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Hückel versus Möbius aromaticity: The particle in a cylinder versus a Möbius strip
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The one-particle-constrained-to-a-Möbius-strip model is studied quantum mechanically. The results are used
to account for the chemical concept of Möbius aromaticity. In addition, the one-particle-in-a-cylinder model is
used to explain the Hückel aromaticity. Using the principles of quantum mechanics and applying the appropriate
boundary conditions, the 4N + 2 and 4N electrons aromaticity rules are confirmed for these two types of
aromaticity. A numerical technique for obtaining an exact solution of the Schrödinger equation of the Möbius
model is also suggested.
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I. INTRODUCTION

Aromaticity is a well-embedded concept in organic chem-
istry. Its definition is included in almost any organic chemistry
textbook (see, for instance, Ref. [1]). Any planar cyclic
molecule with 4N + 2 or 4N (N being positive integer)
π -conjugated electrons is called aromatic or antiaromatic,
respectively. The pattern aromatic molecule is benzene (C6H6)
with six π electrons (see Sec. II), whereas an antiaromatic
molecule is cyclobutadiene (C4H4) with four π electrons.
This type of aromaticity is called Hückel aromaticity [1].
The reasons that the aromatic (or antiaromatic) compounds
constitute a separate category may be epitomized to their
“peculiar” chemical activity, their remarkable stability (or
reactivity), and the induction of chemical shifts in nuclear
magnetic resonance (NMR) experiments [2,3].

The Möbius strip (Fig. 1) appeared in the literature one
and a half century ago. Independently, A. F. Möbius and
J. B. Listing studied the properties of the one-sided, thus
nonorientable, Möbius surface [4]. Practically, a Möbius strip
can be formed by cutting a cylinder band or a holey disk,
twisting the one edge by 180◦ and reattaching the two edges.
In the past decade, Möbius-like molecules, such as annulenes,
have gained considerable attention [5,6]. Indeed the topology
(Möbius or ringlike) may depend on the solvent [7,8] or on
the protonation degree [9]. In 1964 Heilbronner, using the
Hückel theory, predicted, although did not state explicitly,
that the aromaticity of a Möbius-like molecule obeys to the
rule of 4N electrons (Möbius aromaticity) [10], as contrasted
to the 4N + 2 electrons rule of the Hückel aromaticity
of a ringlike molecule. Whether the Möbius aromaticity is
observed is of much debate (see Ref. [6] and references
therein), while Heilbronner’s results have recently been
criticized [6].

Presently, the explanation of Hückel and Möbius aromatic-
ities is attempted, based on the simplest possible models,
the particle in a cylinder or the particle in a Möbius strip,
respectively.

*emiliord@chem.uoa.gr

II. HÜCKEL AROMATICITY

Consider the molecule of benzene; all its 12 nuclei lie on
a plane and six pπ atomic orbitals are perpendicular to this
plane, forming a cylinder (see Fig. 2). This picture is reduced
to the simplest one, one particle “moving” on this cylinder. To
describe this model, the angle φ and distance s are defined,
as depicted in Fig. 2(b). Angle φ runs between 0 and 2π

radians and s between –L/2 and L/2 (L is the width of the
cylinder). The Schrödinger equation in cylindrical coordinates
with constant radius reads:

Ĥ�(s,φ) = − h̄2

2µ

[
∂2

∂s2
+ 1

R2

∂2

∂φ2

]
�(s,φ) = E�(s,φ), (1)

where µ is the mass of the particle and R the radius of the
cylinder. The solution is straightforward:

�n,m(s,φ) =
√

1

πL
sin

[
nπ

L

(
s + L

2

)]
eimφ (2)

and

En,m = h2

8µL2
n2 + h̄2

2µR2
m2, n = 1,2, . . . , and

m = 0,±1,±2, . . . (3)

since �(−L/2,φ) = �(L/2,φ) = 0 is needed and �(s,φ)
should be single valued at any spatial point (x,y,z) or
�(s,φ + 2π ) = �(s,φ).

Note that the pπ system of benzene can be described only by
even values of n, since pπ orbitals are odd functions of s (they
have node at s = 0). Indeed, for a pπ system consisting of 2p

orbitals, n = 2 best matches, since no other node exists. The
energy-level diagram with respect to m is given in Fig. 3. The
energy levels are filled with noninteracting electrons, bearing
in mind that according to Pauli’s exclusion principle each level
can host up to two electrons (Fig. 3). The fact that in the case
of 4N + 2 electrons the system is closed shell guarantees its
stability, since reaction with other molecules would demand
intramolecular electron spin decoupling and intermolecular
recoupling, an energetically unfavorable process in most of the
times, involving highly excited states. In addition, the induced
diamagnetic electronic current evokes the observed chemical
shift in the proton NMR experiments (aromaticity) [1]. On the
other hand, the half-filled occasion of 4N electrons is called
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C2

FIG. 1. The Möbius one-sided strip. Observe the C2 axis of
symmetry.

antiaromatic, and the paramagnetic now current causes the
opposite chemical shift [3,11].

III. MÖBIUS AROMATICITY

Mathematically, the Möbius surface is called a ruled
surface, since there is always a straight line passing from
any of its points. This becomes clear if we construct the
Möbius surface by rotating a stick of length L around two
axes. We should revolve its center around an axis, say the z
axis, drawing a circle of radius R, and simultaneously around
an axis (υ axis) tangential to the previous circle. The stick
remains always perpendicular to the υ axis (see Figs. 4 and
5). Instead of a circle, any arbitrary closed curve, called a
median, can be used. The one-particle problem confined to a
rather complicated Möbius-like strip has been studied earlier,
inserting the Laplace-Beltrami operator in the Hamiltonian
[12].

Next, the case of one-particle confined on a Möbius strip is
studied. The “internal” coordinates of the problem, analogous
to s and φ of Sec. II, are to be defined. Angles θ and φ correlate
to the aforementioned rotations, while s is the distance of every
point from the circular median line. In order to create a Möbius
surface, we should demand φ = ±2θ , so after rotation of φ =
2π the stick can complete a half clockwise or counterclockwise
twist (θ = ±π ), while s takes values between –L/2 and
L/2 (see Fig. 5). The two produced surfaces (choosing the

s
R
ϕ

x
y

z

(a)

(b)

FIG. 2. (a) The π system of benzene. One electron in the benzene
can be modeled as a particle constrained to the surface of a cylinder.
(b) The surface of the cylinder can be described by s and φ (R is
constant).

m 0=
m 1= ±

m N= ±
m (N 1)= ± +

m (N 1)= ±

4N4N+2

E

FIG. 3. Diagram of the first 2N + 3 energy levels [|m| = 0−
(N + 1)] of the cylinder model occupied with 4N and 4N + 2 electrons.
Energies of the levels are not in scale.

plus or minus sign) are mirror images of each other (see
Fig. 6). Applying simple geometry and with the help of Fig. 5,
the Cartesian coordinates, as a function of φ, θ = φ/2, and
s are:

x = (R + s cos θ )cos φ

y = (R + s cos θ )sin φ (4)

z = s sin θ,

consistent with those existing in the literature [13].
The Hamiltonian operator of both enantiomers in terms of

φ and s is (see Appendix):

Ĥ = − h̄2

2µ
∇2 = − h̄2

2µr

[
∂

∂s
r

∂

∂s
+ ∂

∂φ

1

r

∂

∂φ

]
, (5)

where r = R + s cos(φ/2). Observe that the Hamiltonian
commutes with the parity operator P̂φ (φ → −φ), but it does
not commute with either P̂s (s → −s) or L̂z = h̄

i
∂
∂φ

. The C2

axis is along the x axis (see Figs. 1 and 5) and thus inverts the
sign of y and z coordinates. Indeed, due to Eq. (4) its action is
equivalent to P̂φ . Toward the limit R � L (r ≈ R) one gets:

Ĥ = − h̄2

2µ

∂2

∂s2
− h̄2

2µR2

∂2

∂φ2
. (6)

Now, Ĥ becomes separable and commutes with P̂φ , P̂s ,
and L̂z. Applying �n,m(−L

2 ,φ) = �n,m(L
2 ,φ) = 0 for any φ,

the normalized solution is

�n,m(s,φ) =
√

1

πL
sin

[(
nπ

L

(
s + L

2

))]
eimφ (7)

y

z x

FIG. 4. The first half of the Möbius strip as formed according to
the text.
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FIG. 5. The stick of length L is rotating around the variable υ

axis, while its center draws a circle of radius R around the z axis. Any
point A on the formed surface can be pinpointed using the parameters
φ, θ , and s.

and

En,m = h2

8µL2
n2 + h̄2

2µR2
m2, n = 1,2, . . . . (8)

The allowed m values will be obtained after imposing
the appropriate periodic constraint in �(s,φ). According to
Eq. (4) and φ = 2θ , observe that the φ → φ + 2π , s → −s

translation gives the same (x,y,z) coordinates. Demanding the
eigenfunction to be single valued at each (x,y,z) point, it is
equivalent to write

�(−s,φ + 2π ) = �(s,φ). (9)

Combining Eqs. (7) and (9) we have

for n = odd → m = 0,±1,±2, . . .
(10)

for n = even → m = ± 1
2 ,± 3

2 , . . .

Of course, after a “full” rotation (�φ = 4π ) Eq. (10) gives

�(s,φ + 4π ) = �(−s,φ + 2π ) = �(s,φ). (11)

It is worthwhile to emphasize that this model shows the
existence of half-integer orbital angular momentum (Lz =
± 1

2h̄,± 3
2h̄ . . . if n is even).

A last comment is in order: The Hamiltonian operators of
the particle in a cylinder and that in a Möbius strip with R � L

are identical [see Eqs. (1) and (6)]. However, the nature of
their solutions differs, clearly due to the different boundary
conditions.

We turn, now, to the case of a molecule with Möbius
conformation. All its atoms, forming the σ skeleton of the
molecule, lie on the Möbius strip. Its pπ system, orthogonal
to the σ -bonding backbone, forms as well a new Möbius strip
perpendicular to that of the molecule (see Fig. 7). Since the
pπ system, lying on the new Möbius strip, is related to n = 2
(see Sec. II), m can be only a half-integer, and the energy-level
diagram of the π system is shown in Fig. 8. Consequently, the

FIG. 6. Two chiral Möbius surfaces.

FIG. 7. The σ (atoms and bonds represented by balls and sticks)
and π (lined p orbitals) systems of a hypothetical C12H24 molecule
form two peprendicular Möbius strips.

aromaticity rule is inverted: the 4N electron system is aromatic,
whereas the 4N + 2 electron system is antiaromatic.

IV. THE MÖBIUS MODEL BEYOND
THE R � L APPROXIMATION

So far, R was considered sufficiently larger than L so
r ≈ R. Lifting this constraint, L̂z ceases to provide a good
quantum number, and the eimφ functions can no longer be used.
However, the P̂φ operator, related to the C2 axis, commutes
with the Hamiltonian, and thus cos(mφ) and sin(mφ) serve
as an adequate “basis set” (m takes now only positive
values). Moreover, the two sets (of sine and cosine) can
be employed separately; the cosine set belongs to the A
irreducible representation and the sine set to the B one (C2

point group; see Fig. 1). Note also that the energy degeneracy
claimed in Sec. III is no longer expected.

At first approximation, however, the lowest states with
odd n and m = 0,1 have no (m = 0) and two nodes (m = 1)
referring to φ: cosφ nullifies at φ = π/2,3π/2 and sinφ at
φ = 0,π . Similarly, for even n we have one and three nodes for
m = 1/2 and 3/2, respectively. To corroborate these claims,
Hartree-Fock calculations were performed on a hypothetical
C12H24 molecule with Möbius conformation (see Fig. 7). The
basis set used is the minimal 1s/H 2s1p/C while geometric

m 1 2= ±

( )m 2N 1 2= ±

4N 4N+2

E

m 3 2= ±

( )m 2N+1 2= ±

( )m 2N 3 2= ±

FIG. 8. Diagram of the first 2N energy levels [|m| = 1
2 − 2N+1

2 ]
of the particle in a Möbius surface with n = even (π conjugated
system), occupied with 4N and 4N + 2 electrons. The energies of the
levels are not in scale.
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parameters are R = 3.0 Å and L = 2.0 Å (rC−C = 1.55 Å,
rC−H = 1.0 Å). Calculations were performed using the MOLPRO

suites of codes [14]. The resulting molecular orbitals are
consistent with the present thoughts (see Fig. 9), confirming
the proposed boundary conditions.

Next, a numerical solution of the general problem of a
particle on a Möbius surface is presented, which is a variation
of that used to simulate hindered internal rotations [15]. A grid
of (sp, φq) points is created so sp = pδ and φq = qε, with
p = −ns, . . . , −1,0,1, . . . ,ns and q = 0,1, . . . ,nφ , where δ,
ε are the intervals between two successive grid points with φ, s
constant, respectively. Since −L/2 � s � L/2 and 0 � φ �
2π , then δ = L/2ns and ε = 2π/nφ .

(a)

(b) (c)

(d) (e)

(f) (g)

FIG. 9. Selected molecular orbitals of the Möbius-like C12H24

molecule. The positive part is depicted in gray and the negative part
in white. (a) The first valence σ orbital of A symmetry (n = 1, m =
0, cosine case). (b) The second valence σ orbital of A symmetry
(n = 1, m = 1, cosine case). (c) The first valence σ orbital of B
symmetry (n = 1, m = 1, sine case). (d) The first π orbital of A
symmetry (n = 2, m = 1/2, cosine case). (e) The first π orbital of
B symmetry (n = 2, m = 1/2, sine case). (f) The second π orbital
of A symmetry (n = 2, m = 3/2, cosine case). (g) The second π

orbital of B symmetry (n = 2, m = 3/2, sine case).

Setting �(sp,φq) as �p,q , the first and second partial
derivatives are approximated as follows:(

∂�

∂s

)
sp,φq

= �p+1,q − �p−1,q

2δ
(12)

(
∂�

∂φ

)
sp,φq

= �p,q+1 − �p,q−1

2ε
(13)

(
∂2�

∂s2

)
sp,φq

= �p+1,q + �p−1,q − 2�p,q

δ2
(14)

(
∂2�

∂φ2

)
sp,φq

= �p,q+1 + �p,q−1 − 2�p,q

ε2
(15)

Introducing them to the Schrödinger equation (5) [see also
Eq. (A10)], we get

ap,q�p+1,q + bp,q�p−1,q + cp,q�p,q+1 + dp,q�p,q−1

+ ep,q�p,q = −2µE

h̄2 �p,q (16)

where

ap,q = 1

δ2
+ cos (φq/2)

2rp,qδ
(17)

bp,q = 1

δ2
− cos (φq/2)

2rp,qδ
(18)

cp,q = 1

r2
p,qε

2
+ sp sin (φq/2)

4r3
p,qε

(19)

dp,q = 1

r2
p,qε

2
− sp sin (φq/2)

4r3
p,qε

(20)

ep,q = −2

[
1

δ2
+ 1

r2
p,qε

2

]
(21)

and

rp,q = R + sp cos (φq/2). (22)

We apply this equation for all points with p = −ns to ns and
q = 1 to nφ ; thus involving �p,q values with p = −(ns + 1) to
(ns + 1) and q = 0 to (nφ + 1). After taking into consideration
that �±ns ,q = �±(ns+1),q = 0 for any q, and �p,0 = �−p,nφ

or �p,nφ+1 = �−p,1 for any p [boundary conditions of

Eq. (9)], we finally involve only {�p,q}q=1,nφ

p=−ns+1,ns−1 values.
Consequently, the set of M = (2ns − 1)nφ equations can be
condensed to the matrix form

A� = 2µE

h̄2 �, (23)

where A is a sparse matrix containing the ap,q , bp,q , cp,q , dp,q ,
and ep,q values and � is a column vector containing its M �p,q

components

� =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

�−ns+1,1

. . .

�−ns+1,nφ

�−ns+2,1

. . .

�ns−1,nφ

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (24)
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TABLE I. Energy levels E (a.u.) of an electron confined to a
Möbius strip with R = 5.67 a.u. and L = 3.78 a.u. The approximate
energies En,m (a.u.) as calculated from Eq. (8) are also given.

State(s) E En,m n m

1 0.343 249 0.345 371 1 0
2,3 0.359 271 0.359 366 0.360 924 1 ±1
4,5 0.406 886 0.406 886 0.407 582 1 ±2
6,7 0.485 931 0.485 931 0.485 345 1 ±3
8,9 0.596 002 0.596 002 0.594 213 1 ±4
10,11 0.736 518 0.736 518 0.734 187 1 ±5
12,13 0.906 761 0.906 761 0.905 266 1 ±6
14,15 1.105 908 1.105 908 1.107 450 1 ±7
16,17 1.333 071 1.333 071 1.340 740 1 ±8
18,19 1.382 400 1.384 558 1.385 373 2 ±1/2
20,21 1.416 172 1.416 172 1.416 478 2 ±3/2
22,23 1.481 483 1.481 483 1.478 689 2 ±5/2
24,25 1.579 569 1.579 569 1.572 005 1 ±9
26,27 1.587 348 1.587 348 1.605 134 2 ±7/2
28,29 1.710 533 1.710 533 1.696 426 2 ±9/2
30,31 1.867 863 1.867 863 1.851 952 2 ±11/2
32,33 1.874 492 1.874 492 1.900 634 1 ±10
34,35 2.071 547 2.071 547 2.038 584 2 ±13/2

Diagonalizing the A matrix, we obtain the desired eigenval-
ues and eigenvectors. Actually more accurate approximations
for the partial derivatives can be used, including �p−k,q ,�p,q−k

with k > 1, and thus ns,nφ can be reduced considerably.
The previous methodology was applied to a Möbius surface

resembling the C12H24 molecule [R = 3.0 Å or 5.67 a.u.,
L = 2.0 Å or 3.78 a.u., µ = 1.0 a.u., ns = 1500, nφ = 100,
maximum k for s derivatives was set to 1 and for φ derivatives
to 3]. Diagonalization was accomplished with MATLAB [16]
and our numerical results are shown in Table I. Observe that
the lowest energy levels, anticipated to be degenerate, differ
in energy by some µEh (see states 2, 3 and 18, 19 in Table I).
The degeneracy, however, is recovered while m is increasing.

V. SYNOPSIS

Both the Hückel and the Möbius aromaticity have been
demonstrated using the simplest possible models. Molecules
of a ringlike conformation were simulated to a noninteracting
system of electrons trapped in a cylinder, while Möbius-
like molecules were simulated to an analogous system in
a Möbius surface. The present study confirms the rules of
4N + 2 and 4N electrons attributed to the Hückel and
Möbius aromaticity, respectively. In addition, half-integer
orbital angular momentum is predicted for a Möbius particle.
Finally, a numerical method is suggested so the particle-in-a-
Möbius-strip model can be solved. Compared to the ring model
the double degeneracy in the Möbius model is practically
retained. However, the contribution of the electron-electron
repulsion and the nucleus-electron attraction of a real Möbius
molecule have been ignored. Such many-body interactions are
not expected to change the conclusions drawn. Although they
will change the exact energy of the orbitals, there is no obvious
reason for them to favor either of the degenerate orbitals,
keeping the degeneracy present. This is exactly the case at
least in the “real” benzene.
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APPENDIX: THE LAPLACIAN OPERATOR
IN THE MÖBIUS SPACE

In this appendix the Laplacian operator is calculated as
a function of s and φ. The Cartesian coordinates x, y, and
z are related to s,φ through the set of Eq. (4). The inverse
transformation (s,φ as a function of x, y, and z) is shown
below

tan φ = y/x

s = {z2 + [(x2 + y2)1/2 − R]2}1/2. (A1)

The derivatives connecting the two sets of variables are
[also using Eq. (4)]

∂φ

∂x
= ∂φ

∂ tan φ

∂ tan φ

∂x
= cos2 φ

(
− y

x2

)
= − sin φ

r
. (A2)

Likewise

∂φ

∂y
= cos φ

r
(A3)

∂φ

∂z
= 0 (A4)

∂s

∂x
= cos(φ/2) cos φ (A5)

∂s

∂y
= cos(φ/2) sin φ (A6)

∂s

∂z
= ± sin(φ/2). (A7)

The ± symbol covers both enantiomers.
Setting �u = (u1,u2,u3) ≡ (x,y,z) and �v = (v1,v2) ≡ (s,φ)

the Laplacian becomes (k runs from 1 to 3 and i,j from 1 to 2)

∇2 =
∑

k

∂2

∂u2
k

=
∑

k

∂

∂uk

∂

∂uk

=
∑

k

(∑
i

∂vi

∂uk

∂

∂vi

)⎛
⎝∑

j

∂vj

∂uk

∂

∂vj

⎞
⎠

=
∑

k

∑
i,j

∂vi

∂uk

∂

∂vi

(
∂vj

∂uk

∂

∂vj

)

=
∑

k

∑
i,j

∂vi

∂uk

∂

∂vi

(
∂vj

∂uk

)
∂

∂vj

+
∑

k

[ ∑
i

(
∂vi

∂uk

)2

× ∂2

∂v2
i

+ 2
∑
i,j>i

∂vi

∂uk

∂vj

∂uk

∂2

∂vi∂vj

]

=
∑

j

[∑
i,k

∂vi

∂uk

∂

∂vi

(
∂vj

∂uk

)]
∂

∂vj

+
∑

i

[∑
k

(
∂vi

∂uk

)2
]

× ∂2

∂v2
i

+ 2
∑
i,j>i

[∑
k

∂vi

∂uk

∂vj

∂uk

]
∂2

∂vi∂vj

. (A8)
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For instance, the term accompanying ∂2/∂s∂φ is

2
∑
k

∂φ

∂uk

∂s

∂uk

= 2

[
∂φ

∂x

∂s

∂x
+ ∂φ

∂y

∂s

∂y
+ ∂φ

∂z

∂s

∂z

]
, (A9)

which finally leads to 0, on using Eqs. (A2)–(A7).
In the long term, the Laplacian for both isomers is

written as

∇2 = ∂2

∂s2
+ cos(φ/2)

r

∂

∂s
+ 1

r2

∂2

∂φ2
+ s sin(φ/2)

2r3

∂

∂φ
.

(A10)

Recall that r = R + s cos(φ/2) and thus

∂r

∂s
= cos(φ/2) (A11)

∂ (1/r)

∂φ
= − 1

r2

∂r

∂φ
= s sin(φ/2)

2r2
, (A12)

due to which the Laplacian adopts the compact form

∇2 = 1

r

∂

∂s
r

∂

∂s
+ 1

r

∂

∂φ

1

r

∂

∂φ
. (A13)
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