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Tomography, control, and characterization of entanglement in a three-level atomic system
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We study the quantum correlations of the radiation emitted by three-level atoms (cascade type) interacting with
two driving fields. In the linear regime, and in the Weisskopf-Wigner approximation, we show that the atomic and
the two-photon density matrix are equivalent to each other. This facilitates the tomography of the two-mode state
to be realized by measurements on either the atomic system or the emitted fields. While, in general, one needs 4N

measurements for the tomography of an N -photon state, we show that one needs (N + 1)2 − 1 observables for
the tomography of photons emitted by an atomic system. Thus there is an exponential reduction in the number
of observables for the reconstruction of the class of N -photon states emitted by atoms. We show that the driving
field strengths and detunings provide the control parameters for the preparation of a specific target state. Finally,
we study the characterization of entanglement of the two-photon state. We observe that a characterization of
entanglement in terms of a single parameter is not possible when the system is in a mixed state; therefore,
we provide a description in terms of the newly introduced probability distribution for entanglement, in various
regimes of interest.
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I. INTRODUCTION

Quantum state tomography (QST) [1] is the first step in
any quantum information processing (QIP). For a photon
qubit, the state determination may be in any of the degrees
of freedom (e.g., polarization, phase space distribution, or
occupancy in the Fock space [1]). At the experimental end,
reconstruction of the quantum state is either by direct photon
counting measurements or indirectly by optical homodyne
or heterodyne measurements—as in the case of continuous
variable tomography. James et al. [2] have proposed a general
scheme for the reconstruction of the polarization state of a
pair of entangled photons generated in type-II parametric
down-conversion (PDC). The PDC two-photon probability
distribution has also been determined experimentally [3] by
measuring the joint photon probability distribution. Theo-
retically, Vogel and Risken [4] have shown that the Wigner
function can be determined by optical homodyne detection
(OHD), which was subsequently followed by the experimental
realization of the same [5]. The phase-space quasiprobability
function has also been determined [6] by photon counting
measurements. Single-photon [7] and two-photon Fock state
tomography have been experimentally studied by Lvovsky
et al. [8]. Spin-state tomography has been studied using group
theoretic methods [9]. So far, tomography studies on photons
have been mainly in PDC systems.

Preparation of a specific target state as required by the
protocol of interest is also necessary for any QIP. Control of
atomic sources for the realization of specific photon states
may be achieved via coherent atom-photon interactions where
the driving field strengths and the detunings of the applied
fields are the control parameters. An inevitable consequence
of atom-photon interactions (coherent) is the existence of
strong quantum correlations [10–12]. Coherent driving fields
interacting with the atoms give rise to strong atomic coherence
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which then gets transferred to the emitted radiation. Quantum
correlations, particularly the entanglement aspects, have been
the most studied but not easily understood, especially when
the state is not pure. On the other hand, the preparation of pure
entangled states itself poses a challenge. While PDC sources
offer good fidelity the conversion efficiency is, however, very
low since it is a second-order process. Furthermore, the input
field strength is the only control parameter. A further disadvan-
tage is that there is no control over the emission statistics. On
the other hand it is well known that the statistics of emission
in resonance fluorescence can be made sub-Poissonian or
super-Poissonian. In other words, there can be programmable
delays between successive emissions. The disadvantage of
monitoring emission in resonance fluorescence is that the
emitted radiation is over 4π and the signal-to-noise ratio
per solid angle may be small. This may be overcome by
coupling to a cavity which is tuned to the mode frequency of
emission.

In this paper we consider three-level cascade systems
interacting with two driving fields. We study the quantum
correlations of the radiation emitted by these systems in free
space. In particular, we address three issues:

(i) Quantum state tomography of the two-mode emitted
radiation. In the far-field approximation (lowest order in
1/r and t > r/c) and using the Weisskopf-Wigner theory
of spontaneous emission, we show that it is sufficient to
measure a set of eight observables to completely determine the
two-photon density matrix. This is because an N -photon state
of the emitted radiation in our system is restricted to a Hilbert
space of dimension (N + 1)2 − 1 instead of the full Hilbert
space of dimension 2N . Accordingly, there is an exponential
decrease in the number of observables that are needed for
tomography. For the present case, N = 2, and the number
of required observables is eight. An additional feature is that
there is a one-one mapping of the atomic and the photonic
density matrix and therefore a knowledge of one leads to
the other. Unlike conventional methods of tomography where
measurements are restricted to the emitted radiation only, in
our scheme there is no need to perform the measurements
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entirely on either the emitted radiation or on the atomic system.
We identify six observables of the atomic system and two
observables of the emitted radiation as a convenient set. Thus
this approach has an edge over the conventional methods of
tomography.

(ii) Control and preparation of specific states. As already
mentioned, it is not easy to prepare entangled systems with
a high degree of purity, and with high efficiency. We show
that three-level cascade systems provide a very good source of
entangled two-mode emissions with very large probabilities.
In fact, even in the steady state, one has the option of preparing
almost pure fiducial states, Bell states with reasonable fidelity,
or mixed states by suitably setting the driving field strengths
and detunings.

(iii) Characterization of mixed-state entanglement. Con-
ventional entanglement measures such as concurrence and
negativity are known to provide an incomplete description
of entanglement in the mixed-state regime. We evaluate the
probability density of entanglement for the two-mode state
following Bhardwaj and Ravishankar [13].

The plan of the paper is as follows: In Sec. II we describe
the model, and set up the equation of motion. In Sec. III
we demonstrate the reconstructibility of the atomic density
matrix and also the photon density matrix by a suitable
set of measurements. In Sec. IV we discuss the control of
pure and mixed-state preparation and the characterization of
entanglement.

II. MODEL

Emission from three-level cascade systems are of interest,
especially for the strong quantum correlations that they
exhibit. The earliest classic work of Clauser [14] in Cs atoms
demonstrated the nonclassicality of the emitted radiation
in these systems. The resonance fluorescence [15] and the
emission statistics [16] in this system have been well studied
and the behavior is qualitatively predictable in most regions
of the parameter space. In view of this, and the large
number of recent experiments on electromagnetically induced
transparency (EIT) in 87Rb vapors [17], we choose to study
three-level cascade systems. In passing, we would like to
mention that the analysis presented in this paper is equally
applicable to ‘�’ and ‘V ’ systems by properly taking care
of the detunings. The scheme, shown in Fig. 1, has only two
allowed dipole transitions of energy separations ω1 and ω2

corresponding to the |2〉 → |1〉 and |3〉 → |2〉 transitions. Two
counterpropagating (Doppler free geometry) driving fields of
nearly equal frequencies ωL1 and ωL2 and respective strengths
�1 and �2 are resonant with these two transitions. The decay
constants of the energy levels |3〉 and |2〉 are indicated by
�3 and �2, respectively. The parameters �1,�2 refer to the
detunings of the driving fields.

A. Equations of motion

Since the input parameters are known—and so is the
dynamics—it is straightforward to solve for the state of
the atomic system. There is, however, no corresponding
procedure (availability of a master equation) that determines
the state of the emitted radiation. One way is to determine the
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FIG. 1. (Color online) Three-level cascade system corresponding
to the 87Rb atoms driven by two fields ω1 and ω2.

atom+radiation density matrix, and then trace over the atomic
part which is cumbersome. In this paper we will show that
this tedious procedure can be circumvented. We further show
that the atomic density matrix determines the photon density
matrix completely!

We start by making an ansatz for the atom+field state as

|�(t)〉 =
∑
i,γ

α
γ

i (t)|i; γ 〉, i = 1,3, γ = 0,1,2,3, (1)

where i denotes the atomic index while γ denotes the photon
mode index. We alternately use the notation |i; γ 〉 ≡ |i; γ2,γ1〉.
The notation |i; γ 〉; γ = 0,1,2,3 is more commonly used
in quantum information where γ = γ2γ1 in base 2. More
explicitly, γ = 20γ1 + 21γ2. In writing the previous equation
we make the following assumptions which are central to our
analysis: (i) the rotating wave approximation (RWA) which
restricts the transitions such that a photon is created only
when an atomic excitation is annihilated and vice versa. This
is very similar to the ansatz of Weisskopf-Wigner theory of
spontaneous emission; (ii) the single-photon approximation
[18], where the rise time or the excitation time of the atom is
inversely proportional to the driving field strength. When � is
small compared to the atomic decay constant �, the rise time
1/� is large and the atom completes fewer cycles of excitation
and de-excitation in an atomic lifetime. This situation enables
us to assume that for small times (t < atomic lifetime) the Fock
space of the two modes of radiation has at most one photon
in each mode. Thus, γ1,γ2 = 0,1 only. We therefore restrict
our study to the situation where the ground-state excitation is
weak.

The interaction Hamiltonian in the interaction picture
and in the RWA and the dipole approximation has the
form,

H = h̄

2

(
ω1σ

z
1 + ω2σ

z
2

) + h̄�1(e−iω1t σ+
1 + H.c.)

+ h̄�2(e−iω2t σ+
2 + H.c.). (2)

Here we treat the driving fields classically and �i = − 1
h̄
�µii+1 ·

�Ei ; i = 1,2, are the Rabi frequencies corresponding to the two
driving field strengths. σ+

i = |i + 1〉〈i|; σ−
i = |i〉〈i + 1|; i =

1,2 and σ z
i = |i + 1〉〈i + 1| − |i〉〈i| are the atomic transition

operators. The equation of motion for the 12 complex
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amplitudes α
γ

i is then given by

ih̄α̇
γ

i (t) = 〈i; γ |H |�(t)〉. (3)

It might appear that, in general, the two-photon density matrix
elements corresponding to the two modes,

ρF
γγ ′ =

∑
i

α
γ

i α
γ ′∗
i , (4)

would require a set of 16 observables for its full determination.
However, by employing an equivalent approach in the next
section, we show that not all of the complex amplitudes
α

γ

i (t) are independent since they are constrained by the
production process and selection rules. We further show that
α1

2,α
1
3,α

2
1,α

2
3,α

3
2,α

3
3 are zero because of RWA.

III. RECONSTRUCTION OF THE TWO-PHOTON STATE

A. Equivalence of the atomic and photon density matrix

In general, the field �E(r,t) emitted by the atom has the
mode expansion:

�E(+)(r,t) = i
∑
k,λ

Ekε̂k,λak,λ(t)eik·r, (5)

for the positive frequency part where Ek = (2πh̄ck/V )1/2 for a
given mode k and λ is the polarization index. We now assume
that the fields emitted by the two transitions to be dominantly
centered around k1 and k2, respectively, and are defined as
in Eq. (2.12) of Titulaer and Glauber [19]. The creation and
annihilation operators satisfy the usual commutation relations
[âk,λ(t),â†

k′,λ′(t)] = δk,k′δλ,λ′ for a given mode k. In order to
establish the equivalence of the atomic state with that of the
radiation we consider the auxiliary state in the full Hilbert
space of atom+radiation defined by

ρ(t) =
∑

i

∑
i ′

∑
p,q,p′,q ′

B
i,i ′
p,q;p′,q ′

[
a
†
k2

(t)
]p[

a
†
k1

(t)
]q ∣∣i; 0k2 ; 0k1

〉

× 〈
i ′; 0k2 ; 0k1

∣∣[ak1 (t)
]q ′[

ak2 (t)
]p′

. (6)

In the single-photon approximation, each mode has either no
photons or at most one photon, that is, {p,q,p′,q ′} = {0,1}.
The indices k1,k2 correspond to the two modes and |0k2 ; 0k1〉
is the corresponding vacuum. Recall that ρA+F (t = 0) =
ρA ⊗ ρF . Also recall that the annihilation operators for the
two different modes are mutually commuting at a given time,
that is, [ak2 (t),ak1 (t)] = δk1k2 and likewise for the creation op-
erators. The two-photon density matrix may now be obtained
by taking a partial trace over the atomic variables to be

ργ (t) ≡
∑

i

〈i|ρ|i〉

=
∑

p,q,p′,q ′
Bp,q;p′,q ′

[
a
†
k1

(t)
]p[

a
†
k2

(t)
]q ∣∣0k1 ; 0k2

〉

× 〈
0k1 ; 0k2

∣∣[ak2 (t)
]q ′[

ak1 (t)
]p′

, (7)

where the coefficients Bp,q;p′,q ′ = ∑
i B

ii
p,q;p′,q ′ . This expres-

sion is equivalent to the form that would follow from
Eq. (1), as may be seen by observing that |i; γ 〉 ≡ |i; γ1,γ2〉 =
(a†

2)γ2 (a†
1)γ1 |i; 02; 01〉. Note that this is very similar to the

definition of the most general density operator of n photons

in a single mode given by Eq. (2.15) in [19]. Following the
Weisskopf-Wigner theory of spontaneous emission, we stip-
ulate the far-field approximation wherein the field operators
�E+(r,t) of the emitted radiation at the point of the detection
r are proportional to the atomic spin operators at the retarded
time σ̂i(t − |r − r0|/c). In the far field for an atom located
at r0, terms proportional to O(1/|r − r0|2) may be neglected
[20,21]. Thus, for a given mode k of the source field,

�E(+)
k (r,t) = �E+

0 (r,t) + η

4πε0

ω2
m

c2

�µkk+1

|rk − r0|
× σ̂−

k (t − |r − r0|/c), (8)

where �E+
0 (r,t) is the vacuum field contribution and η is

the detector efficiency. In this paper we consider the ideal
situation of η = 1. The first term due to the vacuum does not
contribute to any signal detection and may be ignored [22]
for detection times larger than the inverse of the optical
frequencies. We use the notation σ̂−

k = σ̂kk+1 and σ̂+
k = σ̂k+1k .

For convenience we replace the mode labels k1 and k2 with “1”
and “2,” respectively. It is convenient to introduce the auxiliary
state,

ρ̄γ (t) = ργ ⊗ IA

≡ f2(r2)f1(r1)
∑

i

∑
p,q,p′,q ′

Bp,q,p′,q ′ [σ+
2 (t2/c)]p

× [σ+
1 (t1/c)]q |i; 02; 01〉〈i; 02; 01|

× [σ−
1 (t1/c)]q

′
[σ−

2 (t2/c)]p
′
, (9)

where fk(rk) = (− i
4πε0Ek

ω2
k

c2
|µkk+1|

|rk | )2; k = 1,2, and ti = t −
ri/c; i = 1,2. The atomic operators satisfy the commuta-
tion relations [σij ,σkl] = δjkσil − δliσkj which follow from
the identity σ̂ij (t)σ̂kl(t) = σ̂il(t)δjk for the atomic operators
σij (0) ≡ |i〉〈j |. When the point of observation is the same for
both the modes r2 = r1 = r. Therefore,

ρ̄γ (t) = f2(r)f1(r)
∑

i

∑
p,q,p′,q ′

Bp,q,p′,q ′ [σ+
2 (t − r/c)]p

× [σ+
1 (t − r/c)]q |i; 02; 01〉〈i; 02; 01|[σ−

1 (t − r/c)]q
′

× [σ−
2 (t − r/c)]p

′
. (10)

Again since the atom and photon density matrices are separable
at t = 0, the summation term in the right-hand side is nothing
but the atomic density matrix. Thus, it follows that

ργ (t) ⊗ IA ⇀↽ Nρ
γ

0 ⊗ ρA(t − r/c), (11)

where N = f2(r)f1(r) is the geometric factor and ρ
γ

0 =
|01; 02〉〈01; 02|. The normalized density matrices are obtained
by dropping N .

Equation (11) merits some more explanation. First of all,
ργ (t) at any time gets determined completely by ρA(t − r

c
),

the atomic state at an earlier time t − r/c. More interestingly,
we observe that ργ is of rank three. This reduction in the rank
is a manifestation of Schmidt decomposition as applied to
the atom+radiation system. More specifically, the dynamics,
which leads to the equivalence of the atomic (retarded
time) and the field operators, yields the following important
relations: (i) ργ belongs to the space orthogonal to the state
|2〉γ ≡ |10〉. (ii) Let us set up matrix elements for ργ in the
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basis {|00〉,|01〉,|11〉}. Equation (11) asserts that the matrix in
this basis is identically equal to the matrix for the atomic state
set up in its standard basis labeled by the energy eigenstates
{|1〉,|2〉,|3〉}. Explicitly, the normalized photon density matrix
has the form,

ργ (t) = 1

N

⎛
⎜⎝

∑
i |α0

i |2
∑

i α
0
i α

1∗
i

∑
i α

0
i α

3∗
i∑

i α
1
i α

0∗
i

∑
i |α1

i |2
∑

i α
1
i α

3∗
i∑

i α
3
i α

0∗
i

∑
i α

3
i α

1∗
i

∑
i |α3

i |2

⎞
⎟⎠

≡

⎛
⎜⎝

ρA
11 ρA

12 ρA
13

ρA
21 ρA

22 ρA
23

ρA
31 ρA

32 ρA
33

⎞
⎟⎠

tr

= ρA(t − r/c), (12)

where the subscript tr emphasizes that the atomic density
matrix is evaluated at a retarded time tr = t − r/c. The atomic
density matrix may be determined by solving the Liouville
equation,

ih̄ρ̇ = [H,ρ] − ih̄

2
{�,ρ}, (13)

where H is the Hamiltonian given by Eq. (2) and � is the
relaxation matrix. The second term is explicitly given by
−ih̄ �2

2 σ+
1 σ−

1 − ih̄ �3
2 σ+

2 σ−
2 .

B. Measurements and observables

One of the important consequences of the equivalence of
the atomic and the photon density matrix, shown in Eq. (12), is
that it gives us the freedom of choosing measurements on either
the atomic or the photons emitted depending on the practical
feasibility. The existence of more than one complete set of
measurements further helps in minimizing uncertainties in the
determination of the quantum state. The complex amplitudes,
and hence the density matrix elements, may be determined by
making the simple observation [23] that

〈OF (t)〉 = TrF [OF (t)ρF ]

= TrF [OF (t)TrA(ρA+F )]

= TrA+F (OF ⊗ IAρA+F ), (14)

where F and A correspond to the field and atomic variables,
OF are the field operators, and IA corresponds to the identity
operator in the atomic space. We consider all expectation
values to be normal ordered in the operators. This ensures
that the spurious contribution of the vacuum is eliminated.
The action of the creation and annihilation field operators on
the atom+field states is given in the following:

âk2 |i; k2; k1〉 	= 0 for k2 = 1 and ∀ {i,k1}
= 0 for k2 = 0 and ∀ {i,k1}. (15)

The expectation value of the annihilation operators âk;
k = 1,2 of the two modes is given by

〈âk(t)〉 = TrA+F [âk(t)ρA+F ]

=
∑
i,i ′

∑
k1,k

′
1

∑
k2,k

′
2

|i ′; k′
2; k′

1〉〈i ′; k′
2; k′

1|

× ÔAA′
k2k1k

′
2k

′
1
(t)|i; k2; k1〉〈i; k2; k1|�〉〈�|, (16)

where ÔAA′
k2k1k

′
2k

′
1
= Îk′

2
⊗ Îk′

1
⊗ ÎA′⊗ âk2 ⊗ Îk1 ⊗ ÎA and

Îk2(k1) is the identity operator of mode k2(k1) of the field.
Identifying k2 = 2,k1 = 1 the expectation values simplify to

〈â1(t)〉 =
∑

i

α1
i (t)α0∗

i (t) +
∑

i

α3
i (t)α2∗

i (t) = α1
1(t)α0∗

1 (t)

〈â2(t)〉 =
∑

i

α2
i (t)α0∗

i (t) +
∑

i

α3
i (t)α1∗

i (t)

= α2
2(t)α0∗

2 (t) + α3
1(t)α1∗

1 (t), (17)

since the complex amplitudes {α1
2,α

1
3,α

2
1,α

2
3,α

3
2,α

3
3} = 0 due to

RWA. The expectation values of the higher order correlation
functions, specifically the normal ordered field correlation and
the intensity correlation functions which are nonzero, are given
by

〈â†
1(t)â1(t)〉 =

∑
i

∣∣α1
i (t)

∣∣2 = ∣∣α1
1(t)

∣∣2
,

〈â†
2(t)â2(t)〉 = ∣∣α2

2(t)
∣∣2 + ∣∣α3

1(t)
∣∣2

,
(18)

〈â†
2(t)â†

1(t)〉 =
∑

i

α0
i (t)α3∗

i (t) = α0
1(t)α3∗

1 (t),

〈â†
2(t)â†

1(t)â1(t)â2(t)〉 = ∣∣α3
1(t)

∣∣2
.

We observe that 〈â†
2(t)â†

1(t)〉 is the anomalous coherence
[24] or the cross correlation of the amplitudes of the two
fields emitted by the atomic system. On the other hand, the
expectation value of the Pauli operators for the two transitions
is listed in the following:

〈σ̂ (1)
− (t)〉 =

∑
γ

α
γ

2 (t)αγ ∗
1 (t) = α0

2(t)α0∗
1 (t),

(19)
〈σ̂ (2)

− (t)〉 =
∑

γ

α
γ

3 (t)αγ ∗
2 (t) = α0

3(t)α0∗
2 (t).

The expectation values of the normal ordered second- and
fourth-order spin correlation operators are given by

〈σ̂ (1)
+ (t)σ̂ (1)

− (t)〉 =
∑

γ

∣∣αγ

2 (t)
∣∣2 = ∣∣α0

2(t)
∣∣2

,

〈σ̂ (2)
+ (t)σ̂ (2)

− (t)〉 =
∑

γ

∣∣αγ

3 (t)
∣∣2 = ∣∣α0

3(t)
∣∣2

,

(20)
〈σ̂ (2)

+ (t)σ̂ (1)
+ (t)〉 =

∑
γ

α
γ

1 (t)αγ ∗
3 (t) = α0

1(t)α0∗
3 (t),

〈σ̂ (2)
+ (t)σ̂ (1)

+ (t)σ̂ (1)
− (t)σ̂ (2)

− (t)〉 =
∑

γ

∣∣αγ

3 (t)
∣∣2 = ∣∣α0

3(t)
∣∣2

.

From the previous equation we see that 〈σ̂ (2)
+ (t)σ̂ (1)

+
(t)σ̂ (1)

− (t)σ̂ (2)
− (t)〉 = 〈σ̂ (2)

+ (t)σ̂ (2)
− (t)〉 and the equivalence be-

tween the field operators and the atomic transition operators
imply the following set of identities:∣∣α2

2(t)
∣∣2 = 0; α0

3(t − r/c) ∝ α3
1(t); α0

2(t − r/c) ∝ α1
1(t).

The first of the conditions is a manifestation of the Schmidt
decomposition which forces ργ to be of rank three. Note that
the atomic operators are related to the amplitudes {α0

1,α
0
2,α

0
3}

only while the emitted radiation is related to the amplitudes
{α0

1,α
1
1,α

3
1} only. As already mentioned depending on the

062301-4



TOMOGRAPHY, CONTROL, AND CHARACTERIZATION OF . . . PHYSICAL REVIEW A 82, 062301 (2010)

practical feasibility, one may choose observables from either
the field space or the atomic space.

C. Numerical results

We now discuss the numerical results in three regimes of
interest: (a) the pure-state regime �1 < �2, (b) the Bell-state
regime �1 ≈ �2, and (c) the mixed-state regime �1 > �2. The
reason for this nomenclature becomes clear in our analysis be-
low. All the system parameters may be rendered dimensionless
by scaling with the atomic lifetime γ ≈ 1 MHz. In particular,
we choose the pure-state regime corresponding to the driv-
ing field strengths �1 = 3.0 and �2 = 6.0. Our numerical
simulations correspond to the two-photon resonant situation;
therefore, �1 = �2 = 0. The upper-most level |3〉 (which may
correspond to 5D5/2) is assumed to be metastable (i.e., �3 =
1.0 and �2 = 6.0). We further assume the system to be closed.

Figure 2 shows the populations in the |00〉, |01〉, and the |11〉
of the two-photon state as functions of time. We have studied
the time dependence of the populations in the three regimes
mentioned previously. Figure 2(a) corresponds to the pure-
state regime wherein the population is negligible in |01〉 and is
mostly in |00〉 with a relatively small admixture of |11〉. Indeed
it is clear from the graph that the purity, Tr(ρ2), is quite close to
one. The Bell-state regime corresponds to �1 = 6.0,�2 = 6.0
and is illustrated in Fig. 2(b). Here, the level |01〉 starts getting
populated but remains small compared to the populations in
|00〉 and the |11〉 states which become comparable to each
other. The coherence between |00〉 and |11〉 is also quite large.
In the mixed-state regime (�1 = 6.0,�2 = 3.0) shown in
Fig. 2(c), we note that all the populations are comparable and
the purity is much less than one. Note that the time evolution
in all the regimes attains steady state in approximately an
atomic lifetime after performing one Rabi cycle. This justifies
the single-photon approximation approach [18] used here.

The steady-state two-photon density matrix corresponding
to the three regimes is shown in Figs. 3(a)–3(f). The real part of
the density matrix in the pure-, Bell-, and mixed-state regimes
are, respectively, shown in Figs. 3(b), 3(c), and 3(e). Likewise,
the imaginary part of the density matrix in the three regimes is
shown in Figs. 3(b), 3(d), and 3(f). Note that the third column
and the third row are zero everywhere, as implied by Schmidt
decomposition and the dynamics. In the pure-state regime
[Figs. 3(a) and 3(b)], even though most of the population is
in the ground state there is a nonzero population in the |11〉
state and a nonzero correlation in the ρ

γ

00;11 element. This is
an almost pure state as is clear from Fig. 2(a) (Trρ2 ≈ 1) and
the pure-state component is of the form c1|00〉 + c2|11〉; c1 

c2. The small mixedness is due to the nonzero population
in the |01〉 state. In the Bell-state regime [Figs. 3(c) and
3(d)], the correlation is strong and furthermore the populations
in the |00〉 and |11〉 are equal. The loss of purity is again due
to the |01〉 state. In the mixed-state regime [Figs. 3(e) and 3(f)],
the steady populations in the three levels are comparable, and
the correlations ρ00;01 and ρ01;11 compete with the correlation
ρ00;11. This regime provides the most general two-photon
mixed state.

Having determined the state of the two-photon density
matrix we now move on to study the entanglement properties
of the two-mode emitted radiation.
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FIG. 2. (Color online) Time evolution of the populations for
(a) pure-state regime �1 = 3.0,�2 = 6.0, (b) the Bell-state regime
�1 = 6.0,�2 = 6.0, and (c) the mixed-state regime �1 = 6.0,�2 =
3.0. The black dotted curve corresponds to Trρ2 (purity).

IV. CONTROL AND CHARACTERIZATION
OF ENTANGLEMENT

Pure-state entanglement may be characterized by various
measures such as the Von Neumann entropy of the reduced
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FIG. 3. (Color online) Real part of the two-photon density matrix for (a) the pure-state regime, (c) the Bell-state regime, and (e) the
mixed-state regime and (b), (d), and (f) show the imaginary part of the density matrix in the respective regimes. The parameters are the same
as in Fig. 2.

density matrix, concurrence, and negativity. All these measures
are equivalent in the sense that they are relative monotones
with respect to each other. In contrast, it is well known
that the entanglement of a mixed state (MSE) cannot be

characterized by a single parameter [25]. Generalizations of
the previously mentioned pure-state measures in terms of
a single parameter cease to be relative monotones of each
other in the mixed-state regime; this has been demonstrated
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explicitly in the case of concurrence and negativity [26].
In a detailed and exhaustive analysis, Peters et al. [27,28]
have analyzed the sensitivity of the state to a number of
measures of entanglement for depolarized nonmaximally
entangled states such as the Werner states and also the
so-called maximally entangled mixed states. They perform
a relative comparison of six benchmarks of entanglement (viz.
fidelity, trace distance, tangle, linear entropy, concurrence,
and von Neumann entropy), and find an imbalance in the
values of these quantities, even in situations where it is not
expected, clearly signaling that none of these can by itself fully
account for MSE. Finally, we mention quantum discord [29]
which again displays the tension between such definitions of
entanglement.

We would like to point out here that the description of
mixed-state entanglement by Bhardwaj and Ravishankar [13]
addresses these issues by characterizing MSE in terms of a
probability density function (PDF) rather than a single number.
This characterization does not invoke any new concept such as
entanglement of formation or separability. Instead, it is based
on the observation that a description in terms of mixed states
is required when we have an ensemble of quantum systems
each of which is in a pure state. A probabilistic description
is, therefore, natural. This expectation is vindicated by the
fact that while two states which are not equivalent under
local operations (SU(2) ⊗ SU(2)) can have the same value for
concurrence, the probability densities are necessarily distinct.
In fact, the state can be reconstructed almost uniquely (up
to local transformations) by the density. We employ this
characterization of MSE in this paper. We briefly describe their
formalism.

A. Probability density function for MSE

The characterization of mixed state is accomplished in two
steps. Firstly, the special case when the state is a projection
of rank d is considered (for a two qubit system, dmax = 4),
ρd ≡ 1

d
Pd , where the operator Pd projects a d-dimensional

subspace HPd
of the two-qubit Hilbert space H4. We then

observe that for all ψ ∈ Hd ,〈ψ〉ρd
= 1, which means that there

is a uniform probability for the system to be in any state
in the subspace Hd . By the same token, for all states ψ /∈
Hd,〈ψ〉ρd

= 0, implying that the probability for finding the
system in the complementary subspace vanishes identically.
Armed with this simple basis independent observation, define
the probability density function,

Pρd
(E) =

∫
dVHd

δ(Eψ − E)∫
dVHd

, (21)

where dVHd
is the volume measure for the manifold HPd

.
To repeat, the density so obtained is not an artifact of
any expansion of ρ. We mention that the state may be
reconstructed from the resultant PDF, which is unique—up
to local transformations.

In the case when ρ is not a projection, it is written as
a weighted sum of projection operators Pd , satisfying the
nestedness condition HPd−1 ⊂ HPd

. Consider the expansion
of ρ in its eigenbasis with its eigenvalues written in a

nonincreasing order, then,

ρ =
4∑

i=1

λ
↓
i |ψi〉〈ψi | ≡

4∑
d=1

wdPd ; wd = λd − λd−1

λ1
, (22)

with the restriction that w4 = λ4/λ1. Employing this resolu-
tion, the PDF for any state can be written as

Pρ(E) =
4∑

d=1

wdPρd
(E). (23)

The PDF so defined is invariant under SU(2) ⊗ SU(2) trans-
formations.

It has been shown by Bhardwaj and Ravishankar that it
requires seven independent parameters which characterize the
PDF in various subspaces as follows:

Pρ1 ← w1,E1,

Pρ2 ← w2,Ecusp,Emax,
(24)

Pρ3 ← w3,E⊥,

Pρ3 ← w4.

Recall that ρd is the projection onto the d-dimensional
subspace. In what follows, for pure-state entanglement, we
shall employ the pure-state concurrence, E = 2|〈ψT|ψ〉|,
where |ψT〉 is the time-reversed state of |ψ〉.

1. PDF for projective states

Before we proceed to use the previous characterization of
mixed-state entanglement, a brief description of the parameters
is in order.

(i) Pure states. Consider first a state which is a one-
dimensional projection. Being pure, it has a sharp value of
entanglement. The PDF is, accordingly, given by a Dirac delta:

Pρ1 = δ(E − Eψ ); P1 ≡ |ψ〉〈ψ |. (25)

(ii) Two-dimensional projections ρ2. The evaluation of PDF
for a two-dimensional space involves two parameters and is
somewhat involved, given its rich structure. We briefly outline
the idea. Consider a state |�〉 ∈ H(P2) which may, in general,
be written in terms of two orthonormal states |χ1〉,|χ2〉 as

|�〉 = cos
θ

2
eiφ/2|χ1〉 + sin

θ

2
e−iφ/2|χ2〉, (26)

where 0 � θ � π and 0 � φ < 2π . It follows from elemen-
tary algebra that one can always construct a linear superposi-
tion which is separable, which can be conveniently labeled
|00〉, after a further local SU(2) ⊗ SU(2) transformation.
Using this as a basis vector, its orthogonal state x|01〉 +
y|10〉 + z|11〉 may be so chosen, by employing the residual
SO(2) ⊗ SO(2) symmetry that preserves |00〉, such that x,y,z

are real nonnegative. By the normalization condition, only two
of them, say x,y are independent. In short any state which is a
two-dimensional projection is characterized by two invariant
parameters under local transformation.

The mixed-state density matrix of such a state (two qubits
A and B) may also be written in the form:

ρAB = (1 + σ̂A · PA + σ̂B · PB + (σ̂A ⊗ σ̂B) · �). (27)
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Here it may be shown from the equivalence of the atomic and
field operators that PA and PB are the polarizations due to the
two transitions of the atomic system; in particular, we identify
A → 1,B → 2. The invariant parameters x,y may be written
in terms of the polarizations as

x2 = P 2
A/

(
1 +

√
1 − P 2

A − P 2
B

)
,

y2 = P 2
B/

(
1 +

√
1 − P 2

A − P 2
B

)
, (28)

z2 = (1 − x2 − y2),

where P 2
A(B) = 1 − 4det(ρA(B)) and ρA = TrB(ρAB). The PDF

is shown to attain the form,

Pρ2 (E) = E
π

∫ π

0

sinθdθ√
[E2 − L2(θ )][U2(θ ) − E2]

. (29)

Here, E satisfies the bounds 0 � E < U(θ ),L(θ ) < E �
0 where U(θ ) = |zsinθ + (1 − cosθ (1 − z2)/2| and L(θ ) =
|zsinθ − (1 − cosθ (1 − z2)/2|. Note that in the previous equa-
tion the Haar measure for the volume is simply that of the
two-sphere S2: dVHd

= sinθdθdφ.
Three-dimensional projections ρ3. The PDFs for

three-dimensional projections have a more complicated
volume measure, but a simpler structure, made possible by the
fact that it is uniquely characterized by its dual, the orthogonal
(pure) state |ψ⊥〉. Let its entanglement be E⊥. The PDF for ρ3

is then given by

Pρ3 (E) = 2E√
1 − E2

⊥
cosh−1

(
1

E>

)
, (30)

where E> = max(E,E⊥). As an interesting aside, we note
that concurrence and negativity vanish identically for any
three-dimensional projection.

The four-dimensional projection is simply the fully un-
polarized system, which is a universal background. We do
not reproduce the curve here since it has zero weight for our
system since one of the eigenvalues of the photon density
matrix, corresponding to the state |10〉, is zero. There is a
corresponding reduction in the number of invariant parameters
that characterize entanglement.

An equivalent description of PDF is given by the cumulative
distribution function (CDF) defined by

Fρ(E) =
∫ E

0
dE ′Pρ(E ′). (31)

We would like to mention here that we have evaluated both
the probability density function and the cumulative distribution
function for the entanglement as we find that the latter displays
the dynamical features more clearly.

B. Numerical results and discussion

We have evaluated the steady-state values of the
six invariant parameters characterizing the mixed-state
entanglement distribution (viz. the three weights w1,w2,w3,
the entanglement of the pure-state component E1, and the two
entanglement parameters Ecusp,Emax corresponding to the two-
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FIG. 4. (Color online) Invariant parameters and correlation as
functions of the ground-state excitation energy �1; �2 = 3.0. The
parameters w1, w2, and w3 correspond to the three weights wi ;
‘ent1’ = E1, ‘ecusp’ = Ecusp, ‘emax’ = Emax are defined in Eq. (23) and
‘corr’ = ρ

γ

00;11

dimensional projection. The parameters w4,E⊥ vanish identi-
cally. The parameters Emax, Ecusp are determined from ρ2 [see
Eq. (28)] by

Emax = xy +
√

z2 + x2y2,
(32)

Ecusp = z2/Emax.

The three interesting regimes, �1 < �2, �1 ≈ �2, and
�1 > �2, create the two-photon mode system in different
states. In the first regime the state has a high degree of
purity, but little entanglement. In the second regime, most
appropriate for fine tuning, the system loses purity to an extent,
but gains in entanglement, as indicated in Figs. 2 and 3.
The last regime destroys both purity and entanglement.
Figure 4 shows the variation of these parameters as functions
of the Rabi frequency of the ground-state excitation �1, with
�2 = 3γ , where all the three regimes show up. But beyond
this mildly interesting qualitative feature, it is clear that in
much of the range, the individual parameters by themselves
give little information on the nature of entanglement reflecting
the fact that no single parameter can completely capture all
the aspects of mixed-state entanglement. In contrast, as we
show below, the probability distribution characterized by these
invariant parameters sheds light on not only the nature of
mixedness of the state, but also the nature of entanglement
without any ambiguity. This description seems to overcome
the difficulties raised in Refs. [27,28]. In Fig. 5 we show
the PDF and the CDF of entanglement corresponding to each
of one-, two-, and three-dimensional subspaces for the three
regimes of interest. It is clear from Fig. 5(a) which corresponds
to the pure-state regime, the probability distribution has a
dominant contribution of ≈95% due to the one-dimensional
subspace. The corresponding state is not fully entangled,
with E ≈ 0.7. Recall that for a Bell state E = 1. As to the
precise nature of the state, one can infer from Fig. 3(a)
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FIG. 5. (Color online) Probability distribution and the cumulative
distribution of entanglement corresponding to one-, two-, and three-
dimensional subspaces for the (a) pure-state, (b) Bell-state, and
(c) mixed-state regimes. Legend is as follows: (d) probability distribu-
tion function for one-dimensional subspace and (e) the corresponding
cumulative distribution; (f) PDF for two-dimensional subspace and
(g) its CDF; (h) PDF corresponding to the three-dimensional subspace
and (i) its corresponding CDF.

that the state must be a superposition of the |00〉 and |11〉
states with an excess of population in the |00〉 state. This
is further substantiated by the strong correlation as shown
by the ρ00;11 element. The deviation from purity is due to
the unequal populations in the |00〉 and the |11〉 state. The
two- and three-dimensional contributions are negligibly small
in this case. In the Bell-state regime, Fig. 5(b), there is a
dominant contribution from the pure state even though the
probability decreases to ≈80%. Note, however, that the state
in this regime is closer to a Bell state since E is close to
one. There is a small contribution from the three-dimensional
subspace. In the mixed-state regime Fig. 5(c) there is a
comparable contribution from all the subspaces. The pure-state
probability has, however, reduced to less than 50% and also
E ≈ 0.65. The nature of mixedness in this regime may be
understood by looking at Figs. 3(c) and 5(c). Even though the
populations in |00〉 and |11〉 are nearly equal, the correlation
ρ00;11 is much weaker. On the other hand the correlation ρ00;01

is stronger implying that the superposition of the |00〉 and
|01〉 is competing. Since both the correlations are compa-
rable the states belong to either two- or three-dimensional
subspace.

The equivalence of the photon and atom density matrix
suggests that the correlation ρ

γ

00;11(t) is proportional to the
atomic coherence ρA

13(t − r/c). Note that maximum entan-
glement of the two photons occurs when this correlation
and hence the atomic coherence is strong. This clearly
demonstrates the fact that the quantum correlations of the
atomic system manifest as strong correlations in the emitted
radiation as well. In the mixed-state regime the single-
and two-photon coherences compete and this results in a
weaker entanglement of the two photons. Thus, the control of
entanglement and purity is achieved by controlling the atomic
coherences.

To conclude, we have shown that it is possible to determine
the two-photon density matrix, in its Fock space, by a
combination of observations that include measurements on
the atomic system that generate the photons and the radiation
itself. By a proper choice of the two driving field strengths,
the radiation emitted can either be prepared as a pure state, but
with little entanglement, or with a reasonable overlap with the
Bell state, but with some mixedness. Both the regimes are of
interest. The former is eminently suited for the preparation
of fiducial states as in applications such as the Deutsch
algorithm. The latter regime, where highly entangled states
are produced is useful when initial entanglement is required,
as in the case of teleportation. The third regime, where
�1 
 �2 seems unsuited for applications; on the other hand, it
provides mixed states exhibiting a rich variety of entanglement
which cannot be captured in terms of a simple parameter.
It should be of interest to extend this study to multiphoton
production and its characterization in terms of purity and
entanglement.
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