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Maximal overlap with a fully separable state and translational invariance for
multipartite entangled states
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The maximal overlap with the fully separable state for the multipartite entangled pure state with translational
invariance is studied explicitly by some exact and numerical evaluations, focusing on the one-dimensional qubit
system and some representative types of translational invariance. The results show that the translational invariance
of the multipartite state could have an intrinsic effect on the determination of the maximal overlap and the nearest
fully separable state for multipartite entangled states. Furthermore, a hierarchy of the basic entangled states with
translational invariance is found, from which one could readily find the maximal overlap and a related fully
separable state for the multipartite state composed of different translational invariance structures.
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I. INTRODUCTION

Quantum entanglement is considered as the most distinct
feature in the quantum world to the classical world. Generally
it is the manifestation of the nonlocal connectedness in
the distinguishable parties, where nonlocal means that if
only this connectedness is constructed, it does not disappear
automatically until the appearance of decoherence or local
measurements, even if the parties are spacelike separated from
each other. An important consequence of this connectedness
is that the behaviors of any one party are inevitably affected by
the other parties. Thus it is convenient for the quantification
of the connectedness to find the reduced density matrix of the
subsystem. Some successful criteria or measures of quantum
entanglement have been proposed along this line (see Ref. [1]
for a comprehensive review).

It should be pointed out that the intuition of quantum
entanglement is mainly from the understanding of Bell states,
which are maximally entangled states of two-qubit systems.
Particularly because Bell states are bipartite, one can obtain
complete information on the entanglement from the reduced
density matrix of the subsystem. However, the situation
becomes complex when extended to multipartite systems.
Multipartite entanglement could exist when the multipartite
state cannot be written as the fully separable form

ρ
sep
f =

∑
i

piρ
(i)
1 ⊗ ρ

(i)
2 ⊗ · · · ⊗ ρ

(i)
N , (1)

where N is the number of the distinguishable party, and
pi denotes the joint probability distribution of the single-
party state ρ(i)

n (n = 1,2, . . . ,N ). In contrast to the bipartite
entanglement, defined as the violation of the biseparable form
for the bipartite state ρ

sep
b = ∑

i piρ
(i)
1 ⊗ ρ

(i)
2 , there exists a

multiconnectedness in multipartite states, which is hard to
characterize completely by the reduced density matrix of the
subsystem only.

This distinction between bipartite and multipartite entangle-
ment has led to several intrinsic observations. It is known that
there exist two inequivalent three-qubit entangled states, the
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W state and Greenberger-Horn-Zeilinger (GHZ) state, which
are not interconvertible under local operations and classical
communications (LOCCs) [2]. Furthermore, a limit to the
distribution of entanglement in multipartite states is found
first for the three-qubit case [3], and then for the arbitrary
multipartite case [4]. These phenomena imply that one needs
some special methods to describe the connectedness embedded
in multipartite states.

The global approach is a natural choice to obtain com-
prehensive information on the connectedness in multipartite
states. In contrast to the dependence of the measurements
of bipartite entanglement on the subsystem, the global mea-
surement of multipartite entanglement instead focuses mainly
on the overall state. For instance, the relative entropy of
entanglement is one type of measurement, defined as [5]

ER = min
{ρsep}

Tr[ρ(log ρ − log ρsep)].

The key idea in this measurement is that the closer to the
separable states is ρsep, the less entangled is ρ. Global ro-
bustness is another global measure of entanglement, of which
the main idea is to quantify how robust is the entangled state
against the environmental noise [6]. In addition, there exists
a global criterion of entanglement: entanglement witness. The
idea is to find a special Hermitian operator, whose expectation
value with the multipartite state is positive or zero when this
state is fully separable, while it is negative when this state is
entangled [7].

Similar to the relative entropy of entanglement, geometric
entanglement (GE) is another global measure of entanglement,
related directly to the distance between the entangled state
and the fully separable state in Hilbert space. GE is defined
generally for the pure state as [8]

Eg = min
{|φ〉}

||ψ〉 − |φ〉|2, (2)

where ‖ · · · ‖ denotes the norm, or equivalently

Eg = 1 − �2
max = 1 − max

{|φ〉}
|〈ψ |φ〉|2. (3)

where |φ〉 = ⊗N
i=1|φi〉 is a fully separable pure state, |φi〉

denotes the single-party state, and �max denotes the maximal
overlap of |ψ〉 and |φ〉. Eg is determined geometrically by the
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overlap angle between the state vectors |ψ〉 and |φ〉 in Hilbert
space. Thus the optimal in the definitions above can be reduced
to find the nearest fully separable state |φ〉, which has a mini-
mal overlap angle with an entangled state |ψ〉. Furthermore, the
determination of the nearest |φ〉 is equivalent physically to the
determination of the Hartree-Fock approximation ground state
of the auxiliary Hamiltonian H = −|ψ〉〈ψ | [8]. Additionally,
our recent study shows that �max would be a direct general-
ization of the concept of Anderson orthogonality catastrophe
(AOC) in solid theory [9], and thus GE can be used also to
describe the correlations in many-body systems [10–12]. This
point can be manifested by the expression

� = |〈�|�p〉|2, (4)

where |�〉 corresponds to the true ground state of a many-body
system, and |�p〉 is actually a pure product state described
entirely in terms of free plane waves, which can be considered
as the ground state without potential [13]. AOC denotes the
vanishing of � under a thermodynamic limit, even for a very
weak potential. This feature discloses that the correlation in
many-body systems is the intrinsic character that is different
from the free system without potential. Then, by finding the
tendency of � under thermodynamic limit, one can obtain
information on the correlation in systems. With these points,
GE actually defines a measurement of the correlation in
multipartite states, independent of the details of the system
because of the optimal choice of the fully separable state.
Furthermore, because of the optimal the measured correlation
is evidently quantum, as proved in the next section.

These distinct characters display the popularity of GE as
an description of the connectedness in multipartite states.
Also, GE has become one of the most accepted measures of
multipartite entanglement. However, it is difficult in general
to find the maximal overlap �max because of the optimal
of |φ〉, which is the crucial point for the evaluation of GE,
and there are few exact results [8,11,12,14–22]. Recently
important progress has been made for the entangled state with
permutational invariance that the nearest fully separable state
for it is necessarily permutationally invariant [16–18]; that is
to say, it is always an optimal choice to set |φ〉 = |φ′〉⊗N in
order to find �max of this type of entangled state, in which
|φ′〉 denotes the single-party state. This important conclusion
implies strongly that it would reduce the optimal determination
of GE by utilizing the symmetry of |ψ〉. Furthermore, our
recent study also shows that the maximal overlap could be
obtained if the fully separable state, either pure or mixed,
shows the same global symmetry to the entangled state [9],
which means, mathematically, that the two states should
belong to the same symmetric subspace.

However, except for permutationally invariant entangled
states, there are few examples for the evaluation of GE for
other multipartite states. This article serves to fill this gap
partially. For this purpose, GE for the multipartite states with
translational invariance is studied explicitly through some
exact and numerical examples, which are focused on the qubit
system with the geometry of circles and some representative
types of translational invariant entangled states. Another
reason for this choice comes from revisiting the current points
of the determination of �max for translationally invariant states,

appearing in some very recent works; for example, one case is
that the nearest fully separable state could not be determined
by the translational invariance of the entangled state, and
thus this symmetry would be helpless for the reduction of
the optimal in GE [17]. One case is to set |φ〉 = |φ′〉⊗N in
order to obtain �max of the ground state in translationally
invariant many-body systems [8,21]. Another case is to adopt
the maximal coefficient under the product state basis as the
maximal overlap [15], etc.

Through several exact and numerical calculations, we
try to illustrate convincingly in this article that the optimal
determination of the nearest fully separable state and maximal
overlap with a fully separable state for translationally invariant
entangled states can be reduced greatly by utilizing the
translational invariance of the entangled state. Additionally,
the above points can occur only for some special cases.
Furthermore, our study shows that there exists a hierarchy for
the so-called basic translationally invariant entangled states,
defined in Sec. V, from which one can decide directly the
nearest fully separable state and the �max.

II. TECHNICAL PREPARATIONS

Some concepts are clarified in this section. At the end of this
section, we present a proof for the point that for an entangled
pure state there always exists a nearest fully separable pure
state.

Permutational invariance (PI) denotes formally the situa-
tion that the multipartite state is unchanged by exchanging the
states of two arbitrary single parties. For example, the N -qubit
GHZ state,

|GHZ〉N = 1√
2

(|11 · · · 1〉 + |00 · · · 0〉), (5)

is obviously permutationally invariant because all parties
always have the same state simultaneously. In contrast, the
generalized W state,

|W 〉N = 1√
N

(|10 · · · 0〉 + |010 · · · 0〉 + · · · + |0 · · · 01〉), (6)

is slightly special; although it is also permutationally invariant,
the key feature is that |W 〉N includes all possible combinations
of the single |1〉 and the (N − 1)’s |0〉. This difference would
induce a distinct hierarchy from |GHZ〉N , as shown in Sec. V.
Similar to the |W 〉N state, the Dicke state has the same feature,
which is defined as

|S(N ; n)〉 =
√

n!(N − n)!

N !

∑
permutation

| 0 · · · 0︸ ︷︷ ︸
n

1 · · · 1︸ ︷︷ ︸
N−n

〉. (7)

Translational invariance (TI) denotes the situation where
the multipartite state is unchanged under the cyclic translation
of the single-party states. It should pointed out that this
definition is different from the TI defined in physical space,
e.g., in lattice systems, for which TI depends heavily on the
geometry of the physical space. Actually, because we are
only interested in the connectedness of states belonging to
distinguishable parties, it is unimportant in this case as to
how one may realize this multipartite state in realistic physical
systems. The crucial point for the TI of the multipartite state
is that any party could be distinguished from the others by a
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FIG. 1. (Color online) A schema for the TI of multipartite
state, in which the numbers refer to different parties and the greek
letters denote the single-party states. The arrows represent the cyclic
translation of all single-party states.

definite label, and the single-party state could belong to any
party by a cyclic translation, as show in Fig. 1. Admittedly, it
is, in general, related to the geometry of the physical space as
to how one should label all parties. However, a sequence of all
parties can always be constructed only if the labels are definite.
Our definition of TI of multipartite states is simply based on
this sequence, and thus is indirect to the geometry of systems.
In fact, the multipartite states studied in this article can be
considered with the geometry of the circle, as shown in Fig. 1.

An example is the state

|GHZ′〉N = 1√
2

(|1010 · · · 10〉 + |0101 · · · 01〉), (8)

which can be obtained by imposing the local unitary operation
σx

2 ⊗ σx
4 ⊗ · · · ⊗ σx

2n ⊗ · · · on |GHZ〉N . The key feature of
|GHZ′〉N is the invariance by translating all single-party states
cyclicly. Interestingly, there is a cyclic structure for |GHZ′〉N
where “1” and “0” appear periodically at the next-nearest-
neighbor site [23]. Furthermore, this structure also determines
the times of cyclic translation in order to span all terms in the
multipartite state. For |ψ2〉4 = 1

2 (|1100〉 + |0110〉 + |0011〉 +
|1001〉) as a general example, there is no periodic structure
similar to |GHZ′〉N , and it has to include all possibilities after
cyclic translation for an arbitrary term in |ψ2〉4 in order to
maintain TI. There is also a hierarchy for the multipartite
states with TI because of the different cyclic structures. Further
discussions will be presented in Secs. III and V. A trivial
observation is that PI also means TI, and so the discussion
below will not distinguish between them if it is not necessary.

An important question is what should be the form of the
nearest fully separable state for an entangled pure state, which
decides the procedure adopted to find �max. The general
method is to suppose that the nearest fully separable state
is still pure [8], however, that has never been proved exactly
to the best of our knowledge. We present a proof for this point
here.

Proof: Consider the fully separable state defined in Eq. (1)
and an entangled pure state |ψ〉. Then the overlap is written as

Tr
[
ρ

sep
f |ψ〉〈ψ |] =

∑
i

piTr
[
ρ

(i)
1 ⊗ ρ

(i)
2 ⊗ · · · ρ(i)

N |ψ〉〈ψ |]
=

∑
i

pi�i. (9)

Let �1 � �2 � . . . , and one has inequality Tr[ρsep
f |ψ〉〈ψ |] �

�1. Thus

max
{ρsep

f }

{
Tr

[
ρ

sep
f |ψ〉〈ψ |]}⇔max

{ρs }
Tr[ρ1 ⊗ ρ2 ⊗ · · · ⊗ ρN |ψ〉〈ψ |],

(10)

where ρs = ρ1 ⊗ ρ2 ⊗ · · · ⊗ ρN , and ⇔ means “equivalent.”
The crucial observation is that ρs can be rewritten under

the product state basis as

ρs =
∑

i

�i |φi〉〈φi |, (11)

where the set of fully separable pure states |φi〉 = ⊗N
n=1|φ(i)

n 〉
constitutes a product state basis. Then

Tr[ρs |ψ〉〈ψ |] =
∑

i

�i|〈ψ |φi〉|2 =
∑

i

�iδi . (12)

Let δ1 � δ2 � . . . , and then the overlap satisfies the inequality

Tr[ρs |ψ〉〈ψ |] � δ1. (13)

This important result means

max
{ρs }

Tr[ρs |ψ〉〈ψ |] ⇔ max
{|φ〉}

|〈ψ |φ〉|2. (14)

One reaches the final conclusion that the determination of the
maximal overlap with the nearest fully separable state for an
entangled pure state is equivalent to that with a fully separable
pure state, i.e.,

max
{ρsep

f }

{
Tr

[
ρ

sep
f |ψ〉〈ψ |]} ⇔ max

{|φ〉}
|〈ψ |φ〉|2. (15)

This relation shows that the nearest fully separable state for
an entangled pure state is only necessarily pure because some
inequalities appear in this proof. Respecting that ρ

sep
f contains

only the classical correlation [24], GE actually measures the
minimal distance to the classical state in Hilbert space by an
optimal choice of ρ

sep
f , and thus quantifies the nonclassical

correlation in the entangled state |ψ〉.
An interesting case is that the maximal δi is not unique,

and then the nearest fully separable state may be mixed.
A typical example is the determination of the nearest fully
separable state for |GHZ′〉N , which is known as the pure
state |1010 · · · 10〉 or |0101 · · · 01〉(see Sec. III F). However,
one can check easily that �max has the same value for
1
2 (|1010 · · · 10〉〈1010 · · · 10| + |0101 · · · 01〉〈0101 · · · 01|).
Thus we claim that it is enough for the determination of the
maximal overlap �max for an entangled pure state to focus
only on the fully separable pure state. Thus, in the following
sections, we adopt the notation

|φ(a1,a2, . . . ,aN ; θ1,θ2, . . . ,θN )〉
= ⊗N

i=1(
√

ai |1〉i + eiθi

√
1 − ai |0〉i), (16)
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where ai ∈ [0,1] and θi ∈ [0,2π ) denote the N -qubit fully
separable pure state (FSPs).

III. FINDING THE MAXIMAL OVERLAP I:
ROLE OF TRANSLATIONAL INVARIANCE

With these preparations, we are ready to evaluate �max

for translationally invariant entangled states. As shown by the
exact evaluations below, there always exists the nearest fully
separable state with the same TI to entangled state, which can
be constructed by the equiprobably incoherent superposition
of the FSPs with the same �max. This result means that one
can reduce the optimal of �max by utilizing the TI of the
entangled state. For this purpose, the discussion in this section
is implemented mainly for the so-called basic TI entangled
states with the geometry of the circle, where the meaning
of basic is that |ψ〉 is composed of only one type of cyclic
structure (the hybrid case will be explored in Sec. V). Although
there is no exact proof, some exact or numerical examples are
presented instead in order to demonstrate the validity of our
points.

A. Three-qubit case

It is known that there are two inequivalent multipartite
entangled states in this case: GHZ and W states. Although
their GEs have been studied extensively, the calculation of their
�max here is to show the general methods for the evaluation of
�max, adopted in this section.

1. |GHZ〉 = 1√
2
(|111〉 + |000〉)

The overlap with |φ〉 is written as

|〈GHZ|φ〉|2

= 1
2 |√a1a2a3 + ei(θ1+θ2+θ3)

√
(1 − a1)(1 − a2)(1 − a3)|2.

(17)

With the inequality

xn
1 + xn

2 + · · · + xn
N � N (x1x2 · · · xN )

n
N , (18)

where the equality happens if and only if (iff) x1 = x2 = · · · =
xN , we have

|〈GHZ|φ〉|2 � 1
2

∣
∣a

3
2 + ei(θ1+θ2+θ3)(1 − a)

3
2
∣
∣

2

� 1
2

[
a

3
2 + (1 − a)

3
2
]2

, (19)

where the first equality happens iff a1 = a2 = a3 = a, and
the second only if θ1 + θ2 + θ3 = 2mπ (m is an integer).
Consequently, the optimal for six independent variables
becomes for a single one, a, i.e.,

max
|φ〉

|〈GHZ|φ〉|2 ⇔ 1
2 max

a

[
a

3
2 + (1 − a)

3
2
]2

, (20)

which can be shown easily that its maximal value is 1
2 when

a = 1 or a = 0.
Then the nearest fully separable state can be chosen

as |111〉 or |000〉, or their incoherent superposition with
equal amplitude 1

2 (|111〉〈111| + |000〉〈000|). This observation
shows that there always exists the fully separable state with PI
by choosing θ1 = θ2 = θ3, whether it is pure or mixed. With

respect to the limit θ1 + θ2 + θ3 = 2mπ , this result is only
necessary.

2. |W〉 = 1√
3
(|100〉 + |010〉 + |001〉)

By the method discussed in the Appendix, one can easily
obtain �max = 4/9 when a1 = a2 = a3 = 1/3 and θ1 = θ2 =
θ3. However, in this place we resolve this question from the
point of view of the TI.

It should be emphasized that TI for a multipartite state
actually defines a relative connection between the states that
belong to different parties. For example, the GHZ state implies
that all parties would have the same state simultaneously. This
feature leads to the supposition that the nearest fully separable
state would be also permutationally invariant. In contrast, the
W state implies that the nearest-neighbor parties always have
the same state [25], or equivalently that there is always a
single party showing a state that is different from the other
two parties. We should point out that this feature of the W

state is more fundamental than PI (see Sec. V), and it is
a unique characteristic as compared to other TI multipartite
states. It is thus a natural speculation that the nearest fully
separable state should display the same TI. Thus we attain
the important supposition for the nearest fully separable state
for |W 〉:

ρW
f = 1

3 (|φ(a1,a2 = a3,θ1,θ2 = θ3)〉〈φ(a1,a2 = a3,θ1,θ2 = θ3)|
+ |φ(a2,a1 = a3,θ2,θ1 = θ3)〉〈φ(a2,a1 = a3,θ2,θ1 = θ3)|
+ |φ(a3,a1 = a2,θ3,θ1 = θ2)〉〈φ(a3,a1 = a2,θ3,θ1 = θ2)|),

(21)

where |φ〉 and the independent variables an,θn (n = 1,2,3),
are defined in Eq. (16), and three possible situations are set
to be incoherent so that ρW

f is separable. The crucial feature
is in ρW

f : that nearest-neighbor parties sharing the same state
exist, which is the same as that of |W 〉. Furthermore, because
all terms after cyclic translation are included, ρW

f is obviously
TI. Next we will display the correctness of this supposition by
obtaining the same �max by calculating the overlap of the W

state and ρW
f .

Similar to the determination of Eq. (15), the key point is to
find the maximal overlaps of the W state and the terms in ρW

f .
Fortunately they are the same because of the same TI of the
W state and ρW

f , and then it is enough to evaluate the overlap
with one arbitrary term in ρW

f , e.g.,

max Tr
[|W 〉〈W |ρW

f

]
⇔ 1

3 max |〈W |φ(a1,a2 = a3,θ1,θ2 = θ3)〉|2

⇒ 1
3 max

a1 
=a2,θ1 
=θ2

|e2iθ2
√

a1(1 − a2)2

+ 2ei(θ1+θ2)
√

(1 − a1)a2(1 − a2)|2
� 1

3 max
a1 
=a2

[
√

a1(1 − a2)2 + 2
√

(1 − a1)a2(1 − a2)]2, (22)

where the equality occurs when θ1 = θ2.
The next step is to decide the maximal value of√

a1(1 − a2)2 + 2
√

(1 − a1)a2(1 − a2), which can be ob-
tained easily by calculating its first and second derivation
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with independent variables a1,a2. Thus one can check
that the maximal extremal point occurs at a1 = a2 = 1/3.
Because ρW

3 is TI, the calculation for the other two
components in Eq. (21) has the same result. Then the
nearest FSPs are ρW

3 = |φ(a1 = a2 = a3 = 1/3, θ1 = θ2 =
θ3)〉〈φ(a1 = a2 = a3 = 1/3, θ1 = θ2 = θ3)|, which demon-
strates the validity of the supposition ρW

f .
Some comments are in order. The calculations of �max

for GHZ and W states have illustrated the general procedure
for determining �max for TI entangled states. A crucial
supposition is Eq. (21), which comes directly from our
understanding of the TI in multipartite entangled states,
and can be generalized easily to other multiqubit states.
Mathematically, in order to find the nearest fully separable
state for the entangled state with a certain symmetry, it
is enough to search into the state subspace with the same
symmetry, because the overlap for the two states in the same
subspace is believed to be no smaller than that in distinct
spaces. Particularly, this supposition is not only valid for a
pure state but is valid also for a mixed state, and a formal
statement from the Schwartz-Cauchy inequality can be found
in our recent work [9]. In the following discussion, we should
demonstrate the popularity and validity of the supposition
[Eq. (21)] through several exact examples.

B. Four-qubit case

There are four basic multipartite entangled states with
TI: |GHZ〉4, |W 〉4, |GHZ′〉4, and |ψ〉4 = 1

2 (|1100〉 + |0110〉 +
|0011〉 + |1001〉) [26]. Because a general discussion on
|GHZ〉N , |W 〉N , and |GHZ′〉N will be presented at the end
of this section, only |ψ〉4 is studied here. The overlap is
determined exactly by the relation

|4〈ψ |φ〉|2 = 1
4 |ei(θ3+θ4)

√
a1a2(1 − a3)(1 − a4) + ei(θ1+θ4)

×
√

(1 − a1)a2a3(1 − a4) + ei(θ1+θ2)
√

(1 − a1)

×
√

(1 − a2)a3a4 + ei(θ2+θ3)

×
√

a1(1 − a2)(1 − a3)a4|2

= 1
4 |[eiθ3

√
a1(1 − a3) + eiθ1

√
(1 − a1)a3]

× [eiθ4
√

a2(1 − a4) + eiθ2
√

(1 − a2)a4]|2

� 1
4 [

√
a1(1 − a3) +

√
(1 − a1)a3]2

× [
√

a2(1 − a4) +
√

(1 − a2)a4]2, (23)

where the last equality occurs when θ1 = θ3 and θ2 = θ4. It is
easy to obtain �max = 1/4 when a1 + a3 = 1 and a2 + a4 = 1.

The TI of |ψ〉4 is that there are two nearest-neighbor parties
sharing one state, and the other two parties share a different
state. With the above results, one could construct a nearest
fully separable state,

ρ
|ψ〉4
f = 1

4 (|1100〉〈1100| + |1001〉〈1001|
+ |0011〉〈0011| + |0110〉〈0110|), (24)

with arbitrary θn (n = 1,2,3,4) because they cancel each other
out in this case. The above state obviously displays the same

TI to |ψ〉4. This result means that one can easily determine
�max by utilizing TI of |ψ〉4.

An interesting case is the existence of the nearest FSPs with
PI when θ1 = θ2 = θ3 = θ4 and a1 = a2 = a3 = a4 = 1/2. In
fact, |ψ〉4 is biseparable because |ψ〉4 = 1√

2
(|10〉 + |01〉)13 ⊗

1√
2
(|10〉 + |01〉)24. This feature implies that pairs 1–3 and 2–4

are uncorrelated completely, which forces |ψ〉4 into a larger
subspace than that of TI and PI. So the simultaneous existence
of the fully separable state with PI and TI is not surprising in
this case.

C. Five-qubit case

Besides |GHZ〉5 and |W 〉5, there are two different basic TI
entangled states:

|ψ1a〉5 = 1√
5

(|11000〉 + |01100〉 + |00110〉

+ |00011〉 + |10001〉),
(25)

|ψ1b〉5 = 1√
5

(|10100〉 + |01010〉 + |00101〉

+ |10010〉 + |01001〉).

Unfortunately, there are no exact results for �max of |ψ1a(b)〉5,
so one has to rely on numerical evaluations.

The numerical procedure is to sample exhaustively the
possibility of the values of independent variables as much as
possible, and to record the maximal value of the overlap. Then
when the numerical result is not changed for long sampling
times, e.g., 104 or so, this number is considered to be �max.
For example, the overlap of |ψ1a〉5 is

|5〈ψ1a|φ〉|2 = 1
5 |ei(θ3+θ4+θ5)

√
a1a2(1 − a3)(1 − a4)(1 − a5)

+ ei(θ1+θ4+θ5)
√

(1 − a1)a2a3(1 − a4)(1 − a5)

+ ei(θ1+θ2+θ5)
√

(1 − a1)(1 − a2)a3a4(1 − a5)

+ ei(θ1+θ2+θ3)
√

(1 − a1)(1 − a2)(1 − a3)a4a5

+ ei(θ2+θ3+θ4)
√

a1(1 − a2)(1 − a3)(1 − a4)a5|2

� 1
5 [

√
a1a2(1 − a3)(1 − a4)(1 − a5)

√
(1 − a1)

×
√

a2a3(1 − a4)(1 − a5)

+
√

(1 − a1)(1 − a2)
√

a3a4(1 − a5)

+
√

(1 − a1)(1 − a2)(1 − a3)a4a5

+
√

a1(1 − a2)(1 − a3)(1 − a4)a5]2, (26)

where the second equality occurs when the values coincide
for all θα (α = 1,2,3,4,5). Thus the sampling can be reduced
for aα (α = 1,2,3,4,5). For reliability, the sampling times are
chosen to be 105 in this section. Finally, the value is steadily
closed to 1/5 and max|φ〉 |5〈ψ1a|φ〉|2 → 1/5.

From the point of view of TI, the main feature of |ψ1a〉5

is that two nearest-neighbor parties have the same state and
the other parties share a different state. Thus an optimal
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FIG. 2. (Color online) Contour plot of the function f 1
5 as defined

in Eq. (29).

supposition for the nearest FSPs is, similar to the method
discussed in Sec. III A,

a1 = a2, a3 = a4 = a5; θ1 = θ2, θ3 = θ4 = θ5, (27)

It should be pointed that this choice is not unique because
there are other different choices, similar to the ones adopted
for Eq. (21). The validity of this supposition can be checked
by asking whether one can obtain the same �max by using the
above numerical evaluation. For this purpose, one has

|5〈ψ1a|φ〉|2 = 1
5

∣∣e3iθ3a1(1 − a3)3/2 + 2ei(θ1+2θ3)
√

a1(1 − a1)

×
√

a3(1 − a3)2 + 2ei(2θ1+θ3)

×
√

(1 − a1)2a2
3(1 − a3)

∣∣2

� 1
5

[
a1(1 − a3)3/2 + 2

√
a1(1 − a1)a3(1 − a3)2

+ 2
√

(1 − a1)2a2
3(1 − a3)

]2
, (28)

where the second equality occurs when θ1 = θ3. Thus

max
|φ〉

|5〈ψ1a|φ〉|2 ⇒ max
a1,a3

f 1
5 = a1(1 − a3)3/2

+ 2
√

a1(1 − a1)a3(1 − a3)2

+ 2
√

(1 − a1)2a2
3(1 − a3). (29)

From Fig. 2, f 1
5 clearly has the maximal value 1 at a1 = 1 and

a3 = 0, and then �max is 1/5, too.
This example displays the validity of the supposition,

Eq. (27). Then the nearest fully separable state with the
same TI to |ψ1a〉5 can be constructed readily, as was done in
the three- and four-qubit cases. A similar discussion can also
be applied to |ψ1b〉5, for which �max is also 1/5. The difference
is that the supposition for nearest FSPs from TI becomes
a1 = a3, a2 = a4 = a5 and θ1 = θ3, θ2 = θ4 = θ5 in this case.

D. Six-qubit case

In order to show further the fundamental role of the TI,
the nearest FSPs and �max for six-qubit multipartite entangled
states are studied in this subsection. In addition to |GHZ〉6,
|W 〉6, and |GHZ′〉6, there are three types of the basic TI
entangled states:

|ψ1a〉6 = 1√
6

(|110000〉 + [the other cyclic terms]),

|ψ1b〉6 = 1√
6

(|101000〉 + [the other cyclic terms]),

|ψ2a〉6 = 1√
6

(|111000〉 + [the other cyclic terms]),

|ψ2b〉6 = 1√
6

(|101100〉 + [the other cyclic terms]),

|ψ2c〉6 = 1√
6

(|110100〉 + [the other cyclic terms]),

|ψ3〉6 = 1√
3

(|100100〉 + |010010〉 + |001001〉), (30)

which will be discussed respectively below.

1. |ψ1a〉6 = 1√
6
(|110000〉 + [the other cyclic terms])

There is no exact result of �max for |ψ1a〉, and one has to
rely on a numerical evaluation, as was done in the previous
subsection, which showed �max = 1/6. Now let us repeat the
calculation from the TI point of view. The crucial supposition
for the nearest FSPs is a1 = a2, a3 = a4 = a5 = a6 and θ1 =
θ2, θ3 = θ4 = θ5 = θ6, and then

|6〈ψ1a|φ〉|2 = 1
6 |a1(1 − a3)2e4iθ3

+ 2
√

a1(1 − a1)a3(1 − a3)3

× ei(θ1+3θ3) + 3(1 − a1)a3(1 − a3)e2i(θ1+θ3)|2

� 1
6 [a1(1 − a3)2 + 2

√
a1(1 − a1)a3(1 − a3)3

+ 3(1 − a1)a3(1 − a3)]2, (31)

where the second equality occurs when θ1 = θ3. Then the
determination of �max is reduced to find the maximal values
of

f 1
6 = a1(1 − a3)2 + 2

√
a1(1 − a1)a3(1 − a3)3

+ 3(1 − a1)a3(1 − a3). (32)

As shown in Fig. 3, f 1
6 has a maximal value of 1 at a1 = 1, a3 =

0. Thus |6〈ψ1a|φ〉|2 has a maximal value of 1/6, which is the
same as the numerical result. A similar study is also applied for
|ψ1b〉 if we suppose a1 = a3, a2 = a4 = a5 = a6 and θ1 = θ3,

θ2 = θ4 = θ5 = θ6 in this case.
In conclusion, one can still find �max efficiently by a TI of

|ψ1a〉6.

2. |ψ2a〉6 = 1√
6
(|111000〉 + [the other cyclic terms])

After some simplification, the overlap becomes

|6〈ψ2a|φ〉|2

� 1
6 {

√
a3(1 − a6)[

√
a1(1 − a4)a2(1 − a5) +

√
(1 − a1)
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FIG. 3. (Color online) Contour plot of the function f 1
6 as defined

in Eq. (32).

×√
a4(

√
a2(1 − a5) +

√
(1 − a2)a5)] +

√
(1 − a3)a6

× [
√

(1 − a1)a4(1 − a2)a5 +
√

a1(1 − a4)

× (
√

a2(1 − a5) +
√

(1 − a2)a5)]}2, (33)

where the equality occurs when the value of θα (α =
1,2, . . . ,6) coincides. By applying the inequalities

√
a1(1 − a4) � a1 + (1 − a4)

2
,

√
a2(1 − a5) � a2 + (1 − a5)

2
, (34)

√
a3(1 − a6) � a3 + (1 − a6)

2
,

where the equality occurs iff a1 + a4 = 1, a2 + a5 = 1, and
a3 + a6 = 1, then

|6〈ψ2a|φ〉|2 ⇒ � 1
6 (1 − a2 + a1a2 + a2a3 − a1a3)2. (35)

It is easy for the above expression to find the unique extremal
point at a1 = a2 = a3 = 1/2, and then the extremal value for
|6〈ψ2a|φ〉|2 is 3

32 . However, it is known that the extremal
value is not completely equivalent to the maximal, and so
the boundary points when ai = 1,0 (i = 1,2, . . . ,N ) have to
be checked independently. One can find the overlap 1/6 at
the boundary point a1 = a2 = a3 = 1, a4 = a5 = a6 = 0, for
example. Because the extremal point is unique, �max in this
case is just 1/6. This exact result is clearly consistent with the
TI structure of |ψ2a〉6; there are always three nearest-neighbor
parties having the same state and the other parties sharing one
different state.

3. |ψ3〉6 = 1√
3
(|100100〉 + |010010〉 + |001001〉)

The overlap is

|6〈ψ3|φ〉|2 = 1
3 |ei(θ2+θ3+θ5+θ6)

√
a1(1 − a2)(1 − a3)a4(1 − a5)

×
√

1 − a6 + ei(θ1+θ3+θ4+θ6)
√

(1−a1)a2(1−a3)

×
√

(1 − a4)a5(1 − a6) + ei(θ1+θ2+θ4+θ5)

×
√

(1 − a1)
√

(1 − a2)a3(1 − a4)(1 − a5)a6|2

� 1
3 [

√
a1(1 − a2)(1 − a3)a4(1 − a5)(1 − a6)

+
√

(1 − a1)a2(1 − a3)(1 − a4)a5(1 − a6)

+
√

(1 − a1)(1 − a2)a3(1 − a4)(1 − a5)a6]2

= 1
3 {

√
(1 − a3)(1 − a6)[

√
a1a4(1 − a2)(1 − a5)

+
√

(1 − a1)(1 − a4)a2a5] + √
a3a6

√
(1 − a1)

×
√

(1 − a4)(1 − a2)(1 − a5)}2, (36)

where the second equality occurs when θ1 + θ4 = θ2 + θ5 =
θ3 + θ6. From the relations ab � (a2 + b2)/2, the above
equation becomes

⇒ � {[a1(1 − a2) + (1 − a1)a2] (1 − a3)

+ (1 − a1)(1 − a2)a3}2 , (37)

of which the extremal point appears at a1 = a2 = a3 = a0. In
this case the unique maximal extremal value of |6〈ψ3|φ〉|2 is
16/35 for a0 = 1/3, while at the boundary a1 = 1, a2 = a3 = 0
the overlap is 1/3 > 16/35. Finally one obtains �max = 1/3
when a1 = a4 = 1, a2 = a3 = a5 = a6 = 0, for example. With
respect to the flexible limit on θα , the FPSs can be constructed
readily with the same TI to |ψ3〉6.

E. Eight-qubit case

As for seven-qubit case, the discussion is similar to that of
the five-qubit cases. Because there are no exact results for λmax

of seven-qubit entangled states, except for |GHZ〉7 and |W 〉7,
this situation is ignored in this section and instead we focus on
the eight-qubit case.

The situation becomes complex for eight-qubit multipartite
entangled states because there are several special cyclic
structures in this case. We will focus on these interesting
situations because the exact results can be obtained.

1. |ψ1〉8 = 1
2 (|1000 1000〉 + |0100 0100〉

+ |0010 0010〉 + |0001 0001〉)

The overlap is

|8〈ψ1|ψ〉|2 = 1

4

∣
∣
∣
∣
ei

∑8
α 
=1,5 θα

√
a1a5

8∏
α 
=1,5

√
1 − aα

+ ei
∑8

α 
=2,6 θα
√

a2a6

8∏
α 
=2,6

√
1 − aα

+ ei
∑8

α 
=3,7 θα
√

a3a7

8∏
α 
=3,7

√
1 − aα
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+ ei
∑8

α 
=4,8 θα
√

a4a8

8∏
α 
=4,8

√
1 − aα

∣
∣
∣
∣

2

� 1

4

(√
a1a5

8∏
α 
=1,5

√
1 − aα + √

a2a6

8∏
α 
=2,6

×
√

1 − aα + √
a3a7

8∏
α 
=3,7

√
1 − aα

+√
a4a8

8∏
α 
=4,8

√
1 − aα

)2

, (38)

where the second equality occurs when θ1 + θ5 = θ2 + θ6 =
θ3 + θ7 = θ4 + θ8. The above equation can be rewritten as

⇒ 1
4 {[

√
a1a5(1 − a2)(1 − a6) +

√
(1 − a1)(1 − a5)

√
a2a6]

×
√

(1 − a3)(1 − a4)(1 − a7)(1 − a8)

+ [
√

a3a7(1 − a4)(1 − a8) +
√

(1 − a3)(1 − a7)
√

a4a8]

×
√

(1 − a1)(1 − a5)(1 − a2)(1 − a6)}2

� 1
4 {[a1(1 − a2) + (1 − a1)a2](1 − a3)(1 − a4)

+ (1 − a1)(1 − a2)[a3(1 − a4) + (1 − a3)a4]}2, (39)

where the second equality occurs when a1 = a5, a2 = a6, a3 =
a7, and a4 = a8 by the inequality a2 + b2 � 2|ab|.

One can check easily that the extremal point of the above
equation appears when a1 = a2 = a3 = a4 = a0, and then the
maximal extremal value is 36/47 when a0 = 1/4. As for the
boundary, one can directly find the overlap 1/4 > 36/47 only
if aα = 1 for any one of α = 1,2,3,4, and the other is zero.
Then �max = 1/4. In addition, this situation is consistent with
the TI of |ψ1〉8; two single-party states, four-party separated
from each other, always have the same state and the others
share another different state.

2. |ψ2〉8 = 1
2 (|1100 1100〉 + |0110 0110〉 +

|0011 0011〉 + |1001 1001〉)

The overlap is

|8〈ψ2|ψ〉|2

= 1
4 |ei(θ3+θ4+θ7+θ8)

√
a1a2(1 − a3)(1 − a4)a5a6

×
√

(1 − a7)(1 − a8) + ei(θ1+θ4+θ5+θ8)
√

(1 − a1)

×
√

a2a3(1 − a4)(1 − a5)a6a7(1 − a8)

+ ei(θ1+θ2+θ5+θ6)
√

(1 − a1)(1 − a2)a3a4(1 − a5)

×
√

(1 − a6)a7a8 + ei(θ2+θ3+θ6+θ7)
√

a1(1 − a2)

×
√

(1 − a3)a4a5(1 − a6)(1 − a7)a8|2

� 1
4 [

√
a1a2(1 − a3)(1 − a4)a5a6(1 − a7)(1 − a8)

+
√

(1 − a1)a2a3(1 − a4)(1 − a5)a6a7(1 − a8)

+
√

(1 − a1)(1 − a2)a3a4(1 − a5)(1 − a6)a7a8

+
√

a1(1 − a2)(1 − a3)a4a5(1 − a6)(1 − a7)a8]2, (40)

where the second equality occurs when θ1 + θ5 = θ2 + θ6 =
θ3 + θ7 = θ4 + θ8.

The above equation can be rewritten as

⇒ 1
4 [

√
a1(1 − a3)a5(1 − a7) +

√
(1 − a1)a3(1 − a5)a7]2

× [
√

a2(1 − a4)a6(1 − a8) +
√

(1 − a2)a4(1 − a6)a8]2

� 1
4 [a1(1 − a3) + (1 − a1)a3]2[a2(1 − a4) + (1 − a2)a4]2,

(41)

where the second equality occurs when a1 = a5, a2 = a6, a3 =
a7, and a4 = a8. The extremal point of the equation above is
uniquely at a1 = a2 = a3 = a4 = 1/2, at which the maximal
extremal value is 1/26. However, one can easily find that the
overlap is 1/4 when a1 = 1, a3 = 0 and a2 = 1, a4 = 0, for
example, which is obviously larger than 1/26. Thus �max =
1/4 in this case.

The condition a1 = a2 = 1 and a3 = a4 = 0 coincides with
the TI structure of |ψ2〉8; there are two pairs of nearest-
neighbor parties, two-party separated from each other, always
having the same state. This observation again displays the
underlying effect of the TI structure of the entangled state on
the determination of the maximal overlap �max.

Actually |ψ2〉8 is biseparable because |ψ2〉8 =
1√
2
(|1010〉 + |0101〉)1357 ⊗ 1√

2
(|1010〉 + |0101〉)2468. The

above result is also the manifestation of this biseparable
structure.

F. Arbitrary N-qubit case: Exact results

For arbitrary N -qubit multipartite states, the maximal
overlap can be determined exactly only for some special cases.
However, the TI structure would still play a fundamental role in
the evaluation of �max, as shown in the following discussions.

1. |ψGHZ〉N = √
c|11 · · · 1〉 + eiϕ

√
1 − c|00 · · · 0〉, where

c ∈ [0,1] and ϕ ∈ [0,2π )

It becomes |GHZ〉N when c = 1/2 and ϕ = 0. The overlap
is

|N 〈ψGHZ|φ〉|2

=
∣
∣
∣
∣
∣

√
c

N∏
n=1

√
an + ei(−ϕ+∑N

n=1 θn)
√

1 − c

N∏
n=1

√
1 − an

∣
∣
∣
∣
∣

2

�
(

√
c

N∏
n=1

√
an + √

1 − c

N∏
n=1

√
1 − an

)2

�
[√

ca
N/2
0 + √

1 − c (1 − a0)N/2
]2

, (42)

where the second equality occurs when
∑N

n=1 θn = ϕ, and the
third one occurs when an = a0 for arbitrary n = 1,2, . . . ,N .

The extremal point of the above equation is determined by
the relation (

1

a0
− 1

) N
2 −1

=
√

c

1 − c
, (43)

which, however, corresponds to the minimal extremal value.
Thus the maximal overlap can appear only at the boundary
points a0 = 1 or a0 = 0 and �max = c or (1 − c), depending
on c > 1 − c or c < 1 − c. Only if one chooses θn = ϕ/N
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for arbitrary n = 1,2, . . . ,N , then the resultant fully separable
state is also PI.

2. |ψ ′
GHZ〉N = √

c|1010 · · · 10〉 + eiϕ
√

1 − c|0101 · · · 01〉
(even N)

Obviously |ψ ′
GHZ〉N and |ψGHZ〉N can be converted into

each other by the local unitary operation σx
2 ⊗ σx

4 ⊗ · · · ⊗
σx

2n ⊗ · · ·, and the two states have the same measure of
entanglement. However, the former displays a different TI
from the latter because the operation is only imposed on the
even sites [26]. Generally, if two states can be related by
local unitary transformation, it implies only that they have
the same measure of entanglement, but not that the nearest
fully separable state can be determined trivially in the same
way.

This state becomes |GHZ′〉N when c = 1/2 and ϕ = 0. Its
overlap is

|N 〈ψ ′
GHZ|φ〉|2

=
∣
∣
∣
∣
∣
ei

∑N/2
n=1 θ2n

√
c

N/2∏
n=1

√
a2n−1

N/2∏
n=1

√
1 − a2n

+ e
i
(
−ϕ+∑N/2

n=1 θ2n−1

)√
1 − c

N/2∏
n=1

√
1 − a2n−1

N/2∏
n=1

√
a2n

∣
∣
∣
∣
∣

2

�
(

√
c

N/2∏
n=1

√
a2n−1

N/2∏
n=1

√
1 − a2n + √

1 − c

×
N/2∏
n=1

√
1 − a2n−1

N/2∏
n=1

√
a2n

)2

�
[√

ca
N
4

1 (1 − a2)
N
4 + √

1 − c(1 − a1)
N
4 a

N
4

2

],

2 (44)

where the second equality occurs when
∑N/2

n=1 (θ2n−1 − θ2n) =
ϕ, and the third one occurs when a2n−1 = a1 and a2n = a2 for
n = 1,2, . . . ,N/2 by Eq. (18).

The above equation can be simplified further as

⇒ �
[√

ca
N
2

1 + √
1 − c(1 − a1)

N
2

]2
, (45)

where the equality occurs when a1 = 1 − a2. There is a
minimal extremal point for the above equation, decided by(

1

a1
− 1

) N
2 −1

=
√

c

1 − c
. (46)

Thus �max = c or (1 − c), depending on c > 1 − c or c <

1 − c, appears when a1 = 1, a2 = 0 or a1 = 0, a2 = 1. Finally,
because the choice for θ2n and θ2n−1 depends flexibly on
the relation

∑N/2
n=1 (θ2n−1 − θ2n) = ϕ, one could freely choose

θ2n−1 = θ1, θ2n = θ2, and θ1 
= θ2. Thus one has the nearest
FSPs, which show the same TI structure to |ψ ′

GHZ〉N .
Some comments should be made about |GHZ′〉N because

there are some ambiguities and disputes about its nearest FSPs
[17]. The crucial difference between |GHZ′〉N and |ψ ′

GHZ〉N
is at the TI; |GHZ′〉N is TI exactly because |1010 · · · 10〉
and |0101 · · · 01〉 occur with the same probability amplitude,
while the basic feature of |ψ ′

GHZ〉N is that the states are the
same for the next-nearest-neighbor parties. Because |GHZ′〉N

is a special case of |ψ ′
GHZ〉N , both states then share this

basic feature. Following the discussion above, the common
nearest FSPs are |1010 · · · 10〉 or |0101 · · · 01〉. However, we
emphasize that this result proves exactly the correctness of the
supposition for the nearest fully separable state, based on the
TI structure of |GHZ′〉N , as discussed in Sec. III A,

ρFSPs
GHZ′ = 1

2 (|φ(a2n+1 = a,a2n = b,θ2n+1 = α,θ2n = β)〉
× 〈φ(a2n+1 = a,a2n = b,θ2n+1 = α,θ2n = β)|
+ |φ(a2n+1 = b,a2n = a,θ2n+1 = β,θ2n = α)〉
× 〈φ(a2n+1 = b,a2n = a,θ2n+1 = β,θ2n = α)|).

(47)

Then the nearest fully separable state, from the above exact
result,

1
2 (|1010 · · · 10〉〈1010 · · · 10| + |0101 · · · 01〉〈0101 · · · 01|) ,

displays the same TI to |GHZ′〉N .

3. |W〉N = 1√
N

(|10 · · · 0〉 + |010 · · · 0〉 + · · · + |0 · · · 01〉)

The overlap is

|N 〈W |φ〉|2

= 1

N

∣
∣
∣
∣
∣
ei

∑N
n=1 θn

(
N∏

n=1

√
1 − an

)
N∑

n=1

√
an

1 − an

e−iθn

∣
∣
∣
∣
∣

2

� 1

N

[(
N∏

n=1

√
1 − an

)
N∑

n=1

√
an

1 − an

]2

, (48)

where the second equality occurs when the values of all θn

coincide. Then it is enough to find the maximal values of

fW =
(

N∏
n=1

√
1 − an

)
N∑

n=1

√
an

1 − an

. (49)

First let us find the extremal point for fW , determined by

∂fW

∂ak

= 0 ⇒
N∑

n=1

√
an

1 − an

= 1√
ak(1 − ak)

. (50)

Because the relation above is satisfied for arbitrary an, the
extremal point occurs only if an = a0 for arbitrary n =
1,2, . . . ,N . Instead, to find the second derivative with an, it is
convenient to evaluate the maximal value of

f ′
W = Na0(1 − a0)N−1, (51)

which is the overlap for an = a0 with n = 1,2, . . . ,N . It is
easy to find the extremal value of f ′

W when a0 = 1/N . From
the second derivation,

∂2f ′
W

∂a2
0

= (N − 1)(1 − a0)N−1(Na0 − 2), (52)

thus a0 = 1/N is a maximal extremal point and

max f ′
W =

(
1 − 1

N

)N−1

. (53)

As for the boundary where the overlap is 1/N , one can check
that (1 − 1

N
)N−1 − 1

N
� 0 for N � 2.
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In conclusion, �max = (1 − 1
N

)N−1 when an = a0 = 1/N

and θn = θ0 for arbitrary n = 1,2, . . . ,N . Thus the nearest
fully separable state is also PI.

IV. PERIODIC STRUCTURE OF TI ENTANGLED STATE

It is obvious from previous studies that the optimal
determination of �max can be reduced greatly by utilizing
the TI of multipartite entangled states. This result is based
on the observation that the TI of a multipartite state actually
defines the connection between the single-party states in a
unique manner, and, moreover, this connection can be spread
over all single-party states because of TI. It should be pointed
out that TI is a distinct feature from one to the other state; for
example, GHZ and W states show different TIs by which one
can easily distinguish one from the other. Thus it is conjectured
that a nearest fully separable state would also exist that can
manifest a unique TI of the multipartite state. As shown in this
section, this state can be constructed easily by combining all
nearest FSPs incoherently with the same amplitude. Thus we
claim that there exists a nearest fully separable state with the
same TI as that of an entangled state, though it may be mixed
generally.

Focusing on the geometry of the circle as shown in
Fig. 1, there are diverse cyclic features in the basic TI
entangled states studied in the previous section. For example,
the distinct character for |ψGHZ〉N is that all parties share the
same state. From this point of view, depicted in Fig. 1, it
is enough to translate the whole system only once in order
that the state reverts to its original form. Thus we say it
is one period, whereas for |GHZ′〉N the single-party states
for next-nearest-neighbor parties are always the same, and
|GHZ′〉N is two period because the state has to translate twice
back to its original form, which could be envisioned also from
Fig. 1. This is also the main reason that |GHZ′〉N is composed
of two terms. Consequently |W 〉N is N period because one has
to translate the system N times in order to span all possible
forms. In addition, |ψ3〉6 is three period, and both of |ψ1(2)〉8

are four period.
An important finding from the above discussion is that the

period numbers seem to be the common divisors of the party
number N . Besides the trivial common divisors 1 and N , for
example, there are two- and three-period TI entangled states
for the six-qubit system because 6 = 2 × 3. For the eight-qubit
case, there are two- and four-period TI entangled states because
8 = 2 × 4. Because the spatial of the state is a circle, it is not
strange that TI is heavily dependent on the number of party.

In conclusion, for a (N = n × m)-qubit system, there
always exist n- and m-period TI entangled states. Thus by
exploring the common divisors for N , one can find all possible
cyclic structures of the N -qubit TI entangled state. As for
prime N , there are only trivial one- and N -period states, as
shown for the five-qubit system. Furthermore, we point out
that one can construct more complicated TI entangled states
principally by combining the basic TI entangled states with
different periodic structures; for example, the Dicke state for
the four-qubit system |S(4; 2)〉, defined in Eq. (7), can be

decomposed into |S(4; 2)〉 = 1√
3
|GHZ′〉4 +

√
2
3 |ψ〉4. It is the

reason that we call them basic TI entangled states, which we
studied in the previous section.

An entangled state composed of different TI structures is
called a hybrid. Then an important question is how to find
the nearest fully separable state for the hybrid TI entangled
states. And it is more interesting whether �max is related to
the different TIs in this state. If the answer is yes, it would
simplify greatly the determination of �max. In the next section,
we would present an explicit study of this question.

V. FINDING THE MAXIMAL OVERLAP II: HYBRID TI
AND THE HIERARCHY OF THE PERIODIC

STRUCTURE

For hybrid TI entangled states, �max is in general difficult
to evaluate analytically. By presenting several numerical
examples in this section, we try to illustrate some general
features for these types of states, which are helpful in reducing
the optimal determination for �max in this case.

Unfortunately, we cannot provide an exact result to solidify
the conclusions summarized at the end of this section, and
instead have to rely on the numerical evaluation. For simplicity,
the examples below will focus on the hybrid TI entangled
states (HTIEs), composed of only two basic entangled states
with different TIs. The goal is to find the effect of TI in HTIEs
on the optimal determinations of �max and the nearest FSPs.
In addition, a hierarchy for the basic TI entangled states can
be found.

The numerical procedure is stated below. Because the
HTIEs in this section include only two different TI structures, it
is natural to suppose that the nearest FSPs would be determined
by one of the two periodic structures. This supposition comes
directly from the discussion in Sec. III. However, the supposed
nearest fully separable states have to include two TIs. Then
two numerical evaluations, called case 1 and case 2, are
implemented respectively for two optimally supposed nearest
FSPs based on the TIs in HTIEs. The other two situations,
called case 0 and case 3, correspond respectively to no
supposition and the PI supposition for the nearest FSPs in
order to check the validity of the two former suppositions.

The numerical procedure is the same as discussed in
Sec. III C; we sample randomly the permissible values of all
variables as much as possible and find the maximal overlap,
which is unchanged for 104 sampling times or so. The critical
problem is to justify which supposition is optimal. Our method
is to find one of the suppositions for which the numerical result
of the overlap is maximal after the same sampling times. Then
we claim that this case is just the optimal requirement for
the nearest FSPs in order to determine �max. The reason is
simple; it is known that the random sampling evaluation could
attain the same value theoretically only if the sampling times
are infinite. With finite sampling times, the optimal one is
believed to attain the maximal value more quickly than the
nonoptimal sampling time. The sampling times are 105 in
order to guarantee the reliability of the numerical result and to
control the time of evaluation. We should emphasize that this
numerical evaluation is to show the effect of TI of multipartite
entangled states on the determinations of FSPs and �max rather
than finding the exact results, because the sampling times are
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far from exhaustive. More details of the calculation are shown
with special examples.

A. Three-qubit case

For the three-qubit system, there are only two basic TI
entangled states: |GHZ〉 of one period and |W 〉 of three period.
It is known that the nearest fully separable states for the two
states are both permutationally invariant. Thus for their HTIEs,
the nearest FSPs are definitely permutationally invariant also.
So this case is omitted in this section.

B. Four-qubit case

There are one-, two-, and four-period basic TI entangled
states in this case, |GHZ〉4, |GHZ′〉4 and |W 〉4, |ψ〉4. Then
there are five different HTIEs:

A1: |ψ〉A1
4 = √

c|GHZ〉4 + eiϕ
√

1 − c|ψ〉4,

A2: |ψ〉A2
4 = √

c|GHZ〉4 + eiϕ
√

1 − c|GHZ′〉4,

A3: |ψ〉A3
4 = √

c|W 〉4 + eiϕ
√

1 − c|ψ〉4, (54)

A4: |ψ〉A4
4 = √

c|W 〉4 + eiϕ
√

1 − c|GHZ′〉4,

A5: |ψ〉A5
4 = √

c|GHZ′〉4 + eiϕ
√

1 − c|ψ〉4,

where c ∈ [0,1] and ϕ ∈ [0,2π ). ϕ is set to be π/3 for all
numerical evaluations below.

In order to highlight the effect of TIs in HTIEs, c is set to be
three different values in this section, c = 1/4, 1/2, 3/4, which
are labeled as AN -1, AN -2, and AN -3, as shown in Table I.
N = 1,2,3,4,5 denote the different HTIEs in Eq. (54), and the
letter A is used to distinguish them from the other multiqubit
cases. Similar notations are also applied for the remainder of
this section. The different choices for the values of c are to
obtain a general conclusion that is independent on the special
superposition coefficients. The notations, case 1 and case 2
in Table I, respectively denote the two suppositions for the
nearest FSPs, based on the TIs of the first and second term in

TABLE I. Numerical results of the maximal overlap for four-qubit
mixed TI entangled states defined in Eqs. (54) with ϕ = π

3 .

State Case 0 Case 1 Case 2 Case 3

A1-1 0.282 53 – 0.294 58 0.2953
A1-2 0.284 52 – 0.290 77 0.2916
A1-3 0.341 84 – 0.374 07 3/8 = 0.375

A2-1 0.3495 – 3/8 = 0.375 0.18
A2-2 0.249 12 – 0.25 0.25
A2-3 0.335 99 – 0.372 82 3/8 = 0.375

A3-1 0.478 11 – 0.502 17 0.503 64
A3-2 0.511 47 – 0.575 22 0.5782
A3-3 0.528 25 – 0.586 71 0.588 32

A4-1 0.442 35 – 0.490 37 0.35
A4-2 0.431 11 – 0.482 01 0.444
A4-3 0.473 61 – 0.495 38 0.495 80

A5-1 0.294 04 0.295 24 0.295 18 0.295 30
A5-2 0.282 07 0.291 57 0.275 64 0.275 89
A5-3 0.362 37 3/8 = 0.375 0.232 74 0.232 8

HTIEs [Eq. (54)]. For example, for |ψ〉A5
4 , case 1 means the

supposition for the nearest FSPs a1 = a3, a2 = a4 and θ1 = θ3,
θ2 = θ4, based on the two-period TI of |GHZ′〉4, while case 2
means the supposition a1 = a2, a3 = a4 and θ1 = θ2, θ3 = θ4,
based on the four-period TI of |ψ〉4.

The numerical results are shown in Table I. Interestingly,
a hierarchy for the basic TI entangled states can be found.
For the state |ψ〉A1(3)

4 , the maximal overlap occurs with
the supposition of PI for the nearest FSPs. This feature is
not surprising because the nearest FSPs for |ψ〉4 may be
permutationally invariant, as shown in Sec. III B. In contrast,
the maximal overlap for |ψ〉A5

4 can be attained only for
FSPs decided by |GHZ′〉4, as shown by A5-2 and A5-3 in
Table I. As for A5-1, the difference between case 1 and case 3
is just of order 10−5, which can be seen as the numerical error.
This observation implies that the TI structure of |GHZ′〉4 is
predominant for the determination of �max for |ψ〉A5

4 , and thus
we say |GHZ′〉4 has a higher order of symmetry than |ψ〉4,
i.e., S|GHZ′〉4

> S|ψ〉4 . For |ψ〉A2
4 , the numerical results for A2

in Table I show that �max depends only on the superposition
coefficients, which imply that |GHZ〉4 and |GHZ′〉4 have the
same order of symmetry, S|GHZ〉4 ∼ S|GHZ′〉4

. As for A4, one
can obtain the order S|GHZ′〉4

> S|W 〉.
It is intricate for the relation of |W 〉 and |ψ〉4; only by

A3 in Table I, we cannot tell which has a higher order of
symmetry because both of the nearest FSPs for |W 〉 and |ψ〉4

are permutationally invariant. However, we should point out
that |ψ〉4 actually is biseparable, which is the main reason for
the existence of the PI nearest FSPs. Thus we setS|W 〉4 > S|ψ〉4 .

In conclusion, one has

S|GHZ〉4 ∼ S|GHZ′〉4
> S|W 〉4 > S|ψ〉4 . (55)

C. Five-qubit case

This situation is simple because 5 is a prime number, and
there are only one- and five-period TI entangled states. Then
the HTIEs are

B1: |ψ〉B1
5 = √

c|GHZ〉5 + eiϕ
√

1 − c|ψ1a〉5,

B2: |ψ〉B2
5 = √

c|W 〉5 + eiϕ
√

1 − c|ψ1a〉5, (56)

B3: |ψ〉B3
5 = √

c
√

1 − c|ψ1a〉5 + eiϕ
√

1 − c|ψ1b〉5.

As shown in Table II, the optimal fully separable states can
be obtained always under the supposition of PI. Thus one

TABLE II. Numerical results of the maximal overlap for five-
qubit mixed TI entangled states defined in Eqs. (56) with ϕ = π

3 .

State Case 0 Case 1 Case 2 Case 3

B1-1 0.207 02 – 0.248 71 0.251 24
B1-2 0.244 03 – 0.271 73 0.273 29
B1-3 0.315 23 – 0.372 51 3/8 = 0.375

B2-1 0.336 28 – 0.409 32 0.4102
B2-2 0.448 41 – 0.493 39 0.495 97
B2-3 0.396 26 – 0.523 29 0.527 34

B3-1 0.227 77 0.247 46 0.247 49 0.247 63
B3-2 0.223 26 0.259 15 0.258 99 0.259 20
B3-3 0.229 85 0.247 52 0.247 07 0.247 62
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has the order of symmetry S|GHZ〉5 > S|ψ1a〉5 and S|W 〉5 >

S|ψ1a〉5 . As for |W 〉5 and |GHZ〉5, we could temporarily set
S|GHZ〉5 > S|W 〉5 because |GHZ〉5 is one period, while |W 〉5

is five period. A strange result of B3 is that the optimal
FSPs is permutationally invariant, and independent on the
TI structures of components in |ψ〉B3

5 . Thus |ψ1a〉5 and
|ψ1b〉5 could be considered to be approximately of the same
order.

In total, one has a hierarchy of the symmetry, in this
case

S|GHZ〉5 > S|W 〉5 > S|ψ1a〉5 ∼ S|ψ1b〉5 . (57)

D. Six-qubit case

This case is more complicated because there are four types
of basic TI entangled states. Thus the discussion focuses on
the superposition of basic TI entangled states with different
periodic structures,

C1: |ψ〉C1
6 = √

c|GHZ〉6 + eiϕ
√

1 − c|GHZ′〉6,

C2: |ψ〉C2
6 = √

c|W 〉6 + eiϕ
√

1 − c|GHZ′〉6,

C3: |ψ〉C3
6 = √

c|GHZ〉6 + eiϕ
√

1 − c|ψ1a〉6,

C4: |ψ〉C4
6 = √

c|W 〉6 + eiϕ
√

1 − c|ψ1a〉6,

C5: |ψ〉C5
6 = √

c|GHZ〉6 + eiϕ
√

1 − c|ψ2a〉6,

C6: |ψ〉C6
6 = √

c|W 〉6 + eiϕ
√

1 − c|ψ2a〉6, (58)

C7: |ψ〉C7
6 = √

c|GHZ′〉6 + eiϕ
√

1 − c|ψ1a〉6,

C8: |ψ〉C8
6 = √

c|GHZ′〉6 + eiϕ
√

1 − c|ψ2a〉6,

C9: |ψ〉C9
6 = √

c|GHZ〉6 + eiϕ
√

1 − c|ψ3〉6,

C10: |ψ〉C10
6 = √

c|W 〉6 + eiϕ
√

1 − c|ψ3〉6,

C11: |ψ〉C11
6 = √

c|GHZ′〉6 + eiϕ
√

1 − c|ψ3〉6,

C12: |ψ〉C12
6 = √

c|ψ3〉6 + eiϕ
√

1 − c|ψ1a〉6,

C13: |ψ〉C13
6 = √

c|ψ3〉6 + eiϕ
√

1 − c|ψ2a〉6.

|ψ1a〉6 and |ψ1b〉6 are considered equivalent numerically
because the only difference is the position of single-party state
|1〉’s, therefore |ψ2a(b,c)〉6.

The numerical results are listed in Table III. Some features
similar to those of the four-qubit case can be found. It is
obvious from C1 in Table III that �max depends only on
superposition coefficients, and thusS|GHZ〉6 ∼ S|GHZ′〉6

. For C2,
the supposition for the nearest fully separable state is optimal
from the TI structure of |GHZ′〉6, and thusS|GHZ′〉6

> S|W 〉6 . By
C3, C4, C5, C6, C7, and C8 in Table III, |ψ1a〉6 and |ψ2a〉6 both
show a lower order of the symmetry than |GHZ〉6, |GHZ′〉6

and |W 〉6 because �max is decided mainly by the TI of the
latter.

A particular state in this case is |ψ3〉6, which is three
period. By C9 and C11 in Table III, �max depends only
on the superposition coefficients. However, because |ψ3〉6 is
three period, thus S|ψ3〉6 < S|GHZ〉6 ∼ S|GHZ′〉6

, whereas from

TABLE III. Numerical results of the maximal overlap for six-
qubit mixed TI entangled states defined in Eqs. (58) with ϕ = π

3 .

State Case 0 Case 1 Case 2 Case 3

C1-1 0.248 39 – 3/8 = 0.375 1/8=0.125
C1-2 0.180 59 – 0.25 0.25
C1-3 0.254 66 – 0.371 59 3/8 = 0.375

C2-1 0.296 98 – 3/8 = 0.375 0.159
C2-2 0.215 46 – 0.2672 0.257 93
C2-3 0.253 09 – 0.346 57 0.346 58

C3-1 0.169 63 – 0.1952 0.202 25
C3-2 0.202 56 – 0.245 79 0.257 06
C3-3 0.2557 – 0.358 73 3/8 = 0.375

C4-1 0.240 22 – 0.3537 0.355 95
C4-2 0.306 66 – 0.444 31 0.446 87
C4-3 0.331 81 – 0.485 12 0.489 92

C5-1 0.113 94 – 0.124 91 1/8 = 0.125
C5-2 0.192 92 – 0.247 75 0.25
C5-3 0.2892 – 0.372 85 3/8 = 0.375

C6-1 0.175 16 – 0.228 96 0.229 98
C6-2 0.204 39 – 0.315 53 0.316 41
C6-3 0.241 71 – 0.384 06 0.386 89

C7-1 0.147 0.152 44 0.151 61 0.153
C7-2 0.157 56 0.25 0.1344 0.135
C7-3 0.253 3/8 = 0.375 0.102 11 0.102 73

C8-1 0.119 12 1/8 = 0.125 0.124 56 0.1015
C8-2 0.212 51 0.25 0.089 47 0.09
C8-3 0.276 51 3/8 = 0.375 0.070 25 0.07

C9-1 0.194 56 – 0.25 0.14
C9-2 0.191 64 – 0.249 37 0.25
C9-3 0.272 67 – 0.372 07 3/8 = 0.375

C10-1 0.255 79 – 0.330 68 0.260 3
C10-2 0.269 02 – 0.360 98 0.360 95
C10-3 0.265 67 – 0.427 81 0.427 82

C11-1 0.187 22 0.124 11 0.25 0.09
C11-2 0.182 46 0.25 0.166 24 0.085
C11-3 0.257 25 3/8 = 0.375 0.082 86 0.072

C12-1 0.135 48 0.155 35 0.155 47 0.155 55
C12-2 0.133 92 1/6≈0.1667 0.145 18 0.145 32
C12-3 0.208 26 0.25 0.122 47 0.122 63

C13-1 0.124 97 0.147 31 0.147 31 0.147 31
C13-2 0.113 05 1/6≈0.1667 0.145 42 0.145 42
C13-3 0.155 92 0.25 0.129 59 0.129 60

C10, C12, and C13, |ψ3〉6 always has a noticeable effect on
�max.

In conclusion, one obtains

S|GHZ〉6 ∼ S|GHZ′〉6
> S|ψ3〉6 > S|W 〉6 > S|ψ1(2)a〉6 . (59)

It is exceptional for the relation of |ψ1a〉6 and |ψ2a〉6, as will
shown at the end of this section.

E. Eight-qubit case

Eight-qubit HTIEs are studied in order to display
the generality of the hierarchy for basic TI entangled
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states,

D1: |ψ〉D1
6 = √

c|GHZ〉8 + eiϕ
√

1 − c|GHZ′〉8,

D2: |ψ〉D2
6 = √

c|W 〉8 + eiϕ
√

1 − c|GHZ′〉8,

D3: |ψ〉D3
6 = √

c|GHZ〉8 + eiϕ
√

1 − c|ψ1〉8,

D4: |ψ〉D4
6 = √

c|W 〉8 + eiϕ
√

1 − c|ψ1〉8,

D5: |ψ〉D5
6 = √

c|GHZ〉8 + eiϕ
√

1 − c|ψ2〉8, (60)

D6: |ψ〉D6
6 = √

c|W 〉8 + eiϕ
√

1 − c|ψ2〉8,

D7: |ψ〉D7
6 = √

c|GHZ′〉8 + eiϕ
√

1 − c|ψ1〉8,

D8: |ψ〉D8
6 = √

c|GHZ′〉8 + eiϕ
√

1 − c|ψ2〉8,

D9: |ψ〉D9
6 = √

c|ψ1〉8 + eiϕ
√

1 − c|ψ2〉8.

From Table IV, features similar to those of the four- and
six-qubit cases can be found. For D1 and D9, �max is obviously
dependent only on the superposition coefficients of |ψ〉D1

6
and |ψ〉D9

6 , and thus S|GHZ〉8 ∼ S|GHZ′〉8
and S|ψ1〉8 ∼ S|ψ2〉8 .

As for D3, D5, D7, and D8, �max is also dependent only on
the superposition coefficients. However, because the common
coefficient of |ψ1(2)〉8 is 1/2, which is smaller than that of
|GHZ〉8 and |GHZ′〉8, thenS|GHZ〉8 ∼ S|GHZ′〉8

> S|ψ1(2)〉8 . From
D2, D4, and D6, �max can always be obtained under the
supposition for nearest FSPs based on the TI structures of
|GHZ′〉8 or |ψ1(2)〉8, and thus S|W 〉8 < S|GHZ′〉8

and S|W 〉8 <

S|ψ1(2)〉8 .
In total, one has

S|GHZ〉8 ∼ S|GHZ′〉8
> S|ψ1〉8 ∼ S|ψ2〉8 > S|W 〉8 . (61)

F. Further discussion

In conclusion, the hierarchy for the basic TI entangled
states is a general feature for multiqubit states. An important
observation obtained from the studies discussed above is that
this hierarchy has an important effect on the determination of
�max of HTIEs.

From the above numerical evaluations, two observations
can be made.

(1) �max for the HTIEs, composed of two different basic TI
entangled states except for the N period, depends obviously
on the superposition coefficients. That is to say, �max is just
the maximal one of the superposition coefficients times the
common coefficient of the basic TI entangled states. For
example, as shown for A2 in Table I, �max is

(
1 − 1

4

) × 1
2 ,

1
2 × 1

2 , 3
4 × 1

2 for c = 1/4,1/2 and c = 3/4, respectively. More
examples can be found in C1, C9, and C11 in Table III and D1,
D3, D5, D7, D8, and D9 in Table IV. This feature is consistent
with the result of Ref. [28].

(2) The situation for the cases including N -period TI
entangled states is very complex, however. A general feature
is that �max in this case is unrelated completely to the
superposition coefficients. However, one can find that PI is
an optimal supposition for the nearest FSPs when the HTIEs
are composed of one- and N -period TI entangled states,
independent on the coefficient [27]. For other cases our data
cannot give a clear conclusion.

TABLE IV. Numerical results of the maximal overlap for eight-
qubit mixed TI entangled states defined in Eqs. (60).

State Case 0 Case 1 Case 2 Case 3

D1-1 0.179 58 – 3/8 = 0.375 1/8=0.125
D1-2 0.113 01 – 0.25 0.25
D1-3 0.161 64 – 0.371 67 3/8 = 0.375

D2-1 0.168 65 – 3/8 = 0.375 0.12
D2-2 0.1515 – 0.25 0.207 92

D2-3 0.145 98 – 0.304 15 0.304 16

D3-1 0.090 73 – 3/16 = 0.1875 0.1307
D3-2 0.127 02 – 0.248 95 0.25
D3-3 0.147 92 – 0.370 68 3/8 = 0.375

D4-1 0.124 09 – 0.249 24 0.222 88
D4-2 0.171 66 – 0.323 73 0.323 73
D4-3 0.156 25 – 0.396 56 0.396 56

D5-1 0.080 02 – 3/16 = 0.1875 1/8=0.125
D5-2 0.138 44 – 0.248 04 0.25
D5-3 0.147 22 – 0.3733 3/8 = 0.375

D6-1 0.088 14 – 3/160.1870.185 0.114 64
D6-2 0.094 81 – 0.213 38 0.213 37
D6-3 0.154 91 – 0.308 44 0.308 46

D7-1 0.117 29 0.133 75 3/16 = 0.1875 0.044 02
D7-2 0.114 72 0.25 0.123 49 0.03601
D7-3 0.2053 3/8 = 0.375 0.062 19 0.025 44

D8-1 0.0962 0.12346 3/16 = 0.1875 0.1015
D8-2 0.134 14 0.25 0.124 02 0.017
D8-3 0.175 57 3/8 = 0.375 0.062 04 0.014 55

D9-1 0.078 97 3/16 = 0.1875 0.064 24 0.3486
D9-2 0.073 95 1/8 1/8 0.043 89
D9-3 0.093 03 0.0258 3/16 = 0.1875 0.049 43

A unique case is the one of HTIEs composed of basic
N -period TI entangled states, except of |W 〉N . For example,
let us consider HTIEs,

|ψ〉E1
6 = √

c|ψ1a〉6 + eiϕ|ψ2a〉6, (62)

of which �max is listed in Table V. It is obvious that �max

is completely independent of the TI structures of |ψ1a〉6 and
|ψ2a〉6. A similar feature can be found also for the eight-qubit
case, while our evaluation shows that this feature does not
appear for D9 in Table IV, which is the superposition of two
four-period TI entangled states for eight-qubit multipartite
states. The above evaluations show that this feature does
not occur for the combination with different periods. So
we surmise that it would be unique for N -period basic TI

TABLE V. Numerical results of the maximal overlap for the mixed
TI entangled states, Eqs. (62). The data for case 0 are obtained by
setting θ1 = θ2 = · · · = θ6 = −ϕ.

State Case 0 Case 1 Case 2 Case 3

E1-1 0.2407 0.183 65 0.202 75 0.183 65
E1-2 0.251 99 0.205 46 0.214 39 0.205 45
E1-3 0.242 09 0.202 51 0.205 74 0.202 51

062116-13



H. T. CUI, DI YUAN, AND J. L. TIAN PHYSICAL REVIEW A 82, 062116 (2010)

entangled states, except for |W 〉N , and one has to be careful
when dealing with this case.

Unfortunately we cannot provide the exact proofs for these
observations above, and the underlying physics is also unclear
until now. However, we should express the idea here that it
would be efficient to find the nearest fully separable state from
the TI of entangled states.

Here we discuss the numerical errors of the random simu-
lation of �max. The numerical evaluation for �max is actually
an exhaustive method: sampling randomly the permissible
values for all independent parameters as much as possible and
recording the maximal value of the overlap. It is obvious that
the efficiency and accuracy of this algorithm is dependent on
the sampling times and the number of independent parameters:
greater sampling times help us achieve the true result more
accurately, but the evaluation time increases. The more
independent parameters we use, the slower is the convergence
of evaluation to the true result. Because the purpose of this
section is to show the effect of TI rather than to find the
true �max, we chose sampling times of 105 in order for a
tolerable calculation time, and �max is the steady numerical
result that is unchanged for 104 sampling times. We admit
that the evaluation in this section is crude. However, some
interesting information can still be attained from the data listed
in the previous tables. In addition, the number of independent
parameters can be reduced by some algebra, e.g., Eq. (18),
which makes our evaluation more reliable.

VI. SUMMARY AND CONCLUSION

By several exact and numerical examples, we present a
comprehensive study of the maximal overlap with a fully
separable state for the multipartite entangled pure state with
translational invariance. As shown in the above discussions,
translational invariance of the entangled state has an intrinsic
effect on the determination of the maximal overlap �max and
the nearest fully separable state.

One contribution of this article is the introduction of the
basic TI entangled states, as shown in Sec. III. The key point
for these states is that the other types of TI entangled states
can be expressed as the superposition of these basic ones.
In addition for these basic TI entangled states, �max and
the nearest fully separable state can be determined just by
utilizing the TI. Furthermore, we stress that TI or basic TI
entangled states actually defines a connectedness in the states
belonging to different parties, and this connectedness is the
unique fundamental character that is distinct from one state
to the other state. So the nearest fully separable state for the
entangled state should also manifest this unique TI.

Another contribution of this paper is the demonstration of
the hierarchy for the basic TI entangled states with different
periodic structures. This hierarchy of TI has a fundamental
effect on the evaluation of �max for HTIEs, as shown in
Sec. V (see Sec. V F for a conclusion).

Finally, we have to admit that an exact proof for the
resultant conclusions are still absent. From our point of view,
it is because the understanding of multipartite entanglement
is not yet unified. As shown in this paper, although the
forms of the multipartite entanglements are diverse, there are
some fundamental features by which one can obtain useful

information, such as the introduction of basic TI entangled
states and their hierarchy. So it is promising to understand
multipartite entanglement by disclosing these fundamental
features.
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APPENDIX

This Appendix provides an exact result of �max at the
general state,

|W ′〉 = c0|100〉 + c1e
iα|010〉 + c2e

iβ |001〉, (A1)

where c0,c1,c2 ∈ [0,1], c2
1 + c2

2 + c2
3 = 1, and α,β ∈ [0,2π ].

Then the overlap is

|〈W ′|φ〉|2 = |c0

√
a1(1 − a2)(1 − a3)ei(θ2+θ3)

+ c1

√
(1 − a1)a2(1 − a3)ei(θ1+θ3−α)

+ c2

√
(1 − a1)(1 − a2)a3e

i(θ1+θ2−β)|2

� [c0

√
a1(1 − a2)(1 − a3)

+ c1

√
(1 − a1)a2(1 − a3)

+ c2

√
(1 − a1)(1 − a2)a3]2, (A2)

where the equality occurs when

θ2 + θ3 = 0,

θ1 + θ3 = α, (A3)

θ1 + θ2 = β,

and the solutions can be easily obtained: θ1 = α+β

2 , θ2 =
−α−β

2 = −θ3.
Obviously one has

max
|φ〉

|〈W ′|φ〉|2

⇔ max
a1,a2,a3

[c0

√
a1(1 − a2)(1 − a3) + c1

√
(1 − a1)a2(1 − a3)

+ c2

√
(1 − a1)(1 − a2)a3]2. (A4)

Then the following discussion would focus on the expression

f = c0

√
a1(1 − a2)(1 − a3) + c1

√
(1 − a1)a2(1 − a3)

+ c2

√
(1 − a1)(1 − a2)a3. (A5)

The extremal point for f corresponds to the points at
which the first derivation of f with a1,a2,a3 vanish, i.e.,
∂f

∂a1
= ∂f

∂a2
= ∂f

∂a3
= 0. This condition is transformed into the
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equations

c1

√
a2

1 − a2
+ c2

√
a3

1 − a3
= c0

√
1 − a1

a1
,

c0

√
a1

1 − a1
+ c2

√
a3

1 − a3
= c1

√
1 − a2

a2
, (A6)

c0

√
a1

1 − a1
+ c1

√
a2

1 − a2
= c2

√
1 − a3

a3
.

Introducing the media variables x =
√

a1
1−a1

a2
1−a2

, y =√
a2

1−a2

a3
1−a3

, and z =
√

a1
1−a1

a3
1−a3

, the above equation can be

rewritten as

c1x + c2z = c0,

c0x + c2y = c1, (A7)
c0z + c2y = c2,

where the solutions are x = 1−2c2
2

2c0c1
, y = 1−2c2

0
2c1c3

, and z = 1−2c2
1

2c0c2
.

Furthermore, by evaluating the ratios x
y
, x

z
,
y

z
and with the

constraint c2
0 + c2

1 + c2
2 = 1, one can completely determine the

values of c0,c1,c2.

The next step is to judge whether the point corresponds
to the maximally extremal point, where f has to sat-
isfy the relation ∂2f

∂aα∂aβ
� 0 (α,β = 1,2,3). With Eqs. (A6),

one can check out easily ∂2f

∂aα∂aβ
� 0 (α 
= β). Thus one

has

∂2f

∂a2
1

=
√

(1 − a2)(1 − a3)

4(1 − a1)3/2
c0

√
1 − a1

a1

(
2 − 1

a1

)
,

∂2f

∂a2
2

=
√

(1 − a1)(1 − a3)

4(1 − a2)3/2
c1

√
1 − a2

a2

(
2 − 1

a2

)
, (A8)

∂2f

∂a2
3

=
√

(1 − a1)(1 − a2)

4(1 − a3)3/2
c2

√
1 − a3

a3

(
2 − 1

a3

)
,

where Eq. (A6) is used. It is obvious that only if aα < 1
2 , then

∂2f

∂a2
α

� 0. With this condition one can easily find the maximally
extremal values of f .

Finally it should be pointed that the maximal values
are in general not completely consistent with the extremal
values. Thus the boundary points aα = 0,1 must be checked
independently.
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