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Two-qubit Bell inequality for which positive operator-valued measurements are relevant
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A bipartite Bell inequality is derived which is maximally violated on the two-qubit state space if measurements
describable by positive operator valued measure (POVM) elements are allowed, rather than restricting the
possible measurements to projective ones. In particular, the presented Bell inequality requires POVMs in order to
be maximally violated by a maximally entangled two-qubit state. This answers a question raised by N. Gisin [in
Quantum Reality, Relativistic Causality, and Closing the Epistemic Circle: Essays in Honour of Abner Shimony,
edited by W. C. Myrvold and J. Christian (Springer, The Netherlands, 2009), pp. 125–138].
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I. INTRODUCTION

All pure bipartite entangled states violate the Clauser-
Horne-Shimony-Holt (CHSH) Bell inequality [1,2] by per-
forming appropriate measurements on the subsystem’s
state [3]. On the other hand, any Bell inequality that can be
violated in the quantum world can be maximally violated by
some pure state and projective (von Neumann) measurements
if no restrictions are put on the underlying Hilbert space.
However, projective measurements are not the most general
measurements. Still, we have found no examples in the
literature where general [so-called positive operator valued
measure (POVM)] measurements would provide a larger
violation of some Bell inequalities by restricting them to
a given dimensional state space. In fact, this concerns a
more specific problem posed recently by Gisin asking for a
state for which POVM measurements would perform better
than projective ones, yielding a larger violation of Bell
inequalities [4].

In the present paper we study these problems by restricting
ourselves to the two-qubit space and to maximally entangled
qubits, respectively. Note that in the case of two-outcome Bell
inequalities, POVMs are not better than projective measure-
ments with respect to the amount of Bell violation [5–8].
Further, in the case of all those multiple-outcome Bell
inequalities that we are aware of in the literature, projective
measurements still give maximal violation in the specific state
space considered (see, e.g., Refs. [9–13]).

On a related note, we mention a recent result by Cabello
and also by Nakamura on the Kochen-Specker theorem [14]
proving that this theorem can be extended to a single qubit if
POVM measurements can be used instead of only projective
ones [15]. Taking this result together with a method of
Refs. [6,16] for building a d × d pseudotelepathy game [17]
from a d -dimensional Kochen-Specker construction, one may
wonder whether this would entail a Bell inequality for a
system of dimension 2 × 2 where POVMs would give a higher
violation than projective ones. However, this approach turns
out not to be feasible due to the proof of Brassard et al. [18],
stating that there is no pseudotelepathy game of dimension
2 × 2 even if POVMs are included.
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Despite the above negative results, we manage to derive a
Bell inequality which proves that POVMs are relevant with
respect to projective measurements for a two-qubit maximally
entangled state and also for the case of a two-qubit space. First,
Sec. II introduces notation, then Sec. III reviews shortly the for-
malism of POVM and projective measurements on qubit states.
In Sec. IV, an optimization problem is presented considering
positive definite matrices versus projection matrices. In Sec. V,
a parametrized Bell inequality is given, for which the quantum
bound is calculated either including POVM measurements or
being restricted to projective measurements. We consider two
cases: Either the shared state is the two-qubit singlet state
(Sec. V C), or it may be any state in the two-qubit state
space (Sec. V D). In Sec. VI, we conclude and pose open
questions.

II. PRELIMINARIES

Let us consider a standard Bell scenario [1]. Two spacelike
separated parties, Alice and Bob, share copies of a quantum
state ρ in some dimension d × d. The two parties can choose
among NA and NB different measurements which are labeled
by x ∈ {0, . . . ,NA − 1} for Alice and by y ∈ {0, . . . ,NB − 1}
for Bob, where we denote the respective outputs by a ∈
{0, . . . ,rA − 1} and b ∈ {0, . . . ,rB − 1}. In the most general
description of a quantum measurement, Mx

a (My

b ) denote the
positive operator corresponding to outcome x (y) when Alice
(Bob) performs measurement a (b). Then the joint conditional
probabilities can be calculated in quantum theory by the
formula

p(ab|xy) = Tr
(
ρMx

a ⊗ M
y

b

)
. (1)

The positive operators above, summing to the identity∑
a Mx

a = ∑
b M

y

b = 1, constitute POVMs for any inputs
x,y. However, in the case of projection measurements, the
positive operators Mx

a and M
y

b are projectors, hence the ones
belonging to the same inputs ought to be orthogonal to each
other.

A Bell expression is a linear function �b · �p = ∑
a,b,x,y

babxyp(ab|xy) of the conditional probabilities p(ab|xy) de-
fined by Eq. (1), where �b has real components. In order to
maximize a Bell expression, it is enough to consider pure
states ρ = |ψ〉〈ψ |. In our study, we will focus on the state
space of a pair of qubits, where up to a change of local basis any
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pure state can be written as |ψ(θ )〉 = cos(θ )|00〉 + sin(θ )|11〉.
Now, let us take θ = π/4, resulting in the maximally entan-
gled two-qubit state |φ+〉 = (|00〉 + |11〉)/√2. Then, Gisin’s
problem in Ref. [4] would be resolved by exhibiting a vector
�b, where the maximum of �b · �p is achieved with POVM
measurements (in contrast to the more restrictive case of
projective measurements) on state |φ+〉.

In particular, we present a Bell expression (called ICH3)
which consists of the CHSH expression [2] written in the
Clauser-Horne form [19],

ICH ≡ −pA(0|0) − pB(0|0) + p(00|00) + p(00|01)

+p(00|10) − p(00|11), (2)

and an expression involving on Alice’s side a three-outcome
measurement (x = 2),

I3 ≡ −pA(0|2) − (1 − 1/
√

2)pA(1|2) + p(00|20)

+p(00|21) + p(10|20) − p(10|21), (3)

resulting in the following Bell inequality:

ICH3 ≡ cICH + I3 � 1, (4)

where c > 0 is supposed. The local bound of 1 is obtained by
examining all the deterministic strategies with factorized joint
probabilities p(ab|xy) = pA(a|x)pB(b|y), where pA(a|x),
pB(b|y) denote local marginal probabilities on Alice and Bob’s
respective sides.

On one hand, we show by analytical means in Sec. V C
that POVMs are required to obtain the optimum value of
ICH3 on |φ+〉. On the other hand, it is shown (based on
numerically exact computations) in Sec. V D that, if we limit
the local dimension to 2, it is still beneficial to perform POVM
measurements with respect to projective ones. The above
results have implications in the context of dimension witnesses
as well [20].

III. MEASUREMENTS ACTING ON QUBITS

A POVM is a family of positive operators {Mi} with
elements Mi , which sum to the identity

∑
Mi = 1. In the

case of qubits, a Bell expression is optimized by pure states
and extremal POVMs, whose elements Mi are proportional to
rank-1 projectors [26].

For the case of binary outcomes and qubits, the extremal
POVMs are projectors parametrized by a unit vector �v =
(vx,vy,vz),

M0(�v) = 1
2 (1 + �v · �σ ), (5)

M1(�v) = 1
2 (1 − �v · �σ ), (6)

where σ = (σx,σy,σz) are the Pauli matrices and the proba-
bility that outcome i occurs for a state ρ is given by Born’s
rule, Tr[Mi(�v)ρ]. Hence for the maximally entangled state
ρ = |φ+〉〈φ+|, conditional probabilities (1) read as

p(ab = 00|x(�a),y(�b)) = 〈φ+|Mx(�a)
a=0 ⊗ M

y(�b)
b=0 |φ+〉

= 1
4 (1 + �a′ · �b), (7)

and the local marginal probabilities are given by

pA(a = 0|x(�a)) = pB(b = 0|y(�b)) = 1/2. (8)

In the above formulas, x(�a) and y(�b) label the respective
measurement settings of Alice and Bob parametrized by unit
vectors �a,�b according to Eq. (5). Vector �a′ differs from �a in a
sign change of ay , that is, �a′ = (ax, − ay,az).

For a three-outcome generalized POVM measurement
acting on qubits, each of the three extremal POVM elements
Mi is proportional to rank-1 projectors, hence we have

Mi = λi |wi〉〈wi |, (9)

with
∑2

i=0 Mi = 1, where λi > 0 and |wi〉 are normalized
states. On the other hand, for a three-outcome projective
measurement on qubits, Mi can be rank-0,−1,−2 projec-
tors. In the case of rank 0 and rank 2, the matrix Mi

is the zero and identity matrix, respectively, whereas for
rank 1, Mi is defined by Eq. (5). Taking into account the
constraint that for qubits the sum of the ranks of M0 and
M1 cannot exceed 2, we have the following six possible
pairs: (0,0),(0,1),(1,0),(1,1),(0,2),(2,0), where the pair (i,j )
denotes the ranks of matrices M0 and M1, respectively.

IV. CASE STUDY

Let us consider the following optimization problem, which
will turn out to play a key role in the construction of
the Bell inequality ICH3 defined by (4). First, let us define
matrices

F0 =
(

1 0

0 −1

)
(10)

and

F1 =
(

1 − √
2 1

1 1 − √
2

)
. (11)

Then, we wish to maximize

W = Tr(M0F0) + Tr(M1F1) (12)

over M0,M1,M2 positive 2 × 2 matrices subject to M0 +
M1 + M2 = 1. Hence Mi , i = 0,1,2, can be viewed as
POVM elements of a three-outcome POVM. Let us denote
by max WPOVM the maximum of (12) obtained in this way,
whereas, by further constraining Mi to be projection matrices,
we write the respective maximum as max Wproj. In the
following subsections these values are given explicitly.

A. Maximum with POVMs

The optimization problem in Eq. (12) with Mi being POVM
elements is a typical instance of a semidefinite programming
problem. Since F0,F1 matrices are real valued, max WPOVM

can be obtained with real-valued matrices Mi . By solving the
semidenite programming (SDP) problem using the package
SEDUMI [27], we obtain

w ≡ max WPOVM = 1.071 419 898 7 · · · . (13)
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The matrices Mi corresponding to this solution obey the
positivity and unity conditions up to high precision (∼10−10).
Below, they are written out using fewer digits:

M0 =
(

0.84153 −0.15627

−0.15627 0.02902

)
, (14)

M1 =
(

0.14061 0.25242

0.25242 0.45314

)
, (15)

and by definition M2 = 1 − M0 − M1. As it can be checked,
each of these truncated matrices has positive eigenvalues,
hence they define a valid POVM. By substituting these
matrices into the expression W in (12), we regain the value of
w in (13) up to five digits.

B. Maximum with projection matrices

Now, let Mi be two-dimensional projection matri-
ces in the optimization problem (12). According to
the ranks of (M0,M1), we have the six possibilities
(0,0),(0,1),(1,0),(1,1),(0,2),(2,0), listed in Sec. III. The cor-
responding Wproj values read as follows [using the parametriza-
tion of rank-1 projectors in Eqs. (5) and (6)]:

Ranks Wproj

(0,0) 0
(0,1) −vx + 1 − √

2
(1,0) vz

(1,1) −vx + vz + 1 − √
2

(0,2) 2 − 2
√

2
(2,0) 0

Since �v is a unit vector, max{−vx + vz} = √
2, and ac-

cording to the table, we obtain max Wproj = 1. Comparing
this value with the value of w in (13) shows that, indeed,
POVM elements give benefit over projectors in the presented
optimization problem.

V. BELL EXPRESSION ICH3

We next try to explain the construction of the Bell
expression ICH3 [introduced under (4)] building upon the
results of the optimization problem in the previous section.
In particular, we wish to achieve somehow that matrices F0

and F1 defined by Eqs. (10) and (11) would naturally arise
in a Bell scenario. For this sake, suppose that Alice shares
with Bob the maximally entangled quantum state |φ+〉 and
the optimal POVM elements M0,1,2 in Eqs. (14) and (15)
correspond to Alice’s three-outcome measurement, Mx=2

a =
Ma for a = 0,1,2. Moreover, let us assume that Bob has two
binary-outcome settings, where the measurement operators
corresponding to outcome 0 are described by the following
projectors:

M
y=0
b=0 = 1

2 (1 + �b0 · �σ ),
(16)

M
y=1
b=0 = 1

2 (1 + �b1 · �σ ),

with �b0 = (1/
√

2,0,1/
√

2) and �b1 = (−1/
√

2,0,1/
√

2). Then
F0 and F1 matrices of Eqs. (10) and (11) can be reproduced in
the following way:

F0/
√

2 = −1 + M
y=0
b=0 + M

y=1
b=0 ,

(17)
F1/

√
2 = −(1 − 1/

√
2)1 + M

y=0
b=0 − M

y=1
b=0 .

For a maximally entangled state |φ+〉 and for real valued
2 × 2 matrices A,B, we have the expectation value 〈φ+|A ⊗
B|φ+〉 = Tr(AB)/2. Hence due to equations in (17) the
optimization problem (12) can be seen as maximizing the
expression 2

√
2I3 of Eq. (3) over Alice’s measurement {M0 =

Mx=2
a=0 ,M1 = Mx=2

a=1 } assuming Bob’s projectors M
y=0,1
b=0 are

defined by (16).
Let us now consider the Bell inequality ICH3 of (4),

ICH3 = cICH + I3 � 1, (18)

with c positive. In particular, if c is very large, then the
CH expression (2) becomes dominant in ICH3, entailing
that the maximum quantum violation can be obtained by
projection operators Mx=0

a=0,1,M
y=0
b=0,1 very close to the ones

which maximize the CH expression. Note that for ICH the
maximum quantum value of (

√
2 − 1)/2 can be obtained by

the state |φ+〉 and by projection operators M
y=0,1
b=0 defined

by (16) on Bob’s side. Assuming the above ideal case for Bob’s
operators and a state |φ+〉, we obtain that ICH3 is maximal
if Alice’s three-outcome measurement (x = 2) consists of
POVM elements (14) and (15) resulting from the optimization
problem (12). On the other side, it is expected that if c is not
extremely large, then Bob’s optimal operators M

y=0,1
b=0 would

differ somewhat from the ideal CH-violating ones, but should
still be close to it, so that Alice’s three-outcome measurement
(Mx=2

a ) would still prefer POVM elements with respect to
projection-valued elements in order to get maximum violation
of ICH3. In the following, the validity of the above reasoning
will be supported by explicit calculations. First, in Sec. V A,
a lower bound is established on the violation of ICH3 applying
POVMs on |φ+〉. In Sec. V B, Bell inequalities are derived from
ICH3 restricted to projective measurements on the two-qubit
space. Then, in Secs. V C and V D, the maximal violation
of inequality ICH3 is calculated in the case of projective
measurements acting on |φ+〉 and on the two-qubit state space,
respectively. In both cases a strictly smaller violation of ICH3

than with the use of POVM measurements is found.

A. Lower bound with POVM

A useful lower bound on ICH3 can be obtained for a pair of
maximally entangled qubits, and for any two-qubit state as well
in the following manner. Let us take as a special choice the state
|φ+〉 and those measurement operators which maximize cICH

in (4), giving the value of c(
√

2 − 1)/2. However, with these
operators for Bob, as discussed earlier, we have the maximum
value of w/(2

√
2) for I3, where w comes from (13). Adding

up the two values according to Eq. (4), we have the following
lower bound on the expression ICH3 :

max
POVM,φ+

ICH3 � c(
√

2 − 1)/2 + w/(2
√

2) (19)
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for POVM measurements acting on the state |φ+〉 and on any
two-qubit state as well. We wish to mention that any extremal
POVM measurement with real coefficients on the qubit space
in the form of (9) can be reproduced with rank-1 von Neumann
measurements with real coefficients acting on the qutrit space.
This is due to Neumark’s theorem [28], stating that POVM
measurements can always be seen as projective measurements
acting on a larger Hilbert space. For a three-outcome measure-
ment, an explicit construction is given by [29].

B. Deriving Bell inequalities in the case of projective
measurements on qubits

Here we study the maximum quantum violation of ICH3

if only projective measurements are allowed on the local
qubit spaces. First, let us note that in order to violate any
two-party Bell inequality, each party must have at least two
nondegenerate operators belonging to different measurement
settings, otherwise the quantum predictions could be simulated
within a local classical model. Concerning a pair of qubits
and inequality ICH3, this entails that both of Bob’s operators
must be rank-1 projectors. We now state the following
lemma:

Lemma 1. Consider inequality ICH3 and assume that only
projective measurements can be performed on the local qubit
spaces. In this case, ICH3 can be violated only if Alice’s and
Bob’s measurement operators corresponding to ICH are rank-1
projectors.

The proof of this lemma can be found in [30]. Since
we are interested in the nontrivial case that ICH3 can be
violated, due to the above lemma, Alice’s two operators
M

x=0,1
a=0 can be considered as rank-1 projectors. Then, we are

left with six possible cases, (0,0),(0,1),(1,0),(1,1),(0,2),(2,0),
according to the ranks of Mx=2

a=0 and Mx=2
a=1 , as discussed

in Sec. III. In each case above the original inequality ICH3

is modified as follows. If a measurement Mx=2
a is rank 0,

we set pA(a|2) = 0, p(ab|2y) = 0. In the case that Mx=2
a is

rank 2, we set pA(a|2) = 1, p(ab|2y) = p(b|y). On the other
hand, if both Mx=2

a=0 and Mx=2
a=1 are rank-1 projectors, we have

pA(0|2) + pA(1|2) = 1 and p(0b|2y) + p(1b|2y) = pB(b|y).
All the above relations hold for a,b,y ∈ {0,1}. In this way we
derive two-outcome Bell inequalities from ICH3, which look
as follows:

I00 ≡ cICH � 0, (20)
I01 ≡ cICH + pA(0|2) + p(00|20) − p(00|21) � 1/

√
2,

(21)
I10 ≡ cICH − pA(0|0) + p(00|00) + p(00|01) � 1, (22)

I11 ≡ cICH − 1/
√

2pA(0|2) + pB(0|0) − pB(0|1)

+2p(00|21) + 1/
√

2 − 1 � 1, (23)
I02 ≡ cICH + pB(0|0) − pB(0|1) � 1, (24)

I20 ≡ cICH + pB(0|0) + pB(0|1) − 1 � 1, (25)

where Iij denotes the Bell expression derived from ICH3 by
setting Mx=2

a=0 to be a rank-i projector and Mx=2
a=1 to be rank-j

projector. So, in order to get the maximum violation of ICH3 by
von Neumann’s projective measurements on qubits, we are left
with calculating the maximum quantum violation of the above
inequalities (20)–(25) by considering the rank-1 projectors.

This is just what we will do in the following by considering
the maximally entangled qubits (Sec. V C) and also the state
space of two qubits (Sec. V D).

C. Maximizing ICH3 with projective measurements on
maximally entangled qubits

First, note that the expressions I20 and I02 are equivalent up
to relabeling of the outcomes. Further, for |φ+〉, expressions
I00, I02, I20 coincide giving the quantum maximum of
c/2(

√
2 − 1). In order to calculate the quantum maximum for

the remaining three cases I01, I10, I11, we present the following
lemma:

Lemma 2. Let us assume that �bi , i = 1,2 are unit vectors
in the Euclidean space. Then we have max�b1,�b2

{|�b1 + �b2| +
k|�b1 − �b2|} = 2

√
1 + k2.

Using this lemma, Eqs. (7) and (8), and the simple fact
that �a · �c � |�c| for a unit vector �a, we obtain the following
quantum maximum for the Bell expressions (20)–(25) with
rank-1 projective measurements on|φ+〉 :

Expression Maximum on state |φ+〉
I00,I02,I20

1
2 c(

√
2 − 1)

I01
1
2 [1/

√
2 − 1 − c +

√
c2 + (c + 1)2]

I10
1
2 [−c +

√
c2 + (c + 1)2]

I11
1
2 [1/

√
2 + c(

√
2 − 1)].

We can observe the simple relations I00 < I11 and I01 < I10

between the right-hand side formulas. On the other hand, using
the relationship between the quadratic and arithmetic mean,
we have I10 > I11 for c > 0. Thus for c > 0, the quantum
maximum of expression ICH3 with projective measurements
on |φ+〉 is provided by expression I10, yielding the value of

max
proj,φ+

ICH3 = −c +
√

c2 + (c + 1)2

2
. (26)

On the other hand, we have the lower bound (19) of expression
ICH3 with POVM measurements on |φ+〉, where w is defined
by (13). Note that Eq. (26) becomes bigger than 1 (i.e., the
local bound on ICH3) for c > 3. Hence in the following only
the interval c > 3 will be considered. By equating the right-
hand side of Eqs. (19) and (26), and solving the equation
for c, we obtain the value of (2 − w2)/(4w − 4) 
 2.9826.
Hence for c > 3, the right-hand side of Eq. (19) is definitely
bigger than that of Eq. (26). This implies that for c > 3, Bell
inequality ICH3 in (4) is more strongly violated by POVMs on
a pair of maximally entangled qubits than by considering only
projective measurements. This answers Gisin’s question [4] in
the affirmative.

We may have a quantitative measure about the performance
of POVMs over projective measurements by adding a fraction
of p white noise to the maximally entangled two-qubit
state [31],

ρ(p) = (1 − p)|φ+〉〈φ+| + p1/4, (27)
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FIG. 1. (Color online) Noise thresholds in function of parameter c

such that POVMs on a two-qubit Werner state [31] with mixed noise
p ceases to be better than projective measurements. The curve gives
an analytical lower bound for p.

such that POVMs on state ρ(p) still perform better than
projective ones. In the case of ρ(p), a lower bound on
the violation of ICH3 for POVM measurements is given by
(1 − p) maxPOVM,φ+ ICH3 + [−2c + 2(1/

√
2 − 1)TrM1]p/4,

with M1 defined in Eq. (15). Figure 1 shows in the function of
c the amount of white noise which can be tolerated due to the
above formula such that POVM measurements are still better
than projective ones. The lower bound of p = 0.249 717% on
the maximum tolerable noise is attained by c 
 6.561 82.

D. Maximizing ICH3 with von Neumann measurements
on a pair of qubits

We now fix c = 100 and show that if the state is allowed to
be any two-qubit state, POVMs can still perform better than
projectors. Our task is to compute the maximum quantum
violation for the derived Bell inequalities (20)–(25), assuming
that rank-1 projectors act on the two-qubit space. However, we
can establish an upper bound on these values by computing
the SDP hierarchy of Navascués, Pironio, and Acı́n [10]
on various levels. Incidentally, the lower bound achievable
with real-valued rank-1 projectors on qubits coincides with
the upper bound value coming from the SDP calculation
of [10] on level 2 for each inequality in the set (20)–(25). We
collected in the table below the obtained values. Note that Bell
expressions I02 in Eq. (24) and I20 in Eq. (25) are equivalent to
each other.

Expression Maximum on qubits

I00 20.710 68
I01 20.919 28
I10 21.066 90
I11 21.068 01
I02,I20 20.717 75

This table shows that by considering projective measure-
ments, the two-qubit maximum of the expression ICH3

for c = 100 is provided by the expression I11, yielding

numerically the value of 21.068 01, whereas owing to
Eq. (19) the lower bound on the two-qubit maximum by
considering POVMs is 100[

√
(2) − 1]/2 + w/2 
 21.0895.

This proves the existence of bipartite Bell inequalities
for which the maximal violation on the two-qubit space
can be achieved only with the use of generalized POVM
measurements.

Note that any bipartite Bell inequality consisting of two
measurement settings with two outcomes each on Bob’s side
can be maximally violated on the two-qubit space. This follows
from the works of Refs. [32,33]. In particular, due to Lemma 2
of Ref. [33], the quantum maximum is achieved by a state
with support on Bob’s qubit. However, using the Schmidt
decomposition theorem, it induces the composite space to
be a pair of qubits, letting Alice’s state space be a qubit as
well. In light of this, ICH3 is a Bell inequality whose maximal
violation is attained by performing POVM measurements on
qubits. On the other hand, if only projective measurements
are allowed, then qutrits are needed to achieve maximal
violation.

VI. CONCLUSION

Though there are indications that performing POVM
measurements on a given state or on a given state space may
yield a benefit over projective ones, the question has not been
settled yet. In the present paper we provide a bipartite Bell
inequality with a small number of inputs and outputs, which
answers this question in the affirmative. Moreover, we found
that the improvement, which we defined in terms of noise
resistance, is not marginal. It may be within the range of what
is feasible experimentally nowadays.

However, one may still wonder whether it would be possible
to construct even better Bell inequalities with more settings or
with more parties allowing a bigger separation in the maximum
of Bell values achievable with POVM versus projective mea-
surements on a given state. A bigger gap might be suggested
by the amount of communication to simulate different types
of measurements on a singlet state. Whereas for projective
measurements one bit of communication suffices [34], for
POVM measurements the best protocol constructed so far
needs on average six bits of communication [35]. Based
on the best local models constructed for POVMs and for
projective measurements on a mixture of d-dimensional
maximally entangled states with noise [36], it is also plau-
sible that moving from qubits to higher dimensions, POVM
measurements become much more efficient than projective
ones.
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