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Time scales of tunneling decay of a localized state
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Motivated by recent time-domain experiments on ultrafast atom ionization, we analyze the transients and
time scales that characterize, aside from the relatively long lifetime, the decay of a localized state by tunneling.
While the tunneling starts immediately, some time is required for the outgoing flux to develop. This short-term
behavior depends strongly on the initial state. For the initial state, tightly localized so that the initial transients
are dominated by over-the-barrier motion, the time scale for flux propagation through the barrier is close to the
Büttiker-Landauer traversal time. Then a quasistationary, slow-decay process follows, which sets ideal conditions
for observing diffraction in time at longer times and distances. To define operationally a tunneling time at the
barrier edge, we extrapolate backward the propagation of the wave packet that escaped from the potential. This
extrapolated time is considerably longer than the time scale of the flux and density buildup at the barrier edge.
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I. INTRODUCTION

Tunneling, being one of the most fundamental concepts in
quantum mechanics, remains a source of strong theoretical
and experimental controversy with regard to the relevant time
scales of the process [1,2]. A typical tunneling setting is the
scattering process, where a wave packet is reflected from and
transmitted through a barrier higher than the incident particle
energy. In this case the group delay [3], defined in terms of
the energy derivatives of the reflection or transmission phase
shift, is indicative of the motion of the wave-packet peak. It
was also found that the group delay for particles tunneling
through an opaque barrier is independent of the barrier width
(the “Hartman effect” [4]).

Measurement of the time spent by a tunneling particle
in the classically forbidden region can be based on the
approach of Baz and Rybachenko [5,6], which uses the
Larmor precession of a particle with a magnetic moment in
a weak magnetic field or in effective fields in solids due to
spin-orbit coupling [7,8]. In classically forbidden regions there
is not only precession but also a rotation [9] of the moment
into the direction of the field. Büttiker and Landauer [10]
analyzed tunneling through an oscillating rectangular barrier
and found an interaction time that is closely related to the
rotation of the magnetic moment in a magnetic field [9,10]. A
tunneling time has been measured for electromagnetic waves
passing through inhomogeneous optical structures [11,12] and
waveguides [13,14]. Interestingly, in graphene, a single layer
of carbon atoms (which provides another example of massless
particles), the transport occurs via evanescent waves, and the
Wigner-Smith delay is linear in the tunneling distance [15].

Brouard et al., using scattering-theory projectors for to-be-
transmitted or reflected wave-packet parts and for localizing
the particle at the barrier, set a formal framework that
unified many of the existing proposals, pointing out that the
multiple time scales correspond to different quantizations of
the classical transmission time due to the noncommuting ob-
servables and possible orderings involved [16]. This clarified
the meaning of different partitions of the dwell time into
transmitted, reflected, and interference components. Another

research line has been the investigation of characteristic times
for the transient dynamics of the wave function (for example,
the forerunners) in a plethora of potential configurations
and initial conditions using asymptotic methods [17–19].
For specially prepared states, in particular, for confined or
semiconfined initial waves with a flat density, these transients
show diffraction in time [19,20], that is, temporal oscillations
reminiscent of spatial Fresnel diffraction by a sharp edge [20].
Also, analysis of the partial density of states [21] provides
another approach to understanding the tunneling process.

An important tunneling-dependent phenomenon is the
decay of a metastable system [22–25], related, e.g., to state
ionization in optics and to the discharging of a capacitor in
mesoscopic physics [26–32]. Compared to the full-scattering
problem, the decay configuration, or “half-scattering” prob-
lem, has been frequently considered unproblematic because
of the absence of the transmitted or reflected wave-packet
splitting and the existence of a well-known characterization
in terms of resonance lifetimes. In fact, one may still pose
classical questions regarding the tunneling time similar to
those in the scattering configuration, however, without obvious
answers. A particle may wander in the trapping well for a
while and then escape through the barrier. For such a history
the lifetime would be a waiting time in the well plus a
tunneling time. Can this quantity be defined and measured in a
sensible way? The understanding can be based on the analysis
of quantum interference among the Feynman paths [33] or
on the consideration of the quantities defined by operational
procedures, as presented in this paper.

In recent years the techniques of atom ionization by a
strong laser field and attosecond probing of electron dynamics
opened a new venue for experimental studies of tunneling
times. The measurement of He atom ionization [34] holds
the promise of observing the tunneling delay of electrons in
real time. In the experiment access to the dynamics at the
tunneling time scale is gained through extrapolation of long
time measurement to shorter times by assuming that a particle
that has escaped through an energetically forbidden region into
a classical allowed region follows classical dynamic laws. By
using these laws and scattering data, the moment of escape
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from the tunneling region into the classical region is deter-
mined. A related experiment [35] measures the perpendicular
distribution of the nascent quantum-mechanical momentum
uncertainty of the initial state as it is revealed by tunneling.

The aim of this paper is to study the dynamics of
the tunneling-induced decay of a localized state and to
investigate to what extent we can extract information on
the short-time behavior from the long-time dynamics. We
introduce a simple quantum-mechanical model that simulates
the experimental measurement of tunneling time and allows
for opening and closing the barrier [34]. We calculate the
probability density and flux to study the short-term dynamics
near the barrier and the long-term dynamics far away from it.
For an opaque barrier we observe a relatively short transient
time scale where the tunneling is developed into a quasisteady
decay process. The details of the initial state have an important
impact on the transients. At large distances the flux and the
density start to grow at long times, reach a peak, and then
decrease by diffraction-in-time oscillations. We found that the
tunneling time obtained by extrapolating the particle motion
from the position of the remote detector to the right edge
of the barrier is not directly related to the time scale of the
outgoing flux buildup.

II. GENERAL DESCRIPTION OF TUNNELING AND
MODEL POTENTIAL

To study the tunneling dynamics, we consider the potential
U (x,t), which is infinite at x < 0. At t < 0 the potential holds
bound states with wave function ϕj (x) and energy Ej ; it
changes at t = 0 to allow the tunneling, and it changes back at
t = t0 to its initial form. The entire time dependence is

U (x,t) =
{
U1(x) (t < 0 and t > t0),

U2(x) (0 < t < t0).
(1)

The initial state �(x,t = 0) prepared at t = 0 begins to evolve
at t > 0, and the probability of finding the electron inside
the potential decreases. This is similar to the ionization of an
atom by a strong laser field, which allows a valence electron to
tunnel through the barrier. At the closing time t0, the potential
becomes U1(x) again and the decay terminates. In the time in-
terval 0 < t < t0 the wave function �(x,t) can be expressed as

�(x,0 < t < t0) =
∫ ∞

0
G(k)φk(x) exp

(
− ik2t

2

)
dk, (2)

with

G(k) =
∫ ∞

0
�(x,0)φk(x) dx, (3)

where φk(x) are delocalized real states in the potential U2(x)
with the energy E = k2/2. Here we use h̄ ≡ m ≡ 1 units,
where m is the electron mass.

After closing the barrier at t = t0, the potential gets its
original form and the wave function can be expressed as

�(x,t > t0) =
∑

j

Bjϕj (x) exp[−iEj (t − t0)]

+
∫ ∞

√
2U0

B(k)ϕk(x) exp

[
− ik2(t − t0)

2

]
dk,

(4)

FIG. 1. The time-dependent potential U1(x) at t = 0 and t > t0
and U2(x) within the interval 0 < t < t0. (a) U1(x) is a step in the
positive half-plane, which is 0 from x = 0 to x = a1 and U0 from
x = a1 to infinity, while (b) presents a barrier that extends from
x = a1 to x = a2 and is of the height of U0. The potential is always
infinite in the negative half-plane.

where summation is extended over the bound states of the
initial potential, and

Bj =
∫ ∞

0
�(x,t0)ϕj (x) dx, (5)

B(k) =
∫ ∞

0
�(x,t0)ϕk(x) dx, (6)

with ϕk(x) being the continuum states in the potential U1(x).
With Eqs. (2) and (4) we have fully specified the time evolution
of the escape problem.

To specify the model, we assume that at t < 0 the potential
U1(x) is a step in the positive half-axis, being zero at 0 <

x < a1 and U0 at x > a1, as shown in Fig. 1(a). At t = 0 the
potential changes to U2(x), which is a rectangular barrier of
the height U0 extended from a1 to a2, as shown in Fig. 1(b). The
rectangular barrier, being the simplest example of potential that
is finite everywhere where the wave function and its derivative
are continuous, allows for exact analysis of the dynamics. Here
we set a1 ≡ 1 and measure the time, energy, and momentum
in the corresponding units.

The delocalized eigenstates of the Hamiltonian correspond-
ing to U1(x) have the form

ϕk(x) =
{
C1(k) sin(kx) (0 < x < a1),√

2/π sin[qx + θ1(k)] (x > a1),
(7)

where q =
√

k2 − 2U0 and k >
√

2U0, with C1(k) and θ1(k)
determined by the boundary conditions at x = a1, and the
norm is determined by 〈ϕk′ |ϕk〉 = δ(q − q ′).
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The eigenstate of the Hamiltonian corresponding to U2(x)
is

φk(x) =

⎧⎪⎨
⎪⎩

C(k) sin(kx) (0 < x < a1),

D(k)e−κkx + F (k)eκkx (a1 < x < a2),√
2/π sin[kx + θ (k)] (x > a2),

(8)

with the normalization condition 〈φk′ |φk〉 = δ(k − k′). The
coefficients C(k), D(k), F (k), and the phase θ (k) satisfy
the boundary conditions of the potential U2(x), and κk =√

2U0 − k2. In the tunneling regime k <
√

2U0, while in the
propagating regime k >

√
2U0, and iκk is substituted by q,

defined previously.

III. TUNNELING DYNAMICS AT SHORT AND
LONG TIMES

A. Decay of the state

The decay rate is described by the probability of finding the
particle in the well from x = 0 to x = a1, defined as

w1(t) =
∫ a1

0
�∗(x,t)�(x,t) dx. (9)

The lifetime tl , which also can be seen as the dwell time, an
important time scale introduced to characterize the decay rate,
is the time that it takes for the relative probability in the well
w1(t)/w1(0) to decay to 1/e. For an opaque barrier the decay
time can be written approximately as tl ≈ ATk0 exp(2κd),
with κ = √

2(U0 − E0) and d = a2 − a1, where k0 = √
2E0,

Tk0 = 2/k0 is the period of motion for a particle in the
well, exp(−2κd) 	 1 is the tunneling rate, and A is a
barrier-dependent coefficient of order 1. Therefore, κd is a
significant physical parameter with regard to the decay process
and tunneling time. Analysis of different examples where this
simple expression for the lifetime does hold can be found in
Ref. [25].

To study the dynamics, we first set the initial state as
the ground state of the Hamiltonian corresponding to U1(x)
for a typical potential. For example, for U0 = 16 there are
two bound eigenstates: the ground ϕ0(x) (energy E0) and
the excited state ϕ1(x) (energy E1). The energy E0 for
�(x,0) = ϕ0(x) is 3.52. By choosing a different a2, one
can modify the transparency of the barrier. For example, if
κd = 2, corresponding to a2 = 1.4, this barrier is moderately
opaque. The corresponding G(k) is shown in Fig. 2. Under
the conditions of �(x,0) = ϕ0(x), the lifetime in this potential
is tl = 17.5, as illustrated in Fig. 3(a). Calculated real and
imaginary parts of �(x,t) after some short transients show
fast oscillations with the envelope function exp(−t/2tl). This
behavior implies that in terms of the poles in the complex
energy plane, the states we consider correspond to the simple
Breit-Wigner resonances. Detailed analysis of various types
of resonances and their relation to different time scales can
be found in Refs. [36,37]. To clarify the influence of the
initial state on tunneling, we alter it into the ground state of an
infinite-wall potential, �(x,0) = √

2 sin(πx). Therefore, E0 is
π2/2 and a2 becomes 1.42 to keep κd unchanged. As shown
in Fig. 2, the coefficient G(k) in Eq. (3) has two contributions
related to the resonances corresponding to the bound states
of the initial potential. For �(x,0) = ϕ0(x), the second one,

0 1 2 3 4 5 6

k

-1

0

1

G
(k

)

FIG. 2. (Color online) The matrix element G(k) of the initial state
with the delocalized states of the potential U2, where k is the wave
vector of the delocalized states. The solid line corresponds to the
initial state �(x,0) = ϕ0(x), which is a bound state of U1. For this
case the barrier in U2 extends from a1 = 1 to a2 = 1.4. The dashed
line corresponds to a sinusoidal initial state �(x,0) = √

2 sin(πx)
and to a barrier in U2 extending from a1 = 1 to a2 = 1.42. In both
cases, κd = 2 and U0 = 16.

corresponding to the first excited state with a fast decay, is
extremely weak. The presence of more than one bound state
in the initial potential combined with the condition of low
transparency of the barrier leads to important consequences
for the short-time-scale tunneling dynamics.

Although all the probabilities decrease exponentially at
long times, showing the general feature of the process, the ones
with �(x,0) = √

2 sin(πx) in Fig. 3(b) oscillate fast, while
those with �(x,0) = ϕ0(x) in Fig. 3(a) decay smoothly. This
is because �(x,0) = √

2 sin(πx) has a significant contribution
of the second anomaly shown in Fig. 2, leading to interference
with the “ground-state resonance.”

B. Short-term dynamics

In this section we address the beginning of the tunneling by
studying the short-time dynamics of the flux,

J (x,t) = 1

2i

[
�∗(x,t)

∂�(x,t)

∂x
− ∂�∗(x,t)

∂x
�(x,t)

]
, (10)

and the density,

ρ(x,t) = �∗(x,t)�(x,t). (11)

These two quantities satisfy the continuity equation,

∂ρ(x,t)

∂t
+ ∂J (x,t)

∂x
= 0. (12)

Based on Eq. (12) we obtain the flux at the edges,

J (a1,t) = −dw1(t)

dt
, J (a2,t) = dw2(t)

dt
, (13)

where

w2(t) =
∫ ∞

a2

�∗(x,t)�(x,t) dx (14)

is the probability of finding the particle outside the potential.
In Fig. 4 we illustrate the time dependence of the edge

flux for different barriers during a short time scale for
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FIG. 3. (Color online) The probability of finding the particle in the
well from 0 to a1. (a) The solid and the dashed lines are for two initial
states �(x,0) = ϕ0(x), one for U0 = 16 and the other for U0 = 10.
(b) The solid and the dashed lines represent the barriers U0 = 16
and U0 = 10, with the same initial state �(x,0) = √

2 sin(πx). The
insets exhibit ln[g(t)] at small time scale, where g(t) ≡ w1(t)/w1(0).
For all curves κd = 2.

�(x,0) = ϕ0(x), where the lines shift to the right by lowering
the barrier. It can be seen from both panels of Fig. 4 that
J (a1,t) and J (a2,t) basically increase during a short time
interval and then reach a rough plateau at a characteristic
time tpl, which is a smoother behavior for J (a2,t), while
J (a1,t) dives for a very short time to a negative value and
oscillates more strongly. As a result, no feature can be clearly
distinguished as a precise instant when tunneling begins. By
using the continuity equations (13), the decay time tl can be
reliably estimated as 1/Jpl(a2), where Jpl(a2) is the typical
value of the flux at the plateau. The time scale when J (a2,t)
develops a plateau also becomes larger, although it cannot be
defined precisely. A crude estimate for the scale at which the
plateau forms is tpl ∼ π/(2E0), approximately a factor of 2 less
than the oscillation period Tk0 of a particle in the initial well
with potential U1. The period Tk0 determines the prefactor of
the escape time, as discussed previously with regard to Eq. (9).
Therefore, classically speaking, the decay by tunneling as a
steady process begins when the electron hits the barrier.

The inset in Fig. 4(b) shows the behavior of the density
at the edge. In contrast to J (a1,0) = J (a2,0) = 0, ρ(a1,0) and
ρ(a2,0) are not zero, as the ground state for the potential U1(x)
is not fully localized in the well and the plateau in ρ(a2,0) is
clearly seen.

Even though the numerically estimated times are much
shorter, a similar trend in variation with the height of the barrier
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J(
a 2,t)
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1

(x15)
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FIG. 4. (Color online) (a) Flux at the left edge a1. The solid,
dashed, and dot-dashed lines correspond to the barriers U0 = 24,
U0 = 16, and U0 = 10, respectively. (b) Flux at the right edge a2. The
inset presents the density at a1 (solid) multiplied by 15 at a2 (dashed),
with the barrier U0 = 16. All lines correspond to the same parameters
as those in (a). For both plots, κd = 2 and �(x,0) = ϕ0(x).

is shown by the Büttiker-Landauer time (BL time), provided
that κd remains unchanged. The traversal time of Büttiker
and Landauer [10], tBL = d/κ , given by the barrier width d

divided by the “semiclassical” velocity κ = [2(U0 − E0)]1/2,
is an important time scale, especially in opaque conditions.
With the conservation of κd, tBL is proportional to 1/κ2.

The dependence of the flux at the right edge on time with
different widths but keeping the height of the barrier is shown
in Fig. 5(a). It is interesting that the time at which the flux
begins to form a plateau is almost equal for the different widths,
although the flux value at the plateau changes strongly, roughly
as exp(−2κd). In Fig. 5(b), this characteristic time tpl also re-
mains almost unchanged for different U0 values by keeping the
same width a2. We conclude that the observed scale of π/(2E0)
is universal and does not depend on the details of the potential.

For comparison, we illustrate in Fig. 6 the flux at a short
time scale for a transparent barrier κd = 0.25. As a matter of
fact, the flux and the density have similar profiles. They grow
from the initial to the maximum value and decrease rapidly, in
contrast to the opaque behavior without an obvious peak. The
peak is positioned at t ≈ 0.4, similar to the time of plateau
development in Fig. 5.

For the initial state �(x,0) = √
2 sin(πx), the flux is

enhanced by an order of magnitude and oscillates more
strongly compared to the initial �(x,0) = ϕ0(x), because
sin(πx) contains larger contributions from different eigen-
states. Different from that with �(x,0) = ϕ0(x), the density
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FIG. 5. (Color online) (a) Dependence of flux at the right edge on
time with different widths: solid line, κd = 1.5; dashed line, κd = 2;
and dot-dashed line, κd = 2.5, U0 = 16. (b) Dependence of flux at the
right edge on time with different heights, by remaining a2 = 1.4: solid
line, κd = 1.5; dashed line, κd = 2; and dot-dashed line, κd = 2.5,
respectively. The ground-state energy E0 depends only weakly on the
potential height U0. For all plots �(x,0) = ϕ0(x).

is zero at t = 0 outside the barrier. The time dependence of the
density at the edges with the initial state �(x,0) = √

2 sin(πx)
is presented in Fig. 7 for a typical barrier. For various system
parameters, the delay time between the maximum of the
density at the right and the left edges is in good agreement
with the Büttiker-Landauer time tBL for these potentials.
We conclude that tBL manifests itself as a delay time if

0.0 0.2 0.4 0.6 0.8 1.0
t

0.0
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0.6

0.8

1.0

1.2

J(
a 2,t)

FIG. 6. (Color online) Time evolution of the flux at the right edge,
where the solid line represents the flux when U0 = 16 and a2 = 1.05.
The dashed line corresponds to the flux for U0 = 10 and a2 = 1.06.
The two barriers are transparent as κd = 0.25, and the initial state
is ϕ0(x).
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t
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1.0
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FIG. 7. Density evolution with the barriers U0 = 10, a2 = 1.63
(solid line at a2 and dashed line at a1). As the density at a2 is relatively
small, it is multiplied by the factor of 10. The barrier is opaque with
κd = 2, and the initial state is �(x,0) = √

2 sin(πx).

over-the-barrier motion becomes essential due to the choice of
the initial state. The momentum components that matter at first
are the ones larger than

√
2U0, as the momentum distribution

of sin(πx) is broad. Moreover, its average local velocity at the
right edge of the barrier vB(a2,t) = J (a2,t)/ρ(a2,t) decreases
from a large value with some oscillations to a relatively stable
one close to

√
2E0 during a short interval, after which the real

tunneling starts. This means that the forerunners go just above
the barrier instead of tunneling. By contrast, the tunneling
process for �(x,0) = ϕ0(x) occurs from the instant the decay
initiates, because vB(a2,t) is always smaller than

√
2U0.

As discussed in [38,39] with analytical models, tBL is a
characteristic time describing different phenomena, among
them over-the-barrier transients. This is rather paradoxical,
given its association with “tunneling” in the defining formula,
and it has surely not been fully appreciated. A more intuitive
understanding of this unexpected role is still needed.

C. Long-term dynamics

We have now established that the short-time dynamics of
the probability flux is governed by robust time scales. We next
investigate the long-term dynamics with the goal of finding out
whether a suitable extrapolation of the long-term scattering
data can be used to gain information on the short-time
dynamics. We find that after formation of steady tunneling, the
particle probability density shows two distinct features. The
first one is an almost uniform change in ρ(x,t) for x < a1, with
ρ(x,t) ≈ ρ(x,0) exp(−t/tl). The second one can be viewed as
a broad bump (wave packet) with relatively small density,
propagating with the velocity close to

√
2E0 and spreading in

time. In this section we consider the dynamics of the bump
at long time scales and trace it to short times to obtain the
operationally defined tunneling times.

We assume that the flux J (X,t) and the density ρ(X,t)
are measured by a detector located at X � a2. It is shown
in Fig. 8 for �(x,0) = ϕ0(x) that the density at X � a2 is
nearly zero up to some time, then grows to a sharp maximum,
and then decreases at time scales of tl with the sequential
oscillations due to the diffraction-in-time phenomenon [20].
The profiles of the flux and density are very similar, with
J (X,t) ≈ √

2E0ρ(X,t).
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FIG. 8. Time evolution of density ρ(X,t) at given positions
X = 60,90,120, provided that �(x,0) = ϕ0(x), U0 = 16, a2 = 1.4.
A strong initial peak is followed by oscillations due to the diffraction-
in-time process.

In the attosecond experiment analysis [34] the tunneling
time was defined as the delay between the time when the
barrier begins to be lowered and the time when the electron
experiences acceleration by the external field, as can be
extracted from the long-time behavior. Similarly, we can
use the operational phenomenological approach to define a
tunneling time as

ttun,1 = tX − X − a2

ṽp

, (15)

where tX is the time when the detector measures the strongest
first peak of the flux, ṽp =

√
2Ẽ0 is the velocity with which

the particle moves out of the potential, and the energy

Ẽ0 = E0 −
∫ ∞

a2

U0ϕ
2
0(x) dx (16)

is slightly less than E0, as the potential changes suddenly from
U1(x) to U2(x). As tX is a measurable quantity, the tunneling
time can be calculated by Eq. (15). For instance, for �(x,t =
0) = ϕ0(x), U0 = 16, a2 = 1.4, when the detector is at
X = 120, then tX = 50.3, and the resulting ttun,1 = 5.62.
Another approach, similar to Eq. (15), is to calculate the
tunneling time as

ttun,2 = tX − X − a2

vX

, (17)

where vX is the velocity of the flux peak. For example,
vX = 2.517 as defined by the motion from X = 120 to
X = 122. According to Eq. (17), the corresponding tunneling
time is ttun,2 = 3.18. As it can be assumed that the velocity
of the electron is constant outside the barrier in a classical
manner, we can conclude that the tunneling time extracted
from the measurements by a remote detector is X independent.
Both Eqs. (15) and (17) extrapolate electron motion from the
distance to the exit of the tunneling process. However, these
two times are not equal either to the time of formation of
the steady tunneling in Fig. 4 or to the decay time tl .

Figure 9 depicts how the flux evolves with time and distance
at two time scales for �(x,0) = ϕ0(x). The curvature of the
maximum flux region in Fig. 9(a) shows that it takes some
time for the flux to develop a constant speed in free space. In
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FIG. 9. (Color online) Flux vs time and position after a short time
near the barrier (a) and after a long time far away from the barrier
(b). All the parameters are the same as in Fig. 8. The dashed straight
lines serve as a guide for the eye only. The short-dashed line in (a)
demonstrates the nonlinearity of the peak position as a function of
time. The long-dashed line in (b) shows that this dependence is very
close to linear at those times and distances.

addition, Fig. 9(a) demonstrates that a peak of the flux at a2

appears at t ≈ 1, smaller than ttun,2 in Eq. (17).
It is expected in some models that the wave function at long

times and distances can be obtained with the stationary-phase
approximation. Equation (2) in this limit can be recast as

�(x > a2,t)

≈ 1√
2πi

∫ ∞

0
dk G(k) exp

{
i

[
θ (k) + kx − k2t

2

]}
, (18)

and the phase θ (k) + kx − k2t/2 can be expanded near the
stationary point K , satisfying the equation [dθ (k)/dk]k=K +
x − Kt = 0. However, G(k) in our calculations is not a
sufficiently smooth function near the K points due to the
resonances shown in Fig. 2. Therefore, the stationary-phase
approximation does not provide a satisfactory description of
the peak propagation.

Another factor that affects the tunneling time is the closing
time t0, when the potential turns back from U2(x) to U1(x)
and the tunneling is interrupted. The time evolution of the
flux observed at the same remote position of the detector
with different closing times is demonstrated in Fig. 10, and
tl is the exponential decay time introduced previously. The
peak of the flux with shorter closing time t0 appears earlier
than that with longer t0 as a result of the increased energy
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FIG. 10. (Color online) Flux as a function of time detected at X =
120 with different closing times: t0 = ∞ (solid), t0 = tl/3 (dashed),
t0 = tl/6 (dot-dashed), and t0 = tl/9 (dotted), where tl is the lifetime
for the particle in the case of t0 = ∞. Other parameters are the same
as those of Fig. 8.

spreading [40]. After the closing time t0, the probability of
finding the particle in the well remains almost unchanged. This
shows that components with larger momenta tunnel through
the barrier first and, therefore, closing the barrier can decrease
the operationally defined times ttun,1 and ttun,2. Measurement
of the total number of particles escaped from the potential as
a function of closing time can help us to find the time scale
of the flux formation tpl. With the increase of t0 through this
region, the number of escaped particles, which is quadratic in
t0 for short times, changes at t0 > tpl to a linear dependence.

IV. CONCLUSIONS

Motivated by recent experiments on ultrafast atom ion-
ization by optical fields, we have studied numerically and
exactly, for a rectangular barrier, time-resolved tunneling for
short time scales and further propagation at long times of
an initially localized particle. The barrier we considered is
opaque, but not extremely so, to ensure a reasonable tunneling
probability. The probability-density evolution on a short time
scale, much less than the decay time, depends strongly on

the initial state. Depending on how this state is prepared, this
short-term motion can include both under-the-barrier tunneling
and over-the-barrier propagation, as seen in the evolution of
the density and flux at the barrier edges. The tunneling starts
instantly, however, some time of the order of π/(2E0), where
E0 is the ground-state energy in the initial potential and is
required to develop the outgoing flux eventually proportional
to the characteristic exponential decay rate 1/tl . As expected,
there is a time delay between the flux development at the left
and the right edges of the barrier. If the initial state is the
ground state of the potential at t < 0, the time scale of the
flux development is much longer than the Büttiker-Landauer
traversal time expected for the given barrier parameters.
However, if the initial state is more tightly localized, the
Büttiker-Landauer time manifests itself as a time delay of the
flux and density maxima between the left and right edges of
the barrier.

At long times we have considered the propagation of
the escaped wave packet at distances much larger than the
scale of the potential. From the operational definition of
the escape time, related to the position of the maximum of the
wave-packet density, we have estimated the time the particles
escaped from the potential. This time is also much longer than
the traversal time for the given barrier. To determine the effect
of the time dependence of the barrier, we implemented escape
time windows considerably shorter than the tunneling decay
time tl . The increasing importance of faster components for
shorter time windows leads to the extrapolated time estimated
for closing potentials smaller than those of the potentials
permanently open.
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