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In this paper we consider the quantum phase transition in the Ising model in the presence of a transverse field in
one, two, and three dimensions from a multipartite entanglement point of view. Using exact numerical solutions,
we are able to study such systems up to 25 qubits. The Meyer-Wallach measure of global entanglement is used to
study the critical behavior of this model. The transition we consider is between a symmetric Greenberger-Horne-
Zeilinger–like state to a paramagnetic product state. We find that global entanglement serves as a good indicator
of quantum phase transition with interesting scaling behavior. We use finite-size scaling to extract the critical
point as well as some critical exponents for the one- and two-dimensional models. Our results indicate that such
multipartite measure of global entanglement shows universal features regardless of dimension d . Our results also
provide evidence that multipartite entanglement is better suited for the study of quantum phase transitions than
the much-studied bipartite measures.
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I. INTRODUCTION

There has been much work on entanglement in the past
20 years [1–8]. Entanglement is a purely quantum phe-
nomenon with no classical counterpart. It is thought to hold
the key to a deeper understanding of the theoretical aspects of
quantum mechanics. From a more practical aspect, entangle-
ment is the key ingredient in many information processing
applications, including quantum computation and quantum
cryptography [9]. On the other hand, there has been much
cross-fertilization in the fields of condensed-matter physics
and quantum information theory in recent years [10–18].
Here many traditional condensed-matter systems including
fermionic and bosonic gases, and in particular lattice spin
models, have been investigated in the light of new develop-
ments in quantum information theory and entanglement in
particular [10]. It has been found that entanglement plays a
crucial role in the low-temperature physics of many of these
systems, particularly in their ground (zero-temperature) states
[16–19]. A very fruitful avenue along these lines has been the
relation of entanglement and phase transitions in general, and
quantum (ground-state) phase transitions in particular. This is
a bit surprising since entanglement was originally thought to
be somewhat fragile and thus easily destroyed by fluctuations.

In a quantum phase transition (QPT) [20], a thermodynamic
system described by a Hamiltonian H (λ) changes its macro-
scopic phase at the critical value of the control parameter λc.
In recent studies of many thermodynamic systems exhibiting
QPT, in particular quantum spin models [16–19], it has
become clear that the onset of transition is accompanied by a
marked change in the entanglement. Depending on the model,
entanglement could peak, show discontinuous behavior, or
show diverging derivatives with scaling behavior at the critical
point [10,21]. What is less clear is the exact role (or the general
mechanism) through which entanglement and QPT are related.
In such studies, various quantitatively different measures of
entanglement have been used. Therefore, for example, one
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would like to know if there are universal features in the
entanglement of various spin models exhibiting QPT.

Another important feature which is emerging out of
recent studies of condensed-matter systems from quantum
information perspectives is the need for multipartite measures
of entanglement [22–26]. This, by the way, is an example of the
cross-fertilization referred to earlier. Since the root of quantum
theory [27] is originally in bipartite systems like Bell states, it
has been natural to study macroscopic systems using bipartite
measures such as the von Neumann entropy or concurrence.
In fact, with very few exceptions, the general body of the
current literature has used such bipartite measures to study
many-particle systems. Although this has been so because of
a matter of tradition and/or convenience, there is increasing
evidence that such measures are generally inadequate to study
QPT in condensed-matter systems [28,29]. After all, it is
natural to use multipartite entanglement if one is to study the
role of entanglement in multipartite (many-particle) systems,
because important types of entanglement in such systems (e.g.,
various n-tangles) may not be captured by a bipartite measure
but would be included in a (ideal) multipartite measure.
Additionally, some multipartite measures (as discussed in Sec.
III) have thermodynamic properties (e.g., extensivity) that
make them more suitable for studies of such thermodynamic
phenomena as QPT. Another equally important shortcoming
is that most such studies have been carried out for one-
dimensional (1D) models. Although this is perhaps because
of computational difficulties, it is certainly not well justified.
As is well known, spatial dimension (d) plays an important
role in the physics of thermodynamic systems and in phase
transitions in particular [30].

Here we propose to study QPT in a prototypical transverse-
field quantum Ising model using the Meyer-Wallach [31]
measure of global entanglement in one, two, as well as three
dimensions. Such a global entanglement measure seems to
be well suited for studies of many-particle systems [22,32].
Since analytic results are usually difficult to come up with,
numerical results with finite-size systems are typically the way
to proceed. However, solving quantum lattice spin systems
numerically is also computationally expensive as only a
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few qubits (spins) can be solved exactly and approximation
techniques have limited success in one dimension and are more
limited in higher dimensions [33]. Very recently, however, such
systems have been studied using efficient numerics [34].

In this article, we solve the transverse-field quantum
Ising model numerically (exact) for up to 25 qubits in one,
two, and three dimensions. Our main result is that global
entanglement is a measure well suited to study QPT with
some universal features in any dimension. We show that
global entanglement has interesting scaling properties near the
critical point. Using finite-size scaling arguments, we extract
critical points as well as some critical exponents for the 1D
and 2D models consistent with previous studies. Owing to
system-size limits, we are only able to study the smallest 3D
system and thus cannot perform finite-size studies. However,
the general shape of global entanglement in the 3D model
(see later discussion of Fig. 7) indicates that our 1D and 2D
results easily generalize to 3D systems. More important, our
results provide a general framework for computation of an
accessible measure of entanglement and its relevance to QPTs
in many-particle thermodynamic systems.

This paper is structured as follows: in Sec. II, we discuss
the multidimensional quantum Ising model in the presence of
a transverse field and its ground-state properties relevant to our
study here. In Sec. III, we discuss some key concepts regarding
the Meyer-Wallach measure of global entanglement, while our
main results are presented in Sec. IV. Our concluding remarks,
including suggestions for further work, are presented in Sec. V.

II. TRANSVERSE-FIELD ISING MODEL

The system under consideration here is the ferromagnetic
Ising model in a transverse field given by the Hamiltonian

H = −λ
∑
〈ij〉

σx
i σ x

j −
N∑

i=1

σ z
i , (1)

where λ = J
B

and J is the ferromagnetic coupling constant, B

is the magnetic field, N is the total number of spins (qubits),
and σx

i and σ z
i are the Pauli spin matrices in x and z directions

at the site i, respectively; 〈ij 〉 means sites i and j are nearest
neighbors on a regular d-dimensional lattice. We use periodic
boundary conditions. This model has been extensively studied
in one dimension, but less is known about its properties in two
and three dimensions. Relevant to our study here is the QPT
this model exhibits regardless of dimension. At zero field this
model exhibits ferromagnetic behavior with net magnetization
in the x direction while, in the large-field limit, it exhibits
a paramagnetic behavior where all spins point in the field
direction z. The transition between these two phases occurs
at the critical value of λ = λc, in the thermodynamic limit.
It is well known that the ground state is a product state in
both these limits [35]. In the first limit, the ground state is
twofold degenerate, one being a product state of spins pointing
in the positive x direction, |+〉 = |x; 0〉1|x; 0〉2 · · · |x; 0〉N ; the
other is |−〉 = |x; 1〉1|x; 1〉2 · · · |x; 1〉N , which is the global
phase flip of the first one. In the second limit, the ground
state is a product state of spins pointing in the positive z

direction |0〉. Both limits of the ground state are product states
which are disentangled, but there is another possibility for the

ground state in the first limit which arises from linearity of
the Schrödinger equation. As the |+〉 and |−〉 are solutions
for the ground state in this limit, the superposition of these
degenerate states is also another acceptable solution for the
ground state when the applied field (B) tends to zero. This
possibility is a Greenberger-Horne-Zeilinger (GHZ)-like state
which has genuine multiqubit entanglement [36],

|GHZ〉N = 1√
2

(|+〉 + |−〉). (2)

The possibility of a GHZ-like ground state is fascinating
from a fundamental theoretical point of view because it
represents a coherent superposition of two macroscopically
distinct states and, hence, is often called a cat state. It is proven
in Ref. [37] that in this limit the ground state of the Ising model
is a locally unitary equivalent to an N -partite GHZ state. Mul-
tipartite correlations and non-locality of a GHZ-like ground
state under magnetic effects has been studied in Ref. [38], and
Ref. [39] discusses how to prepare an Ising chain in a GHZ
state using a single global control field. It is important to note
that such a ground state would show zero net magnetization
(i.e., 〈Mx〉 = 0). Therefore, such a quantity could not be used
as an order parameter to signal the phase transition under
consideration here. We also note that such ground states have
recently attracted attention from a symmetry-breaking point
of view [40]. Here we study the multipartite entanglement
properties of such a ground state and its subsequent transition
to a (paramagnetic) product state as a function of λ.

III. GLOBAL ENTANGLEMENT

Global entanglement, defined by the Meyer-Wallach entan-
glement measure of pure states [31] and henceforth denoted
by Egl, is a monotone [41] and a very useful measure
of multipartite entanglement. As we show briefly, Egl is a
measure of total nonlocal information per particle in a general
multipartite system. Therefore, Egl gives an intuitive meaning
to multipartite entanglement as well as being an experimentally
accessible measure [41–43].

A finite amount of information can be attributed to an N -
qubit pure state which is N bits of information according
to the Brukner-Zeilinger operationally invariant information
measure [44]. This information can be distributed in local as
well as nonlocal form, which is associated with entanglement
[45]. This information has a complimentary relation:

Itotal = Ilocal + Inonlocal. (3)

The total information is conserved unless transferred to the
environment through decoherence. The amount of information
in local form is Ilocal = ∑N

i=1 Ii , where Ii = 2Trρ2
i − 1 is the

operationally invariant information measure of a qubit [44],
and ρi is the single-particle reduced density matrix obtained by
tracing over the other particles’ degrees of freedom. Therefore,
according to Eq. (3), Inonlocal = ∑N

i=1 2(1 − Trρ2
i ), which is

distributed in different kinds of quantum correlations, the
tangles, among the system

Inonlocal = 2
∑
i1<i2

τi1i2 + · · · + N
∑

i1<···<iN

τi1···iN , (4)
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where the first term is referred to as a 2-tangle, the next being a
3-tangle, and the last term the N -tangle of the system. One can
view these tangles as different types of nonlocal information
distribution. Therefore, since Egl is the sum of single-particle
linear entropies per unit particle in a multipartite system [31],
it can be written as

Egl = 1

N

[
2

∑
i1<i2

τi1i2 + · · · + N
∑

i1<···<iN

τi1···iN

]
. (5)

Therefore, Egl is the average of tangles per particles ( 〈τ 〉
N

), with-
out giving detailed knowledge of tangle distribution among the
individual particles. This is much like the average energy per
particle in an interacting many-particle system. The Meyer-
Wallach measure was originally introduced as a multipartite
entanglement to distinguish it from bipartite entanglement
measures like entropy of entanglement. But, as shown above,
Egl is an average quantity and therefore cannot distinguish
between entangled states which have equal 〈τ 〉 yet different
distributions of tangles, like |GHZ〉N and |EPR〉⊗ N

2 . However,
Egl can distinguish between GHZ and W states since they have
different values of 〈τ 〉, so Egl, like a thermodynamical variable,
determines the general amount of a property in a quantum
system without giving detailed knowledge of its sharing among
the constituents. One expects this property of global entan-
glement to play an important role in studying macroscopic
properties of multipartite quantum systems [22,32].

To obtain Egl in these systems, we have to calculate
the single-particle reduced density matrix, ρi . Since we use
periodic boundary conditions, the reduced density matrix is
the same for all particles. So Egl reduced to linear entropy of
a single-particle density matrix, ρi , is

Egl = 2
(
1 − Trρ2

i

)
. (6)

IV. RESULTS

Using Eq. (6), we can therefore easily calculate Egl exactly
for any dimension d, up to the limitations set by computational
limits of our numerics. We start by showing our results for the
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FIG. 1. (Color online) Global entanglement as a function of λ for
the 1D transverse Ising model. The inset shows the derivative and
the system sizes used. Increasing N sharpens the peak and moves it
closer to the critical point.
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FIG. 2. (Color online) Convergence of λm to the critical point as
N → ∞, for the 1D transverse Ising model. The y intercept is 1.01.
The inset shows the relation |λc − λm| ∼ N−1.00.

1D model. Figure 1 shows Egl versus λ and the inset shows its
derivative for various system sizes up to N = 24. The general
behavior shown here is that of Egl increasing slowly from
its zero value at λ = 0 with a sharp transition to its large λ

value of 1 around λc = 1. The critical point is better seen
in the derivative (inset), which peaks at the maximal value
λm(N ). As the system size increases, the peak of the derivative
sharpens and moves closer to the critical point λc = 1.

The extrapolation to the infinite system size along with the
convergence to the critical point (inset) is shown in Fig. 2. As
one can see, λm(∞) = 1.01, which is very close to the well-
known result of λc = 1, showing that Egl is a good indicator
of the critical behavior of this model. The inset shows that
the convergence to the critical point is in accordance with
|λc − λm| ∼ N−α with exponent α = 1.00.

We next examine the scaling behavior of Egl near the critical
point. According to scaling ansatz [46], we have dEgl/dλ ∼
Q(N

1
ν (λ − λm)), where ν is the correlation length critical

exponent, and Q(x) ∼ ln(x) is generally assumed. As is seen
in Fig. 3, an acceptable collapse occurs for various values of N

using the scaling ansatz with the critical exponent ν = 1.06,
in line with previous studies [17] and close to the exact result
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FIG. 3. (Color online) Finite-size scaling of global entanglement
for the 1D transverse Ising model. The inset shows the logarithmic
divergence of the value of the derivative at the maximal point λm.
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FIG. 4. (Color online) Global entanglement as a function of λ for
the 2D transverse Ising model. The inset shows the derivative and
the system sizes used. Increasing system sizes sharpens the peak and
moves it toward the critical point.

of ν = 1. The inset shows the logarithmic divergence of the
maximum (peak) of the derivative of Egl. Hence, the general
shape of Egl, the logarithmic divergence of its derivative at the
critical point, along with its consistency with finite-size scaling
ansatz provides strong evidence for the well-suitedness of such
a measure for the 1D Ising model. The question now is if such
features also hold for higher-dimensional models.

We next turn to the 2D model. Using periodic boundary
conditions, we have been able to study such a model for up
to L2 = 52 = 25 = N qubits. Figures 4, 5, and 6 show results
similar to that of Figs. 1, 2, and 3. We note the following:
The general shape of the Egl still remains (Fig. 4), with a
(logarithmic) divergence of the derivative at the critical point
(insets of Figs. 4 and 6). The critical point is now identified as
λm(∞) = 0.329 (Fig. 5), consistent with recent studies using
infinite projected entangled-pair states (λc = 0.3268) [34], as
well as quantum Monte Carlo simulations (λc = 0.3285) [47].
Interestingly, our simple method obtains a more acceptable
result than the recent similar multipartite entanglement study
based on matrix and tensor product states, which obtained
λc = 0.308 [24]. We note that the convergence to the critical
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FIG. 5. (Color online) Convergence of λm to the critical point as
L → ∞, for the 2D transverse Ising model. The y intercept is 0.329.
The inset shows the relation |λc − λm| ∼ L−1.00.
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FIG. 6. (Color online) Finite-size scaling of global entanglement
for the 2D transverse Ising model. The inset shows the logarithmic
divergence of the value of the derivative at the maximal point λm.

point (inset of Fig. 5) is in accordance with |λc − λm| ∼ L−α

with exponent α = 1.00 being exactly the same as in the
1D case. The difference here is that this convergence occurs
from above the critical point as opposed to the 1D case. The
finite-size scaling ansatz is also valid (Fig. 6), giving the
correlation length exponent ν = 0.51. The inset of Fig. 6 shows
the logarithmic divergence of the derivative at the critical point.

In Fig. 7, we show our result for the 3D version of this
system for the only system size we are able to study. The
general behavior of Egl seen in the 1D and 2D models is clearly
seen here for the 3D case as well. While we are not able to
perform a scaling analysis similar to the 1D and 2D models,
it seems reasonable to assume that the same general behavior
carries over to the 3D model. We note that λm(L = 2) = 0.26
here, which would understandably be different from the
infinite-size limit but is in the right ballpark of λc ≈ 0.2 [47].

Finally, it is worth considering another important form
of multipartite entanglement, namely, genuine entanglement.
Genuine entanglement in a many-particle system represents
the amount of entanglement shared by all particles. Therefore,
genuine entanglement is equal to the N -tangle, the last term

0 0.5 1 1.5 2
0

0.2

0.4

0.6

0.8

1

λ

E
gl

0 0.2 0.4 0.6 0.8 1
0

1

2

3

4

5

λ

dE
gl

/d
λ

FIG. 7. (Color online) Global entanglement and its derivative
(inset) for the 2 × 2 × 2 transverse Ising system, the only 3D system
we have been able to study.
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FIG. 8. (Color online) Global entanglement (continuous curve)
and genuine entanglement (dashed curve) for the 1D (main figure) and
2D (inset) transverse Ising model. The 1D result is for N = 16 and
the 2D result is for a 4 × 4 system.

in Eq. (5). One might expect that such a term would gradually
lose its significance as N increases. However, due to the GHZ
nature of our ground state, this term (N -tangle) is the dominant
term in Egl and its dominance increases with increasing λ. This
is shown in Fig. 8 for both the 1D and 2D models, where one
can easily see that increasing λ increases the share of N -tangle
in Egl. It is also worth noting that the structure of genuine
entanglement is very similar to an order parameter. It is zero
on one side of the transition and becomes nonzero around the
critical point, rising to its maximum at 1/λ = 0. This behavior
becomes more pronounced as system sizes get larger; however,
we note that the transition is not sharp and is in fact “rounded.”
However, since net magnetization cannot be used as an order
parameter here, such behavior deserves further attention.

V. CONCLUDING REMARKS

In this paper we have studied the quantum phase transition
in the transverse-field Ising model from a multipartite entan-

glement point of view on one-, two-, and three-dimensional
square lattices. Our work is interesting from various points of
view. First, we use a multipartite global entanglement as a mea-
sure. Second, we study the symmetric GHZ-like ground state
and its transition to the paramagnetic product state. Third, by
studying QPT in various dimensions, we are able to establish
common features of such a transition in different universality
classes. We find that global entanglement is a good indicator
of such transitions with universal aspects, including scaling,
in any dimension. The well-suitedness of such a measure is
displayed in the nice fits obtained in Figs. 2 or 5, for example.
As a by-product, we find critical points and various exponents
for the 1D and 2D models consistent with previous studies. We
note that our estimation of the critical points for the 1D and
2D models are to within 1% of the generally accepted values,
an impressive result given the limited size of the systems
studied here, providing further evidence for well-suitedness
of our measure when compared with similar studies using
bipartite measures. Our estimation of ν, although acceptable,
is understandably less impressive because finite-size scaling
collapses require larger system sizes to obtain better estimates
for ν [48]. We note that our main goal is to investigate the
(universal) features of global entanglement in quantum phase
transitions, not to produce reliable exponents for such models.
Since the parameter d determines the universality class of the
systems considered here, the fact that we see similar behavior
of global entanglement at the QPT regardless of d shows what
we have thus far referred to as universal features of global
entanglement.

We close by mentioning that similar studies could be carried
out for more general spin models exhibiting more complicated
quantum phase transitions. It would be interesting to see if
such universal features of global entanglement carry over to
other models.
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