Fig. 9. This graph state therefore has stabilizers

KD = XDZ1 (31)

K1 = ZDX1

∏
i 	=1

Zi (32)

Ki = XiZ1 (i 	= 1). (33)

In our protocol, the dealer and the players 1, . . . ,n each
independently randomly choose a value tD,t1, . . . tn ∈ Fd . The
dealer then measures her qudit in the basis XtDZ and player 1
measures XZt1 , whereas the remaining players i each measure
Xti Z.

1
11

1

1

−n 1

1

2 3 n

D

FIG. 9. The “extended” tree state used for the CQ protocol. Local
measurement on the dealer’s qudit produces a reduced state of the
form of that in Fig. 4 (although with an additional m = tD label on
vertex 1).
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If the dealer’s measurement result is ωs then, from Propo-
sition 1, the reduced state of the remaining n parties is the
nGHZM state (without the additional dealer’s vertex), still
with weight-1 edges. The only relabeled vertex is that of
player 1, with z1 = s, m1 = tD . All other labels remain zero.
The reduced graph therefore has stabilizers

k1 = (XZtD )1Z2 · · · Zn (34)

ki = Z1Xi, i 	= 1 (35)

(here and henceforth we use ki to denote reduced-state
stabilizers and Ki for the full state including the dealer).
Furthermore, the labeling is such that the reduced state has
eigenvalue 1 for all the stabilizers with i 	= 1. Thus any product
of stabilizers k1k

l2
2 · · · kln

n will have eigenvalue ω−s . As(
XZt

1

)
1

∏
i 	=1

(Xti Z)i = k1k
t2
2 · · · ktn

n Z
(tD−t1+

∑
i 	=1)

1 (36)

the players measure such a product (and hence are able
to recover s) if t1 = tD + t2 + · · · + tn, which occurs with
probability 1/d.

Security against an eavesdropper having tampered with the
qudits (e.g., an intercept-resend attack) is established by noting
that the combination of the player and dealer’s measurements
satisfies

(XtDZ)D
(
XZt

1

)
1

∏
i 	=1

(Xti Z)i = K
tD
D K1K

t2
2 · · · Ktn

n , (37)

i.e., the players and dealer can also combine their measurement
statistics for the various values of ti to measure the stabilizers
of, and hence verify, the original state.

2. (2,3) CQ protocol

We can construct a (2,3) CQ protocol through extending the
CC case by attaching the dealer’s qudit to those of players 2
and 3 with weights of 2 and 1 respectively and setting all labels
to zero, as illustrated in Fig. 10. The stabilizers for this state
are

KD = XDZ2
2Z3, (38)

K1 = X1Z2Z3, (39)

K2 = Z2
DZ1X2, (40)

K3 = ZDZ2
1X3. (41)

The dealer randomly selects a variable tD ∈ Fd and mea-
sures XtDZ and obtains result ωs . The resultant graph states are
given by Proposition 5, as shown in Fig. 10(b), with stabilizers

k1,tD = X1Z2Z3, (42)

11

2 1

(b)(a)

11

32

1

2

1

D

3
(s+ tD,0, tD)

2tD
(2s+3tD,0,4tD)

FIG. 10. (a) The “extended” (2,3) state used for the CQ protocol.
Local measurement on the dealer’s qudit produces a reduced state of
the type in (b).

k2,tD = Z1X2Z
4tD
2 Z

2tD
3 , (43)

k3,tD = Z1Z
2tD
2 X3Z

tD
3 . (44)

We now need to see how sets of players can or cannot access
the random value s of the dealer’s measurement result. First, for
any choice of tD , no single player can access s by application of
Proposition 3 to Fig. 10(b). To see how any pair can access the
dealer’s result, we must address each measurement parameter
tD and resultant graph separately and see which measurement
the players would ideally make. In the protocol, any given
authorized set of players then choose randomly one of these
possible measurements, which sometimes match that of the
dealer and enable this set of players to access the secret and in
addition provide security by effectively measuring a stabilizer
of the total state Fig. 10(a).

We now go through how each pair can access s if the dealer
measures as above. Players 1 and 2 can access the dealer’s
result by measuring

k
−2tD
1,tD

k2,tD ,

allowing them to obtain ω−(2s+3tD ). Players 1 and 3 would
measure

k
−2tD
1,tD

k3,tD ,

allowing them to obtain ω−(s+tD ). Players 2 and 3 would
measure

k2,tD k−1
3,tD

,

allowing them to obtain ω−(s+2tD ).
In this protocol, each authorized set will measure randomly

from one of the three possible measurements corresponding to
tD . For example, if players 1 and 2 decide to work together to
obtain the secret, they will randomly measure

k
−2t ′D
1,t ′D

k2,t ′D

by choosing their random variable t ′D (agreed between
players 1 and 2). By definition of the stabilizers these do not
commute, hence cannot be measured simultaneously. Their
measurements will coincide with the dealer’s when t ′D = tD ,
which happens with probability 1/d. After announcing the
bases they can then throw away all results that do not coincide.

Security can be proven by noting that including the dealer’s
measurement results allows the dealer plus an authorized set
to simulate measurement of stabilizers of the original graph
Fig. 10(a). An additional subtlety of simulating measurements
locally in the qudit case, as apposed to the qubit case, is
that there is more than one possible commuting Pauli. Any
local extended Pauli on a qudit i, Oi , commutes with all
powers of this Pauli operator Om

i , which means they share
common eigenbases. Further, as there are no degeneracies,
the eigenvalues are just a reordering. Thus, if measuring Oi

yields result ωs , we know that, even without doing any further
measurement, Om

i would give result ωms . In this way, we can
simulate any power of a Pauli Om

i just by measuring Oi .
In the protocol, some of the sifted key would be sacrificed

now to check the security by announcing some randomly
chosen results. If we again look at players 1 and 2, for
example, by combining their results with those of the dealer,
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they can simulate measuring stabilizers Ki of the original state
[Fig. 10(a)], Eqs. (42)–(44), since

K
2tD
D K

−2tD
1 K2 = ω3tD

(
X

tD
D ZD

)2
k

−2tD
1,tD

k2,tD . (45)

If there has been no interference from an eavesdropper, they
will all measure outcome 1 for, with high probability given a
large number of announced results, every value of tD . Although
this outcome is not enough to guarantee that the state before
measurement was the state of Fig. 10(a), it restricts the allowed
space to that which guarantees security as follows: If g is the
subgraph got by removing player 3 and all its edges from
Fig. 10(a), having eigenvalue 1 for all these stabilizers implies
that the state of the dealer plus players 1 and 2 is in the subspace
spanned by {gz=(i,i,0)}, i.e., where players 1 and 2 have z1 = z2

and players 3 has z3 = 0. Thus, the most general state including
an eavesdropper E can be written∑

i

αi |i〉E|gz=(i,i,0)〉D,1,2. (46)

It can then be checked that the reduced density matrix of the
dealer and the eavesdropper is

ρED = ρE ⊗ 1D/d, (47)

which implies that the eavesdropper cannot share any infor-
mation about the dealer’s results. It can similarly be checked
for pairs of players 2 and 3 and then 1 and 3.

3. (3,5) CQ protocol

We can construct a (3,5) CQ protocol by extending the CC
case by attaching the dealer’s qudit to each player with weight
one edges, and all labels set to zero, as illustrated in Fig. 11.
The stabilizers for this state are

KD = XDZ1Z2Z3Z4Z5 (48)

K1 = ZDX1Z2Z5 (49)

K2 = ZDZ1X2Z3 (50)

K3 = ZDZ2X3Z4 (51)

K4 = ZDZ3X4Z5 (52)

K5 = ZDZ1Z4X5 (53)

The dealer randomly selects a variable tD ∈ Fd and mea-
sures XtDZ and obtains result ωs . The resultant graph states
are shown in Fig. 12. The associated stabilizers of player i are
denoted ki,tD .

First we check that each pair of players cannot access s

without collaborating with the others. From Proposition 3,
players 1 and 2 cannot access the dealer’s result (the secret) as

1

3

5

4

2
D

1

1 1

1 1

1 1

1 1

1

FIG. 11. The “extended” (3,5) state used for the CQ protocol.
Local measurement on the dealer’s qudit produces a reduced state of
the type in Fig. 12.

1

3

5

4

2

(s+ tD,0, tD)

1+ tD

tD
tD tD

tDtD

1+ tD (s+ tD,0, tD)

(s+ tD,0, tD)
1+ tD

1+ tD

1+ tD
(s+ tD,0, tD)

(s+ tD,0, tD)

FIG. 12. Resultant state from the dealer’s local measurement on
Fig. 11.

explicitly by application of the stabilizers

k
−(1+st−1

D )
4,tD

(shuffling from player 1 to 4) if tD 	= 0 or

k−s
3,tD

k−s
5,tD

(shuffling from 1 to 5 and 2 to 3) if tD = 0. We can see that
players 1 and 3 cannot access s since the dependence can be
removed by application of

k
−(s+tD )(1+tD )−1

2,tD

(shuffling from 1 to 2) if tD + 1 	= 0 or

k
−(1+st−1

D )
4,tD

k
−(1+st−1

D )
5,tD

(shuffling from 3 to 4 and 1 to 5) if tD + 1 = 0. By symmetry
no pair alone can access s.

We now see how any three players can access the secret for
a given tD . Players 1, 2, and 3 can do so by measuring

k
−tD
1,tD

k
1+2tD
2,tD

k
−tD
3 ,

yielding result ω−(s+tD ). Players 1, 3, and 4 can do so by
measuring

k
−(1+2tD )
1,tD

k
1+tD
3,tD

k
1+tD
4,tD

,

yielding result ω−(s+tD ). By symmetry any three players can
therefore find s.

In this protocol, any set of authorized players measures
randomly in accordance with these procedures. For example
players 1, 2, and 3 will randomly measure stabilizers

k
−t ′D
1,t ′D

k
1+2t ′D
2,t ′D

k
−t ′D
3 ,

by choosing a shared random variable t ′D . Security is then
checked by verifying that the eigenequations are satisfied by
the dealer and the player by communicating results to simulate
measurement of a subset of stabilizers. For example, the dealer
plus players 1, 2, and 3 can, by comparing results, calculate
what would have been the measured value for the stabilizers
[of the original graph, Fig. 11, Eqs. (48)–(53)], because

K
t ′D
D K

−t ′D
1 K

1+2t ′D
2 K

−t ′D
3 = ωt ′DX

t ′D
D ZDk

−t ′D
1,t ′D

k
1+2t ′D
2,t ′D

k
−t ′D
3 . (54)

If the eigenvalue is 1 for all of these (as should be the case;
if not the protocol restarts), this implies the joint state of the
dealer plus players 1, 2, and 3 is in the subspace spanned by
{|gz=(i+j,i,0,j )〉D,1,2,3}. As for the (2,3) case, this implies that,
for the most general state of an eavesdropper E and dealer,
their reduced density matrix is of the form

ρE,D = ρE ⊗ 1D/d; (55)
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hence the eavesdropper’s state is completely uncorrelated with
the dealer’s measurement result and therefore uncorrelated
with the secret. Security can similarly be checked for all sets
of three or more players.

C. The QQ scheme

The QQ scheme proposed in Ref. [6] is readily general-
izable to qudits. This protocol is similar to the CQ scheme,
but the secret to be shared is now a quantum state |s〉 in a
d-dimensional Hilbert space, initially possessed by the dealer,
who distributes it to the other parties via a joint operation on
the secret state and the parties’ shared graph state, in a manner
analogous to quantum teleportation. We describe the general
protocol explicitly below.

Denoting the dealer’s secret qudit as

|s〉D =
d−1∑
i=0

αi |i〉D, (56)

the dealer prepares the state

|s〉D|G〉D,V (57)

corresponding to some graph state G for the dealer’s qudit D

and all the players’ qudits V . The dealer distributes the players’
qudits to them (over perfect quantum channels, which we can
assume to be public). The dealer then measures her two qudits
in the generalized Bell basis [31] {|ψmn〉}, where

|ψmn〉 := 1√
d

∑
j

ωjn|j 〉|j + m〉. (58)

If the dealer’s measurement result is (m,n), corresponding
to the state |ψmn〉, then it follows from our rules for projective
measurement that the resultant state for all parties is

|ψmn〉D〈ψmn||s〉D|G〉D,V

∝ |ψmn〉D
∑

j

αjω
−jn

∣∣gz=(j+m)(AD1,AD2...,ADN )
〉
V
, (59)

where |gz〉 is the encoded reduced graph state on the players
1, . . . ,n with labels z.

If the dealer informs the players of their measurement result
(m,n), then a set of players ∈ V (including some player a with
NDa 	= 0) can apply a correction operator

Umn := K
−nN−1

Da
a Z−mAD (60)

to obtain the state

|sg〉V =
∑

j

αj

∣∣gz=j (AD1,...ADN )
〉
V
. (61)

The access properties of this final state depend on the graph
state used. Qualitatively, for certain initial graph states, the
state |sg〉V can be regarded as a superposition (with coefficients
corresponding to those of the encoded secret) of orthogonal
labeled graph states whose labels have the same access
structure as CC protocols. Thus, the ability to recover the
quantum secret corresponds to the ability to recover these
classical labels, providing a natural extension of the classical
protocols to the quantum case.

However, the above reasoning does not guarantee that such
a QQ protocol will have the same adversary structure as the
corresponding CC protocol, as seen below, where we achieve
“perfect” threshold schemes in the (2,3) and (5,3) cases, but
fewer than n players can still obtain some secret information
in the (n,n) case.

1. (n,n) QQ protocol using the nGHZM state

If the joint graph state of the dealer and players |G〉 is the
same as for the CQ scheme (i.e., an nGHZM state with an
additional dealer’s vertex, connected to player 1, and all labels
set to zero), then the final players’ state is

|sg〉V =
∑

j

αj |gz=(j,0,...,0)〉V , (62)

where V is the set of all players. The |g〉 states, in the
form of nGHZM states with a label on player 1’s vertex,
are the same as those used in the (n,n) CC protocol, to
which the access properties described in Sec. III A 1 apply,
and fewer than n players cannot perfectly reconstruct the
secret.

However, we note that the reduced states of fewer than
n players are not independent of the αj . For example, in
the analogous qubit protocol [6] we can, in some basis
(depending on the player), express the reduced state of a
single player as diag(|α0 + α1|2,|α0 − α1|2). Thus this (n,n)
protocol is not a “perfect” threshold scheme; it allows some
incomplete information to be accessed by fewer than n players.
However, the secret qudit is clearly encoded within the state
of the n players and so may be accessed by all players by
performing joint quantum operations. Furthermore, the secret
can be isolated to any individual player through LOCC as
follows.

For any player i other than player 1, the secret can be
isolated by player 1 measuring X and the rest of the players
other than i measuring Z, which is evident by rewriting the
state as

|sg〉V =
∑

j

|gz=(j,0,...,0)〉V\vi

(∑
k

αk|j − k〉i
)

. (63)

The secret can be isolated to player 1 by every player other
than 1 measuring Z, thereby producing the state

|s ′
g〉V =

∑
k2

· · ·
∑
kn

∑
j

αj |−(j + k2 + · · · + kn)〉1

× |k2〉2 · · · |kn〉n. (64)

Thus the quantum secret requires collaboration by all n players
(and no fewer) to recover but the players may collaboratively
make the secret locally accessible to a single player if they so
wish.

2. (2,3) QQ protocol

We can construct a (2,3) QQ protocol by teleporting the
secret qudit (56) into the extended graph state of Fig. 10. The
encoded state is

|sg〉V =
d−1∑
j=0

αj |gz=j (0,2,1)〉 (65)
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for g the (unlabeled) graph in Fig. 5. The state (65) can be
rewritten as

|sg〉V = 1√
d

d−1∑
j,k=0

αj |k〉1|2j + k〉2|j + k〉3

= 1√
d

d−1∑
j,M=0

αj |M − j 〉1|M + j 〉2|M〉3, (66)

where M = j + k.
For d = 3 this state corresponds exactly to the (2,3) qutrit

code presented in Ref. [4]. Any pair of players can thus access
the secret, and any single player cannot. For example, players 1
and 2 perform control operations that add the value of the first
register (without an overbar) to the second register (with an
overbar) and then − 1

2 times the value of the second to the
first (again, keeping the first register nonbarred and the second
always barred). This leaves the resultant state as

1√
d

d−1∑
j=0

αj |−j 〉1

d−1∑
M=0

|2M〉2|M〉3. (67)

Any pair can similarly obtain the secret. Since single players
form complementary sets to pairs of players, it follows from
information gain implying disturbance [4] (and can be shown
explicitly) that no single player can obtain any information
about the secret, so this is a perfect threshold scheme.

3. (3, 5) QQ protocol

We can construct a (3,5) QQ protocol by teleporting the
secret qudit into the extended graph state of Fig. 11. The
encoded state is then

|sg〉V =
d−1∑
j=0

αj |gz=(j,j,...j )〉 (68)

where g is the (unlabeled) graph of Fig. 7. The state can be
rewritten as

|sg〉V = 1

d

d−1∑
x,y=0

|x〉1|y〉2

×
⎛
⎝d−1∑

j=0

αjω
j (x+y)+xy |hz=(j+x,j,j+y)〉3,4,5

⎞
⎠ , (69)

where h is the subgraph corresponding to players 3, 4, and
5 taken by removing all other vertices and their edges. The
fact that each vector z occurs only once means that players 3,
4, and 5 can always measure in such a way to project them
only onto the a subspace corresponding to some |xy〉1,2. Each
would occur with equal probability of 1/d2.

If, for example, their measurements put them onto the
|hz=(j,j,j )〉3,4,5 subspace (corresponding to x = y = 0), they
know from the above that they would obtain the state

d−1∑
j=0

αj |hz=(j,j,j )〉3,4,5, (70)

hence would have the secret encoded into the graph state
|h〉. Suitable global operations could then be used to map the

state onto any subsystem they liked. For example, performing
(Cab)−1 between players 3 and 4, as well as between players 4
and 5, gives the state

d−1∑
j=0

αj |j̄〉3|j̄ 〉4|j̄〉5. (71)

Players 3 and 4 can measure in their respective Z bases to
shuffle the information to player 5. Similarly it can be shuffled
to any player.

To see how players 2, 4, and 5 can access the secret qutrit,
we rewrite the state as

|sg〉V = 1

d

d−1∑
x,y=0

|x〉1|y〉2

×
⎛
⎝d−1∑

j=0

αjω
j (x+y)|hz=(j+x+y,j+x,j+y)〉2,4,5

⎞
⎠ , (72)

where h is the subgraph of players 2, 4, and 5 found by remov-
ing all other vertices and their edges. Each possible vector z
occurs only once in this expansion. By the same tactics players
2, 4, and 5 can access the secret. By symmetry, any three can
access the secret. As with the (2,3) case, perfect secret recovery
by three players requires that the complementary sets of two
players cannot obtain any information about the secret (as can
also be shown explicitly), so this is a perfect threshold scheme.

We note that the existence of a (3,5) QQ protocol in graph
states of arbitrary dimension has been implied by the work
of Gheorghiu, Looi, and Griffiths [32], who showed that
encoded information can be isolated to three of the five qudits
in a graph state.

IV. CONCLUSION

We have developed a unified framework for the three types
of secret sharing in prime-dimensional Hilbert space. Our
formalism uses prime-dimensional graph states, analogous
to those in the qubit case, and our protocols allow sharing
of classical “dits” and prime-dimensional quantum states
as secrets. Our protocols include the case of (2,3) sharing,
which was not achievable in the qubit formalism in addition
to higher-dimensional analogs of qubit protocols. Our work
provides a useful step toward describing schemes sharing
classical and quantum secrets of any size within a graph-state
formalism for general physical systems.

Our work suggests several areas for further research. Still
open are the questions of whether any achievable threshold
secret-sharing scheme can be constructed within our formal-
ism, and, if so, what the associated graph states and protocols
would be. If prime-dimensional systems are not sufficient
to construct any scheme, it is possible that an analogous
formalism involving states of any dimension might allow for
a richer array of protocols, as we have shown occurs when
moving beyond the qubit case. Generalizing to the case of
arbitrary d is thus another promising area for further work, and
some of the methods described in Ref. [32] (which considers
such general graph states) may be useful here.

With regard to achieving arbitrary threshold schemes, we
additionally note that the graph state formalism can in principle
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be used for sharing of quantum secrets for arbitrary access
structures. This property of the formalism stems from the
fact that schemes exist for arbitrary access structures using
high-dimensional stabilizer states [4,5] and that it can be
shown that all stabilizer states are locally equivalent to qudit
graph states [14,33]. However, there is no explicit procedure
for converting these schemes to graphs, and further, it is not
immediately clear that they can also be used for sharing
classical secrets (though it seems very likely). Developing
such a procedure would provide a graph state formalism
for arbitrary access structures in quantum secret sharing,
although it may not be equivalent to that in our current
work.

There are also several possible extensions to the analysis
of CQ protocols within our formalism: considering more
general attacks involving dishonest participants, the presence
of channel noise, and the overall efficiency of the protocol;

i.e., the need to discard states when the participants’ bases do
not match. It is an open question which graph states would
produce the highest key rates (and hence secret-sharing rates)
per state within our formalism.

Further generalization may allow a wide range of
secret-sharing schemes to be described in this intuitively
appealing way.
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