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Initial correlations in open-systems dynamics: The Jaynes-Cummings model
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Employing the trace distance as a measure for the distinguishability of quantum states, we study the influence
of initial correlations on the dynamics of open systems. We concentrate on the Jaynes-Cummings model for which
the knowledge of the exact joint dynamics of system and reservoir allows the treatment of initial states with
arbitrary correlations. As a measure for the correlations in the initial state we consider the trace distance between
the system-environment state and the product of its marginal states. In particular, we examine the correlations
contained in the thermal equilibrium state for the total system, analyze their dependence on the temperature and
on the coupling strength, and demonstrate their connection to the entanglement properties of the eigenstates of
the Hamiltonian. A detailed study of the time dependence of the distinguishability of the open system states
evolving from the thermal equilibrium state and its corresponding uncorrelated product state shows that the open
system dynamically uncovers typical features of the initial correlations.
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I. INTRODUCTION

Quantum systems are typically subjected to interaction
with an environment which influences their dynamics in
a non-negligible way. A realistic description, taking this
external influence into account, is crucial for the theoret-
ical description of open quantum systems, which play an
important role in many areas of physics [1]. The available
theoretical tools allow a full characterization for a Markovian
dynamics, which can be described by means of completely
positive quantum dynamical semigroups [2,3]. However, the
assumptions justifying the Markovian description of the open
system dynamics are often too restrictive, and a more general
analysis is required. A wealth of different approaches to
deal with non-Markovian dynamics have been introduced
[4–23], but they typically rely on the hypothesis that at
the initial time the open system and the environment are
statistically independent. This assumption is well justified
in the case of weak interaction, but in general one cannot
neglect the initial correlations between the open system and the
environment [24–26].

Considering an open system S which is coupled to an
environment E and assuming that the composite system
evolves according to a unitary time evolution operator U (t)
from a total initial state ρSE(0), we can write the state of S at
time t as follows:

ρS(t) = TrE[U (t)ρSE(0)U †(t)]. (1)

This equation defines a linear, completely positive, and trace-
preserving map �t from the state space of the total system

*andrea.smirne@unimi.it
†breuer@physik.uni-freiburg.de
‡jyrki.piilo@utu.fi
§bassano.vacchini@mi.infn.it

S + E to the state space of the open system S:

ρSE(0) �→ ρS(t) = �tρSE(0). (2)

If the open system S and its environment E are initially in an
uncorrelated tensor product state

ρSE(0) = ρS(0) ⊗ ρE (3)

with a fixed environmental state ρE , Eq. (1) also defines a
linear map �t from the state space of S into itself,

ρS(0) �→ ρS(t) = �tρS(0) = TrE[U (t)ρS(0) ⊗ ρEU †(t)].

(4)

It can be shown that this quantum dynamical map �t is again
completely positive and trace preserving. Under the additional
assumption that the family of dynamical maps {�t,t � 0}
constitutes a semigroup, one derives the general mathematical
structure of its generator, which leads to the widely used
quantum Markovian master equations for the open system
state ρS(t) in Lindblad form.

The above construction of the quantum dynamical map �t

presupposes that one restricts the class of initial conditions
to states of the form of Eq. (3), where ρE is a fixed, given
environmental state. Thus, a large class of initial conditions
is excluded when considering dynamical maps acting on the
reduced state space, in particular those initial conditions that
describe correlations and entanglement between system and
environment. On the other hand, it is a well-known fact that
correlations in the initial state can have strong influences on
the open system dynamics, both in thermal equilibrium and in
nonequilibrium systems. The question is thus, how do initial
correlations affect the reduced system dynamics, and what are
appropriate observable measures that quantify such effects?
Here, we discuss these questions in detail with the help of
the example of the Jaynes-Cummings model, the model of a
two-state system coupled to a bosonic field mode, employing
the analytical representation of the reduced dynamics of this
model for arbitrary initial states [27].
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It should be mentioned that under certain additional
assumptions Eq. (1) can indeed be used to construct maps
on the reduced state space to represent the dynamics in the
case of initial correlations [28–33]. However, this construction
demands that the initial correlations between the system and
its environment are fixed. It turns out that the dynamical maps
arising in this way may be not completely positive, and not
even positive. This requires the determination of a certain
compatibility domain in the physical state space, which is
a very complicated mathematical task. In the present paper we
shall follow an entirely different strategy, to analyze the role
of initial correlations. Namely, in order to quantify the effect
of initial system-environment correlations in the subsequent
time evolution of the open system, we will investigate the
trace distance D(ρ1

S(t),ρ2
S(t)) between a pair of states ρ1

S(t)
and ρ2

S(t) of S, which evolve from a given pair of initial
states ρ1

SE(0) and ρ2
SE(0) of the total system. This approach has

also been used in [17,18] to construct a measure for the non-
Markovianity of quantum processes, and in [34] to develop
a witness which allows the detection of initial correlations
through only local measurements on the open system. An
application to a specific system has been recently considered
in [35].

In the present paper we will address, in particular, the
situation in which ρ1

SE(0) represents a thermal equilibrium
(Gibbs) state corresponding to the full Hamiltonian of the
model. Since this correlated state is invariant under the time
evolution, its reduced states ρ1

S(0) = TrEρ1
SE(0) and ρ1

E(0) =
TrSρ1

SE(0) remain, of course, time independent. However,
the initial state ρ2

SE(0) = ρ1
S(0) ⊗ ρ1

E(0) given by the product
of the marginals does evolve in time, and we will investigate
the dynamics of the trace distance D(ρ1

S(t),ρ2
S(t)) between

the open system states corresponding to the initial states
ρ1

SE(0) and ρ2
SE(0). For this case the trace distance is bounded

from above by the trace distance D(ρ1
SE(0),ρ1

S(0) ⊗ ρ1
E(0))

which provides a measure for the amount of correlations
in the initial Gibbs state [34]. Analyzing in detail the
dependence on the temperature and on the system-environment
coupling strength, we demonstrate that at small temperatures
characteristic properties of these correlations are related to
the eigenvalue spectrum and, in particular, to the quantum
correlations and the entanglement structure of the eigenstates
of H . We will discuss further the signatures of these properties
in the subsequent dynamics of the open system states. It
will be shown that, in fact, the open system dynamically
uncovers typical features of the correlations in the initial
states.

The paper is organized as follows. In Sec. II we introduce
the trace distance and show its relevance as a measure of the
distinguishability of two quantum states and of the correlations
contained in a given bipartite state. We further consider the
exact reduced dynamics of the Jaynes-Cummings model, and
study as an example the time behavior of the distinguishability
of distinct initial states. In Sec. III we provide a detailed study
of the correlations contained in the Gibbs state associated
with the Jaynes-Cummings Hamiltonian, as measured by
the trace distance between the state and the tensor product
of its marginals. We then investigate the time dependence
of the distinguishability of the corresponding time-evolved
states.

II. TRACE DISTANCE AND INITIAL
SYSTEM-ENVIRONMENT CORRELATIONS

A. General theory

1. Properties and physical interpretation of the trace distance

The trace distance of two trace class operators A and B is
defined as 1

2 times the trace norm of A − B,

D(A,B) = 1
2 ||A − B||1, (5)

where the trace norm of an operator X is defined by

||X||1 = Tr|X| = Tr
√

X†X. (6)

If X is trace class and self-adjoint with eigenvalues xi ,
this formula reduces to the sum of the absolute eigenvalues
(counting multiplicity),

||X||1 =
∑

i

|xi |. (7)

The trace distance of two quantum states, represented
by positive operators ρ1 and ρ2 with unit trace, is thus
given by

D(ρ1,ρ2) = 1
2 ||ρ1 − ρ2||1 = 1

2 Tr|ρ1 − ρ2|. (8)

The trace distance is a metric on the space of physical states
with several nice properties which make it a useful measure
for the distance between two quantum states. We list some of
them:

(1) The trace distance for any pair of states satisfies the
inequality

0 � D(ρ1,ρ2) � 1, (9)

where D(ρ1,ρ2) = 0 if and only if ρ1 = ρ2, and D(ρ1,ρ2) = 1
if and only if ρ1 and ρ2 have orthogonal supports.

(2) Being a metric, the trace distance satisfies the triangular
inequality,

D(ρ1,ρ2) � D(ρ1,ρ3) + D(ρ3,ρ2). (10)

(3) All trace-preserving positive maps � are contractions
of the trace distance [36],

D(�ρ1,�ρ2) � D(ρ1,ρ2), (11)

where the equality sign holds if � is a unitary transformation.
(4) The trace distance is subadditive with respect to the

tensor product,

D(ρ1 ⊗ σ 1,ρ2 ⊗ σ 2) � D(ρ1,ρ2) + D(σ 1,σ 2). (12)

In particular, one has

D(ρ1 ⊗ σ,ρ2 ⊗ σ ) = D(ρ1,ρ2). (13)

(5) The trace distance can be represented as a maximum
taken over all projection operators �,

D(ρ1,ρ2) = max
�

Tr{�(ρ1 − ρ2)}. (14)

The physical interpretation [37] of the trace distance is
based on the relation (14). Suppose Alice prepares a system
in one of two quantum state ρ1 and ρ2 with probability of
1/2 each. She gives the system to Bob, who performs a
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measurement in order to distinguish the two states. Employing
Eq. (14) one can show that the maximal success probability
for Bob to identify the state correctly is given by [1 +
D(ρ1,ρ2)]/2. This means that the trace distance represents
the maximal bias in favor of the correct state identification
which Bob can achieve through an optimal strategy. Hence,
the trace distance D(ρ1,ρ2) can be interpreted as a measure
for the distinguishability of the states ρ1 and ρ2.

2. Dynamics of the trace distance

We consider any two total system initial states ρ1
SE(0) and

ρ2
SE(0), and the corresponding open system states ρ1

S(t) and
ρ2

S(t) at time t . According to Eqs. (1) and (2) the latter are
given by ρ1

S(t) = �tρ
1
SE(0) and ρ2

S(t) = �tρ
2
SE(0). Since �t

is completely positive and trace preserving, we obtain from
Eq. (11) a bound for the trace distance between the reduced
system states,

D
(
ρ1

S(t),ρ2
S(t)

)
� D

(
ρ1

SE(0),ρ2
SE(0)

)
. (15)

If the initial states are uncorrelated with the same environmen-
tal state ρE , that is, ρ1

SE(0) = ρ1
S(0) ⊗ ρE(0) and ρ2

SE(0) =
ρ2

S(0) ⊗ ρE(0), this inequality reduces with the help of (13) to
the contraction property for the dynamical map (4),

D
(
ρ1

S(t),ρ2
S(t)

)
� D

(
ρ1

S(0),ρ2
S(0)

)
. (16)

This means that for initially uncorrelated total system states
and identical environmental states the trace distance between
the reduced system states at time t can never be larger than its
initial value.

The inequality (15) may be written as

D
(
ρ1

S(t),ρ2
S(t)

) − D
(
ρ1

S(0),ρ2
S(0)

)
� D

(
ρ1

SE(0),ρ2
SE(0)

) − D
(
ρ1

S(0),ρ2
S(0)

)
≡ I

(
ρ1

SE(0),ρ2
SE(0)

)
. (17)

According to this inequality the change of the trace distance
of the open system states is bounded from above by the
quantity I (ρ1

SE(0),ρ2
SE(0)) � 0. This quantity represents the

distinguishability of the total system initial states minus
the distinguishability of the corresponding reduced system
initial states. Thus, I (ρ1

SE,ρ2
SE) can be interpreted as the

relative information of the total initial states which is initially
outside the open system, i.e., which is inaccessible for local
measurement performed on the open system [34].

For I (ρ1
SE(0),ρ2

SE(0)) > 0 the trace distance of the open
system states can increase over its initial value. This increase
can be interpreted by saying that information which is initially
outside the open system flows back to the system and becomes
accessible through local measurements. Note that, as will be
illustrated by means of several examples below, the bound
for the dynamics of the trace distance given by Eq. (17) is
tight, i.e., it can be reached for certain total initial states. If the
bound of inequality (17) is actually reached at some time t ,
the initial distinguishability of the total system states is equal
to the distinguishability of the open system states at time t .
This means that the relative information on the total initial
states has been dynamically transferred completely to the open
system [34].

Using the subadditivity of the trace distance (12) and the
triangular inequality (10) one deduces from (17) the following
inequality [34]:

D
(
ρ1

S(t),ρ2
S(t)

) − D
(
ρ1

S(0),ρ2
S(0)

)
� D

(
ρ1

SE(0),ρ1
S(0) ⊗ ρ1

E(0)
)

+D
(
ρ2

SE(0),ρ2
S(0) ⊗ ρ2

E(0)
) + D

(
ρ1

E(0),ρ2
E(0)

)
. (18)

For any state ρSE the quantity D(ρSE,ρS ⊗ ρE) describes how
well ρSE can be distinguished from the fully uncorrelated
product state ρS ⊗ ρE of its marginal states ρS and ρE . Thus,
D(ρSE,ρS ⊗ ρE) can be interpreted as a measure for the
total amount of correlations in the state ρSE . Therefore, the
inequality (18) shows that an increase of the trace distance of
the open system states over its initial value implies that there
must be correlations in the initial states ρ1

SE(0) or ρ2
SE(0),

or that the environmental states are different. An important
special case, which will be considered in detail in the present
paper, occurs if ρ2

SE(0) is given by the product state obtained
from the marginals of ρ1

SE(0), i.e., ρ2
SE(0) = ρ1

S(0) ⊗ ρ1
E(0).

The inequality (17) then reduces to the simple form

D
(
ρ1

S(t),ρ2
S(t)

)
� D

(
ρ1

SE(0),ρ1
S(0) ⊗ ρ1

E(0)
)
, (19)

according to which the increase of the trace distance is bounded
by the amount of correlations in the total initial state [34].

B. Example: The Jaynes-Cummings model

1. The physical model

We consider a two-state system coupled to a single mode
of the radiation field with total Hamiltonian

H = HS + HE + HI

= ω0σ+σ− + ωb†b + g(σ+ ⊗ b + σ− ⊗ b†), (20)

where σ+ = |1〉〈0| and σ− = |0〉〈1| are the raising and lower-
ing operators of the two-state system, b† and b are the creation
and annihilation operators of the field mode, and the coupling
term is in the Jaynes-Cummings form. This model describes,
e.g., the interaction between a two-level atom and a mode
of the radiation field in the electric dipole and rotating wave
approximation. In the interaction picture the Hamiltonian takes
the form

HI (t) = g(σ+ ⊗ bei�t + σ− ⊗ b†e−i�t ), (21)

where � = ω0 − ω denotes the detuning between the system’s
transition frequency ω0 and the frequency ω of the field mode.
The exact time-evolution operator for the total system in the
interaction picture can then be written as (see, e.g., Ref. [38])

U (t) =
(

c(n̂ + 1,t) d(n̂ + 1,t)b

−b†d†(n̂ + 1,t) c†(n̂,t)

)
, (22)

where we have introduced the following functions of the
number operator n̂ = b†b:

c(n̂,t) = ei�t/2

[
cos

(
�(n̂)

t

2

)
− i

�

�(n̂)
sin

(
�(n̂)

t

2

)]
,

(23)

d(n̂,t) = −iei�t/2 2g

�(n̂)
sin

(
�(n̂)

t

2

)
,
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with

�(n̂) =
√

�2 + 4g2n̂. (24)

With the help of the unitary time-evolution operator given
by Eq. (22) we can easily determine the exact expression
for the reduced density matrix of the two-level system at
time t ,

ρS(t) =
(

ρ11(t) ρ10(t)

ρ∗
10(t) ρ00(t)

)
, (25)

corresponding to an arbitrary initial state ρSE(0) of the total
system. First, we expand ρSE(0) with respect to the basis
vectors |α〉 ⊗ |n〉 ≡ |α,n〉, where α = 1,0 labels the states of
the two-state system, and n = 0,1,2, . . . the number states of
the field mode,

ρSE(0) =
∑

α,β,m,n

ρmn
αβ (0)|α,m〉〈β,n|. (26)

Substituting this expression into Eq. (1) with U (t) given by
Eq. (22), one obtains

ρ11(t) =
∑

n

[
ρnn

11 (0)|cn+1(t)|2 + 2
√

n + 1

× Re
{
ρ

n,n+1
10 (0)d∗

n+1(t)cn+1(t)
} + nρnn

00 (0)|dn(t)|2],
ρ10(t) =

∑
n

[−√
n + 1ρ

n+1,n
11 (0)cn+2(t)dn+1(t)

−√
n + 2

√
n + 1ρ

n+2,n
01 (0)dn+2(t)dn+1(t)

+ ρnn
10 (0)cn+1(t)cn(t)

+√
n + 1ρ

n+1,n
00 (0)dn+1(t)cn(t)

]
, (27)

where cn(t) and dn(t) denote the eigenvalues of c(n̂,t) and
d(n̂,t) corresponding to the eigenstate |n〉, respectively.

We note that Eq. (27) does not in general lead to a dynamical
map for the state changes of the reduced two-state system since
it is not possible to write the right-hand side of this equation
as a function of the matrix elements of the reduced initial state
ρS(0), which are given by

ραβ(0) =
∑

n

ρnn
αβ (0). (28)

However, if the total initial state is of tensor product form,
ρSE(0) = ρS(0) ⊗ ρE(0), and, therefore,

ρnm
αβ (0) = ραβ(0)ρnm(0), (29)

it is indeed possible to construct the dynamical map; if
moreover [ρE(0),n̂] = 0, one finds the map already derived
in Ref. [27].

2. Dynamics of the trace distance for pure or
product total initial states

We illustrate the dynamics of the trace distance and the
inequality (17) by means of two simple examples, considering
the situation in which the total initial state is a product state or
a pure state. The case of a mixed, correlated initial state will
be considered in detail in Sec. III.

The quantity on the right-hand side of Eq. (17), representing
the information which is initially outside the reduced system,
can be larger than zero basically for two reasons: first, because

one has different environmental initial states ρ1
E(0) and ρ2

E(0)
and, second, because of the presence of correlations in the
initial states ρ1

SE(0) or ρ2
SE(0) [see inequality (18)]. To illustrate

the first case we study the trace distance between the two
reduced states ρ1

S(t) and ρ2
S(t) evolving from two product

initial states with the same reduced system state, namely,
from ρ1

SE(0) = ρS(0) ⊗ ρ1
E(0) and ρ2

SE(0) = ρS(0) ⊗ ρ2
E(0),

where

ρS(0) = |α1|2|0〉〈0| + |β1|2|1〉〈1| (30)

and the two environmental states are taken to be

ρi
E(0) = |αi |2|n〉〈n| + |βi |2|n − 1〉〈n − 1|, i = 1,2, (31)

with the normalization condition |αi |2 + |βi |2 = 1. Numerical
simulation results for this case are shown in Fig. 1(a). We see
from the figure that the bound of Eq. (17), which is given
by ||α1|2 − |α2|2|, is indeed reached here. For a study of the
second case we consider an initially correlated pure state of
the form

ρ1
SE(0) = |ψ〉〈ψ |, (32)

with |ψ〉 = α|0,n〉 + β|1,n − 1〉, |α|2 + |β|2 = 1, together
with an initial product state of the form

ρ2
SE(0) = ρ2

S(0) ⊗ ρ2
E(0) (33)

with ρ2
S(0) = |β|2|0〉〈0| + |α|2|1〉〈1| and ρ2

E(0) = |α|2|n〉
〈n| + |β|2|n − 1〉〈n − 1|. Note that ρ2

SE(0) is not equal to
the product of the marginals of ρ1

SE(0). As can be seen
from Fig. 1(b) for this case also the bound of Eq. (17),
which is given by 1

2 (1 + |α|4 + |β|4), is repeatedly reached
in the course of time. As expected, in both cases the trace
distance of the states exceeds its initial value, corresponding
to the fact that the reduced system dynamically retrieves
the information initially not accessible to it, related to the
different initial environmental states or to the initial system-
environment correlations. Note that the trace distance starts
increasing already at the initial time, indicating that the
information is flowing to the reduced system from the very
beginning of the dynamics. Moreover, it keeps oscillating also
for large values of t , so that the distinguishability growth

5 10 15 20
t

0.02

0.04

0.06

0.08

0.10
(a) (b)

D
ρ S1

t
,ρ

S2
t

10 20 30 40 50
t

0.1
0.2
0.3
0.4
0.5
0.6
0.7

D
ρ S1

t
,ρ

S2
t

FIG. 1. (Color online) Plot of the trace distance D(ρ1
S(t),ρ2

S(t)) as
a function of time, in arbitrary units, where ρ1

S(t) and ρ2
S(t) have been

determined from Eq. (27). In both figures the horizontal line marks the
upper bound of Eq. (17), and � = 0.1,g = 1 in a.u. (a) Dynamics for
two product total initial states which differ only by the environmental
states and are given by Eqs. (30) and (31) with |α1|2 = 7/9, |α2|2 =
8/9, and n = 7. (b) The two reduced states ρ1

S(t) and ρ2
S(t) are

obtained from the total initial states given by Eqs. (32) and (33) which
have the same environmental marginal state, but different reduced
system states and correlations. Parameters: α = i

√
3/7, β = √

4/7,
and n = 1.

062114-4



INITIAL CORRELATIONS IN OPEN-SYSTEMS DYNAMICS: . . . PHYSICAL REVIEW A 82, 062114 (2010)

between reduced states can be detected, e.g., by quantum state
tomography, also making observations after a long interaction
time.

In both situations considered and visualized in Fig. 1 the
maximum value of the trace distance as a function of time is
equal to the upper bound given by Eq. (17), indicating that
the information initially inaccessible to the reduced system
has been transferred completely to it during the subsequent
dynamics. This is of course not always the case and it is an
important problem to characterize explicitly those initial states
for which such a behavior indeed occurs. Let us consider
the special case given by Eq. (19), in which the two total
initial states are a correlated state and the tensor product of
its marginals, taking ρ1

SE(0) to be a pure entangled state, i.e.,
ρ1

SE(0) = |ψ〉〈ψ | with |ψ〉 = α|0,n〉 + β|1,m〉. For this case
Eq. (27) leads to

D
(
ρ1

S(t),ρ2
S(t)

) = ∣∣|αβ|2[|cm+1(t)|2 − |cn(t)|2 + |cm(t)|2
− |cn+1(t)|2] + 2δm,n−1

×√
nRe{α∗βd∗

n (t)cn(t)}∣∣, (34)

while the right-hand side of Eq. (19) becomes

D
(
ρ1

SE(0),ρ1
S(0) ⊗ ρ1

E(0)
) = |αβ|2 + |αβ|. (35)

Taking into account Eqs. (23) and (24), for n,m 	 �2/4g2

Eq. (34) explicitly reads

D
(
ρ1

S(t),ρ2
S(t)

) = ∣∣|αβ|2[cos2(g
√

m + 1t) − cos2(g
√

nt)

+ cos2(g
√

mt) − cos2(g
√

n + 1t)]

− δm,n−1Im{α∗β} sin(2g
√

nt)
∣∣, (36)

which is an almost periodic function [39] since it represents
a linear combination of sine and cosine functions with
incommensurable periods. The supremum of the attained
values [40] is less than or equal to 2|αβ|2 if m 
= n and
m 
= n − 1, and equal to |αβ|2 + |Im{α∗β}| if m = n − 1.
Thus, the inequality in Eq. (19) is tight only for those initial
states for which m = n − 1 and Re{α∗β} = 0 (indeed, we
have |αβ|2 + |αβ| = 2|αβ|2 if and only if either α = 0 or
β = 0). The special role of the initial states with m = n − 1
can be traced back to the structure of the full unitary evolution
given by Eq. (22) and to the presence of the creation and
annihilation operators in the off-diagonal matrix elements.
Their action generates, in fact, the last term in the modulus
on the right-hand side of Eq. (36), which for m = n − 1 is
necessary to reach the bound. If the relation n,m 	 �2/4g2

is not satisfied, the supremum lies in general strictly below the
bound even if the above-mentioned conditions are fulfilled.
This is a consequence of the fact that the periodic functions
|cn(t)|2 are then strictly less than 1.

III. GIBBS INITIAL STATE AND DYNAMICS
OF THE TRACE DISTANCE

We now extend our considerations to the evolution of the
trace distance between a mixed correlated initial state and the
tensor product of its marginals. Specifically, we will analyze
the inequality given in Eq. (19) when the correlated initial
state ρSE is the invariant Gibbs (thermal equilibrium) state
corresponding to the full Hamiltonian H of the model. For

simplicity we will omit in the following the time argument
zero. We first analyze the total amount of correlations in the
initial state D(ρSE,ρS ⊗ ρE), i.e., the upper bound for the
trace distance according to Eq. (19). As we shall show below
the main features of this bound can be explained in terms of
the correlations in the ground state of the Hamiltonian H .
We further study the behavior of the actual dynamics of the
trace distance, which will turn out to reflect the characteristic
features of the correlations in the Gibbs state.

A. Correlations in the Gibbs state

We consider the total initial Gibbs state

ρSE = 1

Z
e−βH , (37)

where H is the total Hamiltonian of the system given
by Eq. (20), Z = Tr e−βH denotes the partition function,
and β = 1/kbT with kb the Boltzmann constant and
T the temperature. To calculate the marginal states
ρS = TrE e−βH /Z and ρE = TrS e−βH /Z it is useful to obtain
the matrix elements of ρSE with respect to the basis {|α,n〉}
already introduced in Sec. II B. This can be done using the
dressed states [41], i.e., the eigenvectors of the Hamiltonian
H . These eigenvectors can be written as

|�+
n 〉 = an|1,n − 1〉 + bn|0,n〉,

|�−
n 〉 = −bn|1,n − 1〉 + an|0,n〉, (38)

|�−
0 〉 = |0,0〉,

with n = 1,2,3, . . . and

an =
√

�n + �

2�n

, bn =
√

�n − �

2�n

, (39)

where �n =
√

�2 + 4g2n [see Eq. (24)]. The corresponding
eigenvalues are given by

E±
n = nω + �

2
± �n

2
,

(40)
E−

0 = 0.

Inverting Eqs. (38) with the help of the relations

|0,n〉 = bn|�+
n 〉 + an|�−

n 〉,
(41)

|1,n〉 = an+1|�+
n+1〉 − bn+1|�−

n+1〉,
one obtains the expressions

ρnm
00 = 1

Z
δn,m

(
e−βE+

n b2
n + e−βE−

n a2
n

)
,

ρnm
11 = 1

Z
δn,m

(
e−βE+

n+1a2
n+1 + e−βE−

n+1b2
n+1

)
, (42)

ρnm
10 = ρmn

01 = 1

Z
δn+1,m

(
e−βE+

n+1 − e−βE−
n+1

)
an+1bn+1,

which represent the matrix elements of the Gibbs state,

ρSE =
∑

α,β,n,m

ρnm
αβ |α,n〉〈β,m|. (43)
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Using this result together with Eq. (28), we see that the
reduced system state is diagonal in the basis |α〉 and that the
diagonal elements are given by ρ11 = 1 − ρ00 and

ρ00 = 1

Z

∞∑
n=0

(
e−βE+

n b2
n + e−βE−

n a2
n

)
. (44)

The reduced state of the environment is also diagonal since
ρnm = 0 for n 
= m, and the diagonal elements can be
expressed as

ρnn = 1

Z

(
e−βE+

n b2
n + e−βE−

n a2
n + e−βE+

n+1a2
n+1 + e−βE−

n+1b2
n+1

)
.

(45)

The product state constructed from the marginals is
accordingly of the form

ρS ⊗ ρE =
∑
α,n

ρααρnn|α,n〉〈α,n|. (46)

Finally, the normalization constant Z can be written as

Z =
∑

n

(
e−βE+

n b2
n + e−βE−

n a2
n + e−βE+

n+1a2
n+1 + e−βE−

n+1b2
n+1

)
.

(47)

Starting from the above relations we can analytically calcu-
late the total amount of correlations of the Gibbs state, i.e., the
quantity D(ρSE,ρS ⊗ ρE). To this end, we order the elements
of the basis as {|0,0〉,|1,0〉,|0,1〉,|1,1〉,|0,2〉,|1,2〉, . . .}. The
difference X = ρSE − ρS ⊗ ρE between the Gibbs state and
its corresponding product state can then be written in block
diagonal form,

X =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

D0
0 0 0 0 0 0 . . . . . .

0 D0
1 ρ01

10 0 0 0 . . . . . .

0 ρ10
01 D1

0 0 0 0 . . . . . .

0 0 0 D1
1 ρ12

10 0 . . . . . .

0 0 0 ρ21
01 D2

0 0 . . . . . .

0 0 0 0 0
. . . 0 0

...
...

...
...

... Dn
1 ρ

n,n+1
10 0

...
...

...
...

... ρ
n+1,n
01 Dn+1

0 0
...

...
...

...
... 0 0

. . .

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

(48)

where

Dn
α = ρn,n

α,α − ρα,αρn,n. (49)

It is easy to demonstrate that Dn
1 = −Dn

0 , implying that the
matrix of Eq. (48) has zero trace, as it should have. The
eigenvalues of this matrix are simply given by the eigenvalues
of the 2 × 2 block matrices plus the top left element D0

0 . Hence,
the total amount of correlations in the Gibbs state is given by

D(ρSE,ρS ⊗ ρE) = 1

2

∣∣D0
0

∣∣ + 1

4

∞∑
n=0

∣∣∣Dn
1 + Dn+1

0

+
√(

Dn
1 − Dn+1

0

)2 + 4
(
ρ

n,n+1
1,0

)2
∣∣∣

+1

4

∞∑
n=0

∣∣∣Dn
1 + Dn+1

0

−
√(

Dn
1 − Dn+1

0

)2 + 4
(
ρ

n,n+1
1,0

)2
∣∣∣. (50)

This quantity depends on the model parameters ω, �, and g

which characterize the Hamiltonian described by Eq. (20), as
well as on the temperature. In the following we will focus
in particular on the dependence of D(ρSE,ρS ⊗ ρE) on the
coupling constant g and on the inverse temperature β for fixed
values of the other two parameters (indeed, from the expression
of the Gibbs state it immediately appears that the dependence
on one of the parameters can be reabsorbed into the others).

B. Dependence on the ground state

The behavior of the trace distance given by Eq. (50) as
a function of β and g is plotted in Fig. 2. We clearly see
a nonmonotonic behavior of the trace distance as a function
of both parameters. Focusing on the dependence on β for a
fixed value of g, we observe that there is a sudden transition
between two different kinds of behavior: Below a critical value
of the coupling constant g, the trace distance as a function of
β exhibits an initial peak and then goes down to zero [see
also Fig. 3(a)]; above this critical g it keeps growing to an
asymptotic value different from zero, which we will discuss
later on, as can be seen from Fig. 3(b). On the other hand,
the dependence of the trace distance on g for a fixed value
of β shows some oscillations after a sudden growth which
occurs at the critical g [see Figs. 2 and 3(d)]. Quite remarkably,
this means that the total amount of correlations of the Gibbs
state can decrease with increasing coupling constant, as clearly
observed in Fig. 3(d).

The above features can be explained by considering that
the trace distance D(ρSE,ρS ⊗ ρE) quantifies the correlations
of the Gibbs state ρSE and that the limit β → ∞ corresponds
to the limit of zero temperature, where the Gibbs state reduces
to the ground state of the Hamiltonian H . If all the eigenvalues
given by Eq. (40) are non-negative, the ground state is |�−

0 〉 =
|0,0〉 with eigenvalue zero. Of course, this is a product state
and, therefore, the correlations of the Gibbs state approach
zero for β → ∞. This is what happens below the critical g.
However, according to the level crossing described in Fig. 4,

0
1

2
3

4

g ω
0

6
12

18
24

β ω

0.0

0.2

0.4

0.6

D
ρ

S
E ,ρ

S
E

FIG. 2. (Color online) Plot of the correlations of the Gibbs
state (37) as a function of the inverse temperature β and of the
coupling constant g according to Eq. (50) for �/ω = 1/6.

062114-6



INITIAL CORRELATIONS IN OPEN-SYSTEMS DYNAMICS: . . . PHYSICAL REVIEW A 82, 062114 (2010)

5 10 15 20
β ω

0.05

(a) (b)

(c) (d)

0.10

0.15

D
ρ S

E
,ρ

S
E

5 10 15 20
β ω

0.1
0.2
0.3
0.4
0.5
0.6
0.7

D
ρ S

E
,ρ

S
E

1 2 3 4
g ω

0.1
0.2
0.3
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0.6
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E
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FIG. 3. (Color online) (a)–(d) Sections of the plot in Fig. 2
corresponding to g/ω = 0.57, g/ω = 1.83, βω = 15, and βω = 24,
respectively. The critical value of g is given by ḡ1/ω = 1.08; see
Eq. (51).

the Hamiltonian given by Eq. (20) has negative eigenvalues
for larger values of the coupling constant g. In fact, it is easy
to see from Eq. (40) that if

g > ḡ1 ≡
√

ω2 + ω� (51)

then E−
1 < 0 and, therefore, |0,0〉 is no longer the ground state.

Thus, we can then identify ḡ1 as the previously mentioned crit-
ical value of g, since for larger values the lowest-energy state
is |�−

1 〉 which is an entangled state according to Eq. (38) with
correlations a2

1b
2
1 + a1b1 different from zero. But looking at

1 2 3 4
g ω

4

2

2

4

E
ω

1 2 3 4
g ω

0.1
0.2
0.3
0.4
0.5
0.6
0.7

D
ρ S

E
,ρ

S
E

E1 E2E3
E4

FIG. 4. (Color online) (Top) Plot of the first energy eigenvalues
E−

1 ,E−
2 ,E−

3 ,E−
4 given by Eq. (40) as functions of g; E−

0 coincides
with the x axis. (Bottom) Plot of the correlations of the Gibbs state as a
function of g for βω = 300, i.e., for approximately zero temperature;
the other values are the same as in Fig. 2. The critical values of
the correlations as a function of g exactly correspond to the level
crossing points: When E−

0 = E−
1 there is a sudden increase and at

the subsequent points the dips occur. For this value of β the behavior
described by the exact expression is well approximated by Eq. (52)
between the dips and by Eq. (54) at the dips.

the dependence of the different eigenvalues E−
n on the coupling

constant (see Fig. 4), we can see that there is another critical
point, let us call it ḡ2, where E−

2 (ḡ2) = E−
1 (ḡ2) and after which

E−
2 (g) < E−

1 (g), i.e., |�−
2 〉 becomes the lowest-energy state.

We then have another value ḡ3 for which E−
3 (ḡ3) = E−

2 (ḡ3),
so that for stronger couplings |�−

3 〉 becomes the new ground
state, and so on. Between two successive critical values ḡi

and ḡi+1 the ground state of the Hamiltonian is |�−
i 〉, whose

correlations according to Eq. (35) are given by

D(ρSE,ρS ⊗ ρE) = a2
i b

2
i + aibi = g2

�2 + 4g2
+

√
g2

�2 + 4g2
.

(52)

This expression characterizes the asymptotic value of the
correlations in the Gibbs state for β → ∞ and for g between ḡi

and ḡi+1. We note that D(ρSE,ρS ⊗ ρE) approaches the value
3
4 if we also let g → ∞. As is shown in the Appendix, this
asymptotic value corresponds in fact to the maximal possible
value of the correlations for the present model.

We see from Fig. 4 that for small temperatures the
correlations in the Gibbs state exhibit a dip at every ḡi with
i > 1. Again, this feature can be explained by considering the
ground level of the Hamiltonian given by Eq. (20). For g = ḡi

the eigenspace of the lowest-energy level is twofold degenerate
since E−

i (ḡi) = E−
i−1(ḡi) and the Gibbs state reduces to

1
2 (|�−

i−1〉〈�−
i−1| + |�−

i 〉〈�−
i |), (53)

where, again, we have ordered the elements of the basis
as {|1,i − 2〉,|0,i − 1〉,|1,i − 1〉,|0,i〉}. Equation (53) can be
directly obtained from Eq. (42), observing that for β → ∞ the
only non-negligible terms are those involving the exponentials
of βE−

i−1 or βE−
i . Calculating now the corresponding product

state and proceeding as done to obtain Eq. (50), or directly
taking the limit of this equation for β → ∞ and g = ḡi , one
finds an explicit expression for the correlations of the mixed
state given by Eq. (53):

D(ρSE,ρS ⊗ ρE)

= 1
2

[
α + 1

2

∣∣γ1 + δ1 +
√

(γ1 − δ1)2 + 4ε2
1

∣∣
+ 1

2

∣∣γ1 + δ1 −
√

(γ1 − δ1)2 + 4ε2
1

∣∣
+ 1

2

∣∣γ2 + δ2 +
√

(γ2 − δ2)2 + 4ε2
2

∣∣
+ 1

2

∣∣γ2 + δ2 −
√

(γ2 − δ2)2 + 4ε2
2

∣∣ + χ
]
, (54)

where

α = b2
i−1

4

(
a2

i−1 + a2
i

)
; γ1 = b2

i−1

2
− b2

i−1

4

(
b2

i−1 + b2
i

)
;

δ1 = a2
i−1

2
− 1

4

(
a2

i−1 + a2
i

)(
a2

i−1 + b2
i

)
; ε1 = −ai−1bi−1

2
;

γ2 = b2
i

2
− 1

4

(
b2

i−1 + b2
i

)(
a2

i−1 + b2
i

)
; ε2 = −aibi

2
;

δ2 = a2
i

2
− a2

i

4

(
a2

i−1 + a2
i

)
; χ = a2

i

4

(
b2

i−1 + b2
i

)
. (55)

From the explicit evaluation of Eqs. (52) and (54) for the
different values of i, one can see that indeed the total amount
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of correlations of the mixed state given by Eq. (53) is smaller
than the correlations of the dressed states |�−

i−1〉 and |�−
i 〉

giving its decomposition, which explains the emergence of
the dips. Note, however, that the correlation measure given
by D(ρSE,ρS ⊗ ρE) is not a convex function on the space of
physical states.

The above arguments are summarized in Fig. 4. They
explain the behavior of the correlations in the Gibbs state
for small temperatures, i.e., for β → ∞. The effect of finite
temperatures is to smooth the dependence on g, as can be seen
in Figs. 4, 3(d), and 3(c), such that the sudden increase
at g = ḡ1 is less sharp and that the subsequent dips turn
into oscillations which are more and more suppressed as
the temperature increases. This behavior is due to the fact
that at finite temperature the Gibbs state has a nonvanishing
admixture of |�−

1 〉 for values of g that are smaller than ḡ1 and,
hence, the increase of the correlations starts before g = ḡ1 and
is less sharp, as can be seen from Figs. 4 and 3(d). Moreover,
as a consequence of finite temperatures, the Gibbs state is a
mixed state even between the critical values ḡi , such that its
correlations become smaller than in the zero-temperature limit,
which leads to a suppression of the oscillations.

C. Time evolution of the trace distance

The analysis performed so far concerns the correlations
of the initial Gibbs state, i.e., the upper bound of the trace
distance between the reduced state ρ1

S(t), evolving from an
initial total Gibbs state, and the reduced state ρ2

S(t), evolving
from the corresponding product state, according to Eq. (19).
We will now investigate the dynamics of the trace distance
D(ρ1

S(t),ρ2
S(t)) and analyze, in particular, the dependence of

the supremum of this function on the coupling constant and the
temperature. As discussed before (see Sec. II A 2), the behavior
of the trace distance between ρ1

S(t) and ρ2
S(t) expresses the

effect of the initial correlations in the resulting dynamics.
Moreover, its supremum as a function of time quantifies the
amount of information which could not be initially retrieved
by measurements on the reduced system only, but becomes
accessible in the subsequent dynamics, thus making the two
reduced states ρ1

S(t) and ρ2
S(t) more distinguishable.

Taking as initial state ρ1
SE the Gibbs state given by Eq. (37)

and ρ2
SE as the corresponding product of its marginals, we have

ρ1
S(t) = ρ1

S(0) since the Gibbs state is invariant under the time
evolution, and ρ1

S(0) = ρ2
S(0) because the corresponding open

system initial states are identical. Thus, exploiting Eq. (45) we
obtain the following explicit expression for the trace distance:

D
(
ρ1

S(t),ρ2
S(t)

) =
∣∣∣∣(ρ00 − 1)

∑
n

(n + 1)ρnn|dn+1(t)|2

+ ρ00

∑
n

nρnn|dn(t)|2
∣∣∣∣. (56)

For fixed values of the parameters characterizing the dynamics
this expression describes a superposition of periodic functions
with incommensurable periods, i.e., an almost periodic func-
tion as already encountered in Sec. II B. An example for the
trace distance dynamics is shown in Fig. 5. The trace distance
starts growing already at the initial time and further oscillates

20 40 60 80 100
t ω

0.1

0.2

0.3

0.4

0.5

0.6

0.7

D
ρ S1

t
,ρ

S2
t

FIG. 5. (Color online) The trace distance D(ρ1
S(t),ρ2

S(t)) as a
function of time according to Eq. (56); ρi

S(t) is the state of the reduced
system at time t obtained from an initial total state ρi

SE , where ρ1
SE

is the Gibbs state given by Eq. (37) and ρ2
SE is the corresponding

product state. The upper horizontal line represents the bound given by
the right-hand side of the inequality (19) which has been determined
by Eq. (50). Parameters: �/ω = 1/6, g/ω = 2, and βω = 15.

with time, according to the almost periodic behavior described
by Eq. (56).

As mentioned already the time dependence of the trace
distance is solely due to the time evolution of the product state
constructed from the marginals of the Gibbs state since the
latter is invariant under the dynamics. It is the comparison
between the two different reduced system states, namely,
between the states ρ1

S(t) = ρ1
S(0) and ρ2

S(t), which allows
information to be obtained that is initially not accessible with
measurement on the reduced system only, and which enables
the detection of correlations in the initial Gibbs state.

The supremum of the trace distance in Fig. 5 is substantially
smaller than the corresponding bound of Eq. (19). For large
values of β and g the supremum can be estimated as follows.
If the temperature goes to zero the Gibbs state approaches the
projection onto the ground state which is given by |�−

k 〉〈�−
k |

for a fixed k, depending on the value of the coupling constant
g. We suppose that g is different from the critical values
ḡi . This implies ρ00 = a2

k , ρ11 = b2
k , together with ρmm =

δm,ka
2
k + δm,k−1b

2
k . For large values of g, which implies large

values of k, we have ak ≈ bk ≈ 1/
√

2. Employing further
Eq. (23), one thus obtains the estimate

D
(
ρ1

S(t),ρ2
S(t)

) ≈ 1
4 | sin(2

√
kgt) sin(gt/

√
k)|. (57)

This shows that for large β and g the trace distance is bounded
from above by 1

4 .
Figure 6 shows how the supremum of D(ρ1

S(t),ρ2
S(t))

behaves as a function of the coupling constant g and the inverse
temperature β, keeping fixed ω and �. Exactly as for the cor-
relations of the Gibbs state (compare with Fig. 2), we observe
two qualitatively different kinds of behavior as a function of β,
for a fixed value of g. Below a critical g the supremum of the
trace distance passes through maximum and then tends to zero;
above the critical value it tends monotonically to an asymptotic
value which is close to the estimate of 1

4 determined above,
as illustrated in Figs. 7(a) and 7(b). Moreover, considering
the supremum of the trace distance as a function of g for
fixed β, after a sudden growth at the first critical g it exhibits
some oscillations analogous to those of the bound. Comparing
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FIG. 6. (Color online) The supremum of D(ρ1
S(t),ρ2

S(t)) as a
function of time versus the coupling constant g and the inverse
temperature β; ρ1

S(t) is obtained from an initial total Gibbs state,
ρ2

S(t) from the corresponding product state, and D(ρ1
S(t),ρ2

S(t)) is
calculated according to Eq. (56); �/ω = 1/6.

Figs. 4 and 7, we see that in the limit of zero temperature the
bound and the true supremum of the trace distance both show
a sudden increase and subsequent dips at the same values
of the coupling constant g. This behavior can be explained
by recalling the dependence of the energy spectrum of the
Hamiltonian as a function of g in Fig. 4. At zero temperature
the Gibbs state reduces to the ground level of the Hamiltonian.
The discontinuous change in the ground level with varying g,
i.e., the transition from |�i〉 to (|�i〉 + |�i+1〉)/

√
2, implies a

discontinuous change in the bound as well as in the supremum
of the trace distance, thus leading to the dips appearing in
Figs. 4 and 7. In fact, apart from fixing the bound at the right-
hand side of Eq. (19), the Gibbs state determines both reduced
states ρ1

S(t) and ρ2
S(t), arising from the initial total states ρSE

and ρS ⊗ ρE , respectively. Relying on Eq. (27), one can see
that for � = 0 the supremum of the trace distance is simply
given by 1/4 for an initial correlated state ρSE = |�i〉〈�i |, for
any i > 0. This means that for zero detuning the supremum
of the trace distance dynamics as a function of g at zero tem-
perature takes the constant value 1/4, except at g = ḡi where
the dips occur. The effect of a finite temperature is slightly
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FIG. 7. (Color online) (a)–(d) The same as Fig. 6 but for parame-
ters g/ω = 0.57, g/ω = 1.83, βω = 15, and βω = 300, respectively.
For βω = 300, i.e., approximately zero temperature, the dips occur
at the same values as the corresponding dips of the bound; see Fig. 4.
For the case of finite temperature the dips are not suppressed, but they
are shifted toward larger values of g.

different for the bound and the supremum of the trace distance
dynamics: With growing temperature the dips of the bound turn
into oscillations which are more and more suppressed, but they
occur at the same values of g. On the contrary, the dips of the
true supremum, and its sudden increase as well, are not sup-
pressed, but do change position, occurring at larger values of g.

IV. CONCLUSIONS

We have studied the influence of initial correlations between
system and reservoir on the dynamics of an open quantum
system by means of the trace distance, considering the paradig-
matic and exactly solvable model provided by the Jaynes-
Cummings Hamiltonian. First, we have analyzed the amount
of correlations in the Gibbs state ρSE as it is quantified by
D(ρSE,ρS ⊗ ρE), where ρS ⊗ ρE denotes the product state
arising from the marginals of ρSE . The exact analytical
expression of the latter quantity describes a nonmonotonic
behavior as a function of both the coupling constant and the
temperature characterizing the dynamics. The same behavior
is found for the supremum of the trace distance between
the open system states ρ1

S(t) and ρ2
S(t) which evolve from

ρSE and ρS ⊗ ρE , respectively. This enabled us to establish
a clear connection between the correlation properties of the
Gibbs state and basic features of the subsequent open system
dynamics, in particular, the amount of information which
is initially inaccessible for the open system and which is
uncovered during its time evolution. The dynamical behavior
of the trace distance between the reduced system states ρ1

S(t)
and ρ2

S(t) thus provides a witness for the correlations of the
total system’s initial state.

As we have shown for the case at hand, at zero temperature
sudden changes in the supremum over time of the trace distance
can be traced back uniquely to discontinuous changes in the
structure of the total system’s ground state and to its degree of
entanglement which, in turn, is caused by crossings of the
energy levels of the total system Hamiltonian. It is important
to remark that, as we have demonstrated, clear signatures of
these discontinuities are still present at finite temperatures.
Note that to reconstruct the trace distance dynamics, in order
to detect correlation properties of the ground state, one only
needs to follow the evolution of the open system state obtained
from the initial total product state ρS ⊗ ρE .

The bound given by the right-hand side of Eq. (19) is able to
represent qualitatively the nontrivial behavior of the maximum
of the trace distance between ρ1

S(t) and ρ2
S(t), as a function of

the different parameters characterizing the Hamiltonian and
the temperature. While for the sudden transition between the
two different asymptotic regimes as a function of β it is
clear that the effective maximum of D(ρ1

S(t),ρ2
S(t)) has to

reproduce the behavior of the bound, it is quite remarkable
that also in the second case, where the bound is sensibly
different from the effective maximum and from zero, both
these quantities show an analogous nonmonotonic behavior.
Finally, we note that it must be expected that the general
features found here for the correlated Gibbs state hold true
also for other correlated initial states, e.g., for correlated
nonequilibrium stationary states, as long as the latter involve
discontinuous, qualitative changes under the variation of some
system parameters.
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APPENDIX: GENERAL BOUND FOR THE
CORRELATIONS OF A QUANTUM STATE

Throughout the paper we have used the quantity
D(ρSE,ρS ⊗ ρE) as a measure for the total amount of cor-
relations of a given state ρSE . On the ground of extensive
numerical simulations we conjecture that this quantity satisfies
the inequality

D(ρSE,ρS ⊗ ρE) � 1 − 1

N2
, (A1)

where N denotes the minimum of the dimensions of HS and
HE . For the example studied in this paper we have N = 2 and,
hence, D(ρSE,ρS ⊗ ρE) � 3

4 .
To our knowledge there exists no general mathematical

proof for the inequality (A1). However, one can easily prove
that this inequality is saturated if ρSE = |ψ〉〈ψ | is a pure,

maximally entangled state. To show this we first note that for
a maximally entangled state vector |ψ〉 the marginal states are
given by ρS = PS/N and ρE = PE/N , where PS and PE are
the projections onto the subspaces ofHS andHE , respectively,
which are spanned by the local Schmidt basis vectors with
nonzero Schmidt coefficients. Hence, D(ρSE,ρS ⊗ ρE) is
given by 1

2 times the sum of the absolute eigenvalues of the
operator

X = |ψ〉〈ψ | − 1

N2
PS ⊗ PE. (A2)

Obviously, |ψ〉 is an eigenvector of X corresponding to
the eigenvalue 1 − 1/N2. Moreover, all vectors which are
perpendicular to |ψ〉 and belong to the support of PS ⊗ PE are
eigenvectors of X with the eigenvalue −1/N2. Thus, X has
one nondegenerate eigenvalue 1 − 1/N2, and one eigenvalue
−1/N2 which is (N2 − 1)-fold degenerate, while all other
eigenvalues of X are zero. Therefore we have

D(ρSE,ρS ⊗ ρE) = 1

2

[
1 − 1

N2
+ (N2 − 1)

1

N2

]
= 1 − 1

N2
,

(A3)

which proves the claim.
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[22] D. Chruściński, A. Kossakowski, and S. Pascazio, Phys. Rev. A
81, 032101 (2010).

[23] L. Mazzola, E.-M. Laine, H.-P. Breuer, S. Maniscalco, and
J. Piilo, Phys. Rev. A 81, 062120 (2010).

[24] P. Pechukas, Phys. Rev. Lett. 73, 1060 (1994).
[25] R. Alicki, Phys. Rev. Lett. 75, 3020 (1995).
[26] C. Uchiyama and M. Aihara, Phys. Rev. A 82, 044104 (2010).
[27] A. Smirne and B. Vacchini, Phys. Rev. A 82, 022110 (2010).
[28] A. J. van Wonderen and K. Lendi, J. Phys. A 33, 5757 (2000).
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77, 042113 (2008).
[33] A. Shabani and D. A. Lidar, Phys. Rev. Lett. 102, 100402 (2009).
[34] E.-M. Laine, J. Piilo, and H.-P. Breuer, e-print arXiv:1004.2184

[quant-ph].
[35] J. Dajka and J. Luczka, Phys. Rev. A 82, 012341 (2010).
[36] M. B. Ruskai, Rev. Math. Phys. 6, 1147 (1994).
[37] A. Gilchrist, N. K. Langford, and M. A. Nielsen, Phys. Rev. A

71, 062310 (2005).
[38] R. R. Puri, Mathematical Methods of Quantum Optics (Springer,

Berlin, 2001).
[39] C. Corduneanu, Almost Periodic Functions (Chelsea Publishing

Company, New York, 1989).
[40] Due to the incommensurability of the frequencies, there is no

time t at which D(ρ1
S(t),ρ2

S(t)) attains the supremum.
[41] P. Meystre and M. Sargent III, Elements of Quantum Optics

(Springer-Verlag, Berlin, 1991).

062114-10

http://dx.doi.org/10.1063/1.522979
http://dx.doi.org/10.1063/1.522979
http://dx.doi.org/10.1007/BF01608499
http://dx.doi.org/10.1103/PhysRevA.70.010304
http://dx.doi.org/10.1103/PhysRevA.70.010304
http://dx.doi.org/10.1103/PhysRevA.69.042107
http://dx.doi.org/10.1103/PhysRevA.71.020101
http://dx.doi.org/10.1103/PhysRevA.73.012111
http://dx.doi.org/10.1103/PhysRevA.73.012111
http://dx.doi.org/10.1103/PhysRevA.78.022112
http://dx.doi.org/10.1103/PhysRevB.78.064309
http://dx.doi.org/10.1142/S1230161208000122
http://dx.doi.org/10.1142/S1230161208000122
http://dx.doi.org/10.1142/S1230161209000190
http://dx.doi.org/10.1142/S1230161209000190
http://dx.doi.org/10.1103/PhysRevLett.101.140402
http://dx.doi.org/10.1103/PhysRevLett.101.140402
http://dx.doi.org/10.1103/PhysRevE.79.041147
http://dx.doi.org/10.1103/PhysRevLett.100.180402
http://dx.doi.org/10.1103/PhysRevLett.100.180402
http://dx.doi.org/10.1103/PhysRevA.79.062112
http://dx.doi.org/10.1103/PhysRevA.79.062112
http://dx.doi.org/10.1209/0295-5075/85/50004
http://dx.doi.org/10.1103/PhysRevLett.103.210401
http://dx.doi.org/10.1103/PhysRevLett.103.210401
http://dx.doi.org/10.1103/PhysRevA.81.062115
http://dx.doi.org/10.1103/PhysRevA.81.062115
http://dx.doi.org/10.1103/PhysRevA.81.042103
http://dx.doi.org/10.1103/PhysRevA.81.042103
http://dx.doi.org/10.1103/PhysRevA.82.042111
http://dx.doi.org/10.1103/PhysRevLett.104.070406
http://dx.doi.org/10.1103/PhysRevLett.104.070406
http://dx.doi.org/10.1103/PhysRevA.81.032101
http://dx.doi.org/10.1103/PhysRevA.81.032101
http://dx.doi.org/10.1103/PhysRevA.81.062120
http://dx.doi.org/10.1103/PhysRevLett.73.1060
http://dx.doi.org/10.1103/PhysRevLett.75.3020
http://dx.doi.org/10.1103/PhysRevA.82.044104
http://dx.doi.org/10.1103/PhysRevA.82.022110
http://dx.doi.org/10.1088/0305-4470/33/32/311
http://dx.doi.org/10.1103/PhysRevA.64.062106
http://dx.doi.org/10.1103/PhysRevA.70.052110
http://dx.doi.org/10.1103/PhysRevA.70.052110
http://dx.doi.org/10.1088/1751-8113/41/20/205301
http://dx.doi.org/10.1103/PhysRevA.77.042113
http://dx.doi.org/10.1103/PhysRevA.77.042113
http://dx.doi.org/10.1103/PhysRevLett.102.100402
http://arXiv.org/abs/arXiv:1004.2184
http://dx.doi.org/10.1103/PhysRevA.82.012341
http://dx.doi.org/10.1142/S0129055X94000407
http://dx.doi.org/10.1103/PhysRevA.71.062310
http://dx.doi.org/10.1103/PhysRevA.71.062310

