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In this article we present a general security strategy for quantum secret sharing (QSS) protocols based on
the scheme presented by Hillery, Bužek, and Berthiaume (HBB) [Phys. Rev. A 59, 1829 (1999)]. We focus on
a generalization of the HBB protocol to n communication parties thus including n-partite Greenberger-Horne-
Zeilinger states. We show that the multipartite version of the HBB scheme is insecure in certain settings and
impractical when going to large n. To provide security for such QSS schemes in general we use the framework
presented by some of the authors [M. Huber, F. Mintert, A. Gabriel, B. C. Hiesmayr, Phys. Rev. Lett. 104, 210501
(2010)] to detect certain genuine n-partite entanglement between the communication parties. In particular, we
present a simple inequality which tests the security.
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I. INTRODUCTION

In classical cryptography, secret sharing was introduced
by Shamir [1] and Blakley [2] in 1979 and is useful in
many applications. The main idea is to divide a secret into
several shares and distribute these shares among several parties
such that the secret can be reconstructed when a certain
number of parties (or all) come together and combine their
shares. Additionally, each party alone is not able to gain
any information about the secret. The idea of secret sharing
was brought to quantum cryptography in 1999 when Hillery,
Bužek, and Berthiaume (HBB) presented their scheme [3]
based on Greenberger-Horne-Zeilinger (GHZ) states. Since
then quantum secret sharing (QSS) has been another field
of great interest besides quantum key distribution (QKD).
In the same year, Karlsson, Koashi, and Imoto presented a
similar QSS protocol based on Bell states [4], and several
other schemes followed [5–17].

Most of these protocols make heavy use of entangled
states to communicate between several parties. In general,
the security of such protocols is rather complex to analyze
since there are more parties involved than in QKD and some
of the legal participants have to be considered dishonest. This
model of adversaries from the inside is in fact much stronger
because such an adversary in general has more advantages
than an eavesdropper from the outside. The success of the
protocol depends strongly on the fact that all parties share a
certain genuine multipartite entangled state after transmission.
We show in this paper that the security of a protocol can
be obtained by checking for this certain genuine multipartite
entanglement. For that we use the framework presented in
Refs. [18,19] which provide Bell-like inequalities which are
experimentally testable.

In the following section we briefly review the HBB scheme
including the argument presented in Ref. [20] regarding the
security against a cheating Charlie. Further, we discuss the

generalization of the HBB scheme to n qubits and present a
successful eavesdropping strategy based on the argument in
Ref. [20]. Based on the inequalities, we provide a different
security argument for n qubit secret sharing protocols.

II. THE HBB SCHEME

In their article [3] Hillery, Bužek, and Berthiaume presented
a quantum secret sharing scheme based on the distribution of
GHZ states of the form

|�0〉 = 1√
2

(|000〉 + |111〉)ABC (1)

between three parties, Alice, Bob, and Charlie. Each party
measures its qubit at random in one of two bases. Based on
their results, Bob and Charlie together are able to determine
Alice’s result but individually have no information about it.

In detail, Alice generates copies of the state |�〉 in her
laboratory and sends qubit B to Bob and qubit C to Charlie.
Then, each party randomly chooses to measure its qubit either
in the X or in the Y basis. The eigenstates of these bases are

|x±〉 = 1√
2

(|0〉 ± |1〉), |y±〉 = 1√
2

(|0〉 ± i|1〉). (2)

Taking the X basis, the GHZ state |�〉 can be written as

|�〉ABC = 1
2 [(|x+〉A|x+〉B + |x−〉A|x−〉B)|x+〉C
+ (|x+〉A|x−〉B + |x−〉A|x+〉B)|x−〉C]. (3)

From this fact it is easy to see that if both Alice and Bob
perform their measurements in the X basis and obtain the same
result, Charlie ends up with the state |x+〉. Otherwise, if Alice
and Bob obtain different results, Charlie ends up with the state
|x−〉. Regarding the case when Alice and Bob perform their
measurement both in the Y basis or in different bases, similar
conditions can be found for Charlie’s state (see Table I).

1050-2947/2010/82(6)/062311(4) 062311-1 ©2010 The American Physical Society

http://dx.doi.org/10.1103/PhysRevA.59.1829
http://dx.doi.org/10.1103/PhysRevLett.104.210501
http://dx.doi.org/10.1103/PhysRevLett.104.210501
http://dx.doi.org/10.1103/PhysRevA.82.062311


STEFAN SCHAUER, MARCUS HUBER, AND BEATRIX C. HIESMAYR PHYSICAL REVIEW A 82, 062311 (2010)

TABLE I. Charlie’s state depending on Alice’s and Bob’s mea-
surement result.

Alice

|x+〉 |x−〉 |y+〉 |y−〉
|x+〉 |x+〉 |x−〉 |y+〉 |y−〉

Bob |x−〉 |x−〉 |x+〉 |y−〉 |y+〉
|y+〉 |y−〉 |y+〉 |x−〉 |x+〉
|y−〉 |y+〉 |y−〉 |x+〉 |x−〉

After each party performs its measurement they all
announce their bases for the whole sequence sent by Alice
but do not reveal the specific result. Additionally, all three
parties sacrifice some of the remaining measurement results to
check for eavesdroppers and dishonest parties by comparing
them publicly. Based on the information about the basis
choice of the remaining qubits, Charlie always knows whether
Alice and Bob have the same results or not, but he has no
information about their exact results. Further, Bob knows that
he has either the same or the opposite result of Alice and thus
needs the information about Charlie’s measurement result to
fully determine it. Thus, Bob and Charlie have to collaborate
to obtain Alice’s result. Due to the random choice of the
measurement bases, Charlie will measure in the wrong basis
half of the times. These cases can be identified when the three
parties reveal their bases and the respective qubits have to be
discarded.

The security argument, as is described above, has been
presented in Ref. [3], but later that year Karlsson et al.
commented on the HBB scheme that the order in which the
measurement bases and the results for the test bits are revealed
is crucial [4]. They showed that the HBB scheme becomes
insecure if the measurement bases are revealed before the
results for the test bits. They suggested the following sequence:
first, Bob and Charlie publicly disclose their measurement
results for the test bits and afterwards, in the reversed order,
they announce the corresponding measurement bases. The
reversed order is important so that none of them can gain
too much information from the actions of the previous parties.
We want to stress that this is, nevertheless, not a very efficient
way to secure the protocol, since the order of the messages is
not implicitly preserved by the network. Alice has to tell each
party when to send its result and has to wait on the response.
In the case of three parties as in the HBB scheme, there is no
big difference but it can become a large overhead when going
to n parties.

III. A SECURITY ARGUMENT

In three articles [18,19,21] the authors have presented
a series of inequalities to test for genuine multipartite en-
tanglement and for k-separability for any multipartite qudit
system. These Bell-like inequalities are easily experimentally
implementable because only local observables are needed.
We present here how two inequalities designed for the HBB
protocol described above can be used to check for adversaries.

The idea is that the attack strategy based on auxiliary qubits
as presented in Ref. [4] does not work if the parties can verify
that they share a genuinely multipartite entangled n-qubit state.

The intervention of an untrusted party, e.g., Charlie, is based
on the auxiliary qubits he introduces into the protocol to
gain additional information about Bob’s results. Differently
stated, it changes the overall state and this can be detected
by performing certain additional setups and evaluating the
inequalities given in Eq. (6) below.

Before we present the inequalities, we need to define
biseparability: If the density operator of a 3-qubit state can
be decomposed into the following form

ρbisep =
∑

j

pjρ
j

AB ⊗ ρ
j

C +
∑

j

qjρ
j

AC ⊗ ρ
j

B

+
∑

j

rjρ
j

BC ⊗ ρ
j

A , (4)

with pj ,qj ,rj � 0 and
∑

j pj + qj + rj = 1, it is called

biseparable. Here the two-body states ρ
j

AB , ρ
j

BC , and ρ
j

AC can
describe entangled states. Even though there is no bipartite
splitting with respect to which the state ρ is separable, it
is considered biseparable since it can be prepared through a
statistical mixture of bipartite entangled states. Generalization
to n-qubit states is straightforward.

Based on the biseparability we can define the inequalities
for the 3-qubit case of the HBB protocol. Using σ1 := I and
the abbreviation for the Pauli operators

〈σi ⊗ σj ⊗ σk〉ρ := ijk, (5)

we can rewrite and linearize the inequalities derived in
Refs. [18,19] in terms of local observables:

I1 : 1
8 (xxx − yyx − yxy − xyy)

− 1
16 (3 × 111 − zz1 − z1z − 1zz) � 0,

I2 : 1
8 (yyy − xxy − xyx − yxx)

− 1
16 (3 × 111 − zz1 − z1z − 1zz) � 0 . (6)

This can be directly seen, because the off-diagonal density
matrix elements from the corresponding inequality (II) in
Ref. [18] can always be decomposed into expectation values
of Pauli-operators, e.g., Re[ρ000111] = xxx − yyx − yxy −
xyy. And the linearization simply works by replacing the
square root of the product of two diagonal density matrix
elements by 1

2 of their sum, e.g.,
√

〈011100|ρ⊗2|011100〉 �
1
2 (ρ011011 + ρ100100). These inequalities are satisfied for all
biseparable states. They are convex, therefore obviously also
valid for mixed states.

As it is easy to see, the first inequality uses combinations
of local observables which are needed in the original HBB
scheme to form the secret key (see Table I) whereas the
second inequality uses combinations which are discarded in the
original protocol (i.e. yyy, yxx, xyx, and xxy). Unfortunately,
the latter one can only be applied if the initial state is the
“imaginary” GHZ state

|�0〉 = 1√
2

(|000〉 + i|111〉). (7)

Thus, we have to adjust the original HBB protocol in the
following way: Alice prepares at random one of two states,
either the standard GHZ state |�〉 or the state |�〉. Then,
she distributes the qubits between Bob and Charlie as in the
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original protocol. Due to the use of the inequalities in Eq. (6)
the Z basis has to be introduced as an additional measurement
basis. After Bob and Charlie perform their measurements, they
announce their bases and Alice tells them to reveal some of
their results to test for the inequalities. Here, Alice tests with
the first inequality of Eq. (6) whenever she prepared the state
|�〉 and with the second inequality when she prepared |�〉. We
want to stress that Alice does not announce which initial state
she prepared until after the check for eavesdroppers. Therefore,
the sequence in which Bob and Charlie announce their bases
and results is irrelevant since a cheating Charlie cannot be sure
whether Alice initially prepared |�〉 or |�〉. Hence, Charlie
introduces a certain error and will be detected by the legitimate
parties, as explained in detail in the next section.

The application of the inequalities makes it possible to
overcome the check for the correct order of the messages and
thus makes the protocol less complex. The introduction of
the second GHZ state |�〉 does not influence the efficiency,
since combinations of observables which are discarded in the
original protocol can be used with the state |�〉 and vice versa.
The only drawback is the additional measurement basis Z,
which is not necessary to establish the secret but is needed to
compute the inequalities. Fortunately, we can overcome also
this problem by choosing Z only with a certain probability q,
which can go to 0 in the asymptotic limit.

IV. SECURITY PROOF FOR 3 QUBITS

In particular the first inequality in Eq. (6) is violated by the
GHZ state |�〉 in the computational basis with the value 1

2 ,
which is the optimum for any GHZ-state representation. Note
that there are several representations of the GHZ state which
would give no violation.

The security check—optimized for the basis system
the three parties agreed upon—would therefore use some of
the measurement results to evaluate the inequalities (similar
to the check for adversaries suggested in [3]). Additionally,
the three parties also have to perform measurements in the Z

basis to evaluate the inequalities, which slightly changes the
protocol, as pointed out above. If the inequalities are violated,
the parties can be sure that no adversary is present, what we
prove in the following.

In Ref. [20] it has been shown—using a more general
approach than in [4]—that the original HBB scheme [3] is
insecure against a dishonest Charlie. The main idea is again
that Charlie intercepts the qubit flying to Bob and entangles
it with an ancillary qubit. Later on, he uses his qubit together
with the ancillary qubit to infer Alice’s measurement result
without Bob’s assistance. In detail, Charlie uses an ancillary
qubit in the state |0〉E and entangles it with the intercepted
qubit B using the Hadamard operation H = 1/

√
2(|0〉〈0| +

|0〉〈1| + |1〉〈0| − |1〉〈1|) on qubit B and a controlled-NOT

(CNOT) operation CNOT = |0〉〈0| ⊗ 1 + |1〉〈1| ⊗ σx on qubits
B and E. This brings the initial system |�0〉ABC ⊗ |0〉E into
the states

|�1〉 = 1
2 (|0000〉 + |0101〉 + |1010〉 − |1111〉)ABCE . (8)

Charlie sends qubit B to Bob and waits until Alice and
Bob announce their measurement bases. According to the
measurement results of Alice and Bob, the qubits C and E

in Charlie’s possession collapse into some predefined state.
In case both Alice and Bob measure in the X basis, Charlie
obtains one of the states

|�x+x+〉 = 1
2 (|00〉 + |01〉 + |10〉 − |11〉)CE,

|�x+x−〉 = 1
2 (|00〉 − |01〉 + |10〉 + |11〉)CE,

(9)
|�x−x+〉 = 1

2 (|00〉 + |01〉 − |10〉 + |11〉)CE,

|�x−x−〉 = 1
2 (|00〉 − |01〉 − |10〉 − |11〉)CE .

Charlie uses this fact together with the information about Bob’s
measurement basis and result to determine the correct value
he has to announce to stay undetected. Further, Charlie is also
able to compute Alice’s result without any help of Bob [20],
which makes the whole protocol insecure.

Taking our suggested modified version of the HBB scheme
performing the check for adversaries based on the inequalities
and employing two GHZ states at random, Charlie is always
detected with a certain probability. As pointed out, Charlie’s
attack mainly relies on the information about Bob’s bases and
results, which he can also obtain in our modified version.
Nevertheless, Charlie is unable to decide which initial state
Alice prepared, so he can only guess the correct result to
violate the inequalities.

In detail after Charlie’s attack the 4-qubit state is a mixture
of the two following states:

|�1〉 = 1
2 (|0000〉 + |0101〉 + |1010〉 − |1111〉)ABCE,

(10)
|�2〉 = 1

2 (|0000〉 + |0101〉 + i|1010〉 − i|1111〉)ABCE.

Ignoring Charlie’s additional qubit, the first inequality derives
to I1 : − 1

2 − p � 0 and the second inequality derives to I2 :
1
2 − p � 0 with p being the probability that Alice chooses the
state |�1〉. These values are different from the expected values
without cheating parties, thus Charlie will be revealed. On the
other hand Charlie can try to act by local unitaries on qubit
C or by unitaries on qubits CE [here we used the convenient
parametrization of the unitary group U(4) in Ref. [22]] such
that the value of I1 gets more positive but the trade off is that
I2 gets more negative, again this can be detected. In summary,
the suggested attack to the HBB scheme presented in Ref. [20]
as well as any generalization of it is detected by the test of the
two inequalities.

V. SECURITY PROOF FOR n QUBITS

The inequalities provided by the framework presented in
Refs. [18,19] can be extended to any number of qubits. To
give an example, for the 4-qubit case described in the previous
section we get similar inequalities:

1
8 (xxxx − yyxx − yxyx − xyyx − xxyy − xyxy

−yxxy + yyyy) − 1
16 (7 × 1111 − zz11 − z11z

−11zz − z1z1 − 1z1z − 1zz1 − zzzz) � 0,

and
1
8 (xxxy + xxyx + xyxx + yxxx − xyyy − yxyy

−yyxy − yyyx) − 1
16 (7 × 1111 − zz11 − z11z

−11zz − z1z1 − 1z1z − 1zz1 − zzzz) � 0. (11)
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Also in this case, the four communicating parties sacrifice
some of their measurement results to test the inequalities. If
they are satisfied they have to assume that an adversary is
present. Extending the attack strategy from [13] to four parties,
the state Charlie uses in his attack is a 6-qubit entangled state.
Due to his intervention, the genuine 4-qubit state is destroyed
and thus no genuine 4-qubit entanglement can be detected
using the inequalities. Hence, the legitimate communication
parties discover Charlie’s intervention and abort the protocol.

The inequalities for n qubits can be derived straightfor-
wardly from the 3-qubit case [Eq. (6)] and the 4-qubit case
[Eq. (11)]. Thus, the check for adversaries can be performed
in the same way as described above. This gives the advantage
that the communication parties no longer have to rely on the
order of the messages. The adversary, Charlie, does not know
which of the measurement results count for the test of the
inequalities and which count for the secret. Hence, he sends
measurement results which do not violate the inequalities and
therefore he is detected by the other parties also in the most
general case. So not only for the previously presented case,
but for all attacks in which Charlie manipulates the states of
the other participants he will be detected. If, however, he has
no access to the other participants’ states, the protocol has
already been proven to be secure in the original proposal.
Thus the resulting scheme is secure against any kind of
attack.

VI. CONCLUSION

In this article we presented a security argument for general
HBB-type quantum secret sharing schemes between n parties.
The check for adversaries of such protocols is in general

getting more and more inefficient if a large number of parties
is involved. We presented a different security strategy based
on the verification of genuine multipartite entanglement itself,
which is at the heart of such protocols, and in addition this
strategy is efficient for a large number of parties.

In a slightly different version of the HBB protocol, we
described a way to integrate this security check efficiently,
i.e., by simple Bell-like inequalities (Refs. [18,19]) adapted to
the protocol. They use the data which are usually not regarded
for the protocol, and a measurement in a third direction has to
be introduced.

A test of these inequalities is a much stronger statement than
the common test for eavesdroppers presented in, e.g., Refs
[3,4], because they indicate the presence of an adversary,
and any adversary has to change the n-partite entangled state
in order to obtain any information on the secret. Thus our
presented security argument—different from others—relies
on checking the multipartite entangled state Alice initially
prepared and in addition any adversary cannot know which (of
the two) multipartite entangled states was sent.

Certainly, our presented general scheme may be applied
to secret sharing protocols involving multi-qudit systems or
graph states.
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