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We investigate the detection of entanglement in n-partite quantum states. We obtain practical separability
criteria to identify genuinely entangled and nonseparable mixed quantum states. No numerical optimization or
eigenvalue evaluation is needed, and our criteria can be evaluated by simple computations involving components
of the density matrix. We provide examples in which our criteria perform better than all known separability criteria.
Specifically, we are able to detect genuine n-partite entanglement which has previously not been identified. In
addition, our criteria can be used in today’s experiments.
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I. INTRODUCTION

Entanglement plays a fundamental role in quantum in-
formation processing and is responsible for many quantum
tasks such as quantum cryptography with Bell’s theorem [1],
quantum dense coding [2], quantum teleportation [3], quantum
communication [1–7], quantum computation [8,9], etc. Thus,
entanglement is not only the subject of philosophical debates,
but also a resource for tasks that cannot be performed by means
of classical resources [10,11].

Deciding whether or not a state is entangled has proven to
be a very challenging problem that currently lacks a full com-
putable solution. In the bipartite setting, there are some well-
known (necessary) criteria for separability, such as the Bell
inequalities [12], positive partial transposition (PPT) [13]
(which is also sufficient for two-qubit or one-qubit and one-
qutrit systems [14]), reduction [15,16], range [17], majority
[18], realignment [19–21], generalized realignment [22], etc.,
which work very well in many cases, but are far from perfect
[10]. For multipartite entanglement (more than two parties),
the situation is even more complicated as there exist states
that are inseparable under any fixed partition, but are still not
considered genuinely multipartite entangled (which we will
define) [23]. Likewise, there exist states that are biseparable
with respect to each fixed partition; however, they are not
fully separable (for some examples, see Refs. [24–26]). Vast
areas of multipartite-state spaces are still unexplored because
of the lack of suitable tools for detecting and characterizing
entanglement.

Recently, Gühne and Seevinck [23] presented a method
for deriving separability criteria within different classes of
three-qubit and four-qubit entanglement using density-matrix
elements. Huber et al. [27] developed a general framework
to identify genuinely multipartite-entangled mixed quantum
states in arbitrary-dimensional systems. From the framework
introduced in Ref. [27], a k-separability criterion was derived
in Ref. [28]. In addition, we studied the separability of
n-partite quantum states and obtained practical separability
criteria for different classes of n-qubit and n-qudit quantum
states [29].
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In this paper, we derive separability criteria to iden-
tify genuinely entangled and nonseparable n-partite mixed
quantum states. The resulting criteria are easily computable
from the density matrix, and no optimization or eigenvalue
evaluation is needed. We first describe our criteria and then
provide examples in which we can detect genuine n-partite
entanglement beyond all previously studied criteria. Finally,
we briefly comment on the ability of our criteria to be
implemented in today’s experiments without the need for
quantum-state tomography.

II. DEFINITIONS

An n-partite pure state |ψ〉 ∈ H1 ⊗ H2 ⊗ · · · ⊗ Hn (dim
H = di � 2) is called biseparable if there is a bipartition
j1j2 · · · jk|jk+1 · · · jn such that

|ψ〉 = |ψ1〉j1j2···jk
|ψ2〉jk+1···jn

, (1)

where |ψ1〉j1j2···jk
is the state of particles j1,j2, . . . ,jk ,

|ψ2〉jk+1···jn
is the state of particles jk+1, . . . ,jn, and

{j1,j2, . . . ,jn} = {1,2, . . . ,n}. An n-partite mixed state ρ is
biseparable if it can be written as a convex combination of
biseparable pure states

ρ =
∑

i

pi |ψi〉〈ψi |, (2)

where |ψi〉 might be biseparable under different partitions. If
an n-partite state is not biseparable, then it is called genuinely
n-partite entangled. An n-partite pure state is fully separable
if it is of the form

|ψ〉 = |ψ〉1|ψ〉2 · · · |ψ〉n, (3)

and an n-partite mixed state is fully separable if it is a mixture
of fully separable pure states

ρ =
∑

i

pi |ψi〉〈ψi |, (4)

where pi forms a probability distribution, and |ψi〉 is fully
separable. If an n-partite state is not fully separable, then
we call it nonseparable. We consider separability criteria of
biseparable and fully separable n-qubit and n-qudit states.

Throughout this paper, let ρ be a density matrix
describing an n-particle system whose state space is Hilbert
space H1 ⊗ H2 ⊗ · · ·Hn, where dimHl = dl , l = 1,2, . . . ,n.

1050-2947/2010/82(6)/062113(7) 062113-1 ©2010 The American Physical Society

http://dx.doi.org/10.1103/PhysRevA.82.062113


TING GAO AND YAN HONG PHYSICAL REVIEW A 82, 062113 (2010)

We denote its entries by ρi,j , where 1 � i, j � d1d2 · · · dn. We
introduce the further notation of |�ij 〉 = |φi〉|φj 〉 with |φi〉 =
|x · · · xyx · · · x〉 ∈ H1 ⊗ H2 ⊗ · · · ⊗ Hn, where the local state
of Hk is |x〉 for k �= i and |y〉 for k = i. Furthermore, let
P denote the operator that performs a simultaneous local
permutation on all subsystems in (H1 ⊗ H2 ⊗ · · · ⊗ Hn)⊗2,
while Pi just performs a permutation on H⊗2

i and leaves all
other subsystems unchanged.

III. DETECTION OF GENUINELY ENTANGLED
n-PARTITE QUANTUM STATES

Theorem 1. Let ρ be a biseparable n-partite density matrix
acting on Hilbert spaceH1 ⊗ H2 ⊗ · · · ⊗ Hn, where dimHl =
dl , l = 1,2, . . . ,n. Then∑
i �=j

√
〈�ij |ρ⊗2P |�ij 〉 �

∑
i �=j

√
〈�ij |P +

i ρ⊗2Pi |�ij 〉

+ (n− 2)
∑

i

√
〈�ii |P +

i ρ⊗2Pi |�ii〉.

(5)

If an n-partite state ρ does not satisfy inequality (5), then ρ

is genuinely n-partite entangled.
Proof. To prove that inequality (5) is indeed satisfied by all

biseparable states ρ, let us first verify that this holds for any
pure state ρ that is biseparable under some partition.

Suppose that ρ = |ψ〉〈ψ | is a biseparable pure state
under the partition of {1,2, . . . ,n} into two disjoint sub-
sets {1,2, . . . ,n} = A ∪ B with A = {j1,j2, . . . ,jk} and B =
{jk+1, . . . ,jn}, and

|ψ〉 = |ψ1〉j1j2···jk
|ψ2〉jk+1···jn

=
⎛
⎝ ∑

i1,i2,...,ik

ai1i2···ik |i1i2 · · · ik〉
⎞
⎠

j1j2···jk

×
⎛
⎝ ∑

ik+1,...,in

bik+1···in |ik+1 · · · in〉
⎞
⎠

jk+1···jn

=
∑

i1,i2,...,in

ai1i2···ik bik+1···in |i1i2 · · · in〉j1j2···jn
, (6)

then
ρ∑n

l=1 ildjl+1djl+2···dndn+1+1,
∑n

l=1 i ′l djl+1djl+2···dndn+1+1

= ai1i2···ik bik+1···ina
∗
i ′1i

′
2···i ′k b

∗
i ′k+1···i ′n . (7)

Here the sum is over all possible values of i1,i2, . . . ,in, i.e.,∑
i1,i2,...,in

= ∑dj1 −1
i1=0

∑dj2 −1
i2=0 · · · ∑djn −1

in=0 , dn+1 = 1.

We will distinguish between cases in which both indices i

and j correspond to different, or the same, parts A and B in
the bipartition with respect to |ψ〉. By calculation, one has√
〈�ij |ρ⊗2P |�ij 〉 = |〈φi |ρ|φj 〉| = √〈φi |ρ|φi〉〈φj |ρ|φj 〉

� 〈φi |ρ|φi〉 + 〈φj |ρ|φj 〉
2

=

√
〈�ii |P +

i ρ⊗2Pi |�ii〉 +
√

〈�jj |P +
j ρ⊗2Pj |�jj 〉

2
(8)

in case of either i,j ∈ A or i,j ∈ B, and√
〈�ij |ρ⊗2P |�ij 〉 = |〈φi |ρ|φj 〉| = √〈φ0|ρ|φ0〉〈φij |ρ|φij 〉

=
√

〈�ij |P +
i ρ⊗2Pi |�ij 〉 (9)

in case of either i ∈ A,j ∈ B or i ∈ B,j ∈ A. Here |φ0〉 =
|xx · · · x〉 and |φij 〉 = |x · · · xyx · · · xyx · · · x〉 such that all

particles are in the state |x〉, except that the ith and j th particles
are in the state |y〉. Combining (8) and (9) gives

∑
i �=j

√
〈�ij |ρ⊗2P |�ij 〉 =

∑
i ∈ A,j ∈ B

or i ∈ B,j ∈ A

√
〈�ij |ρ⊗2P |�ij 〉 +

∑
i �= j with
i,j ∈ A

or i,j ∈ B

√
〈�ij |ρ⊗2P |�ij 〉

�
∑

i ∈ A,j ∈ B

or i ∈ B,j ∈ A

√
〈�ij |P +

i ρ⊗2Pi |�ij 〉 +
∑

i �= j with
i,j ∈ A

or i,j ∈ B

⎛
⎜⎝

√
〈�ii |P +

i ρ⊗2Pi |�ii〉 +
√

〈�jj |P +
j ρ⊗2Pj |�jj 〉

2

⎞
⎟⎠

�
∑
i �=j

√
〈�ij |P +

i ρ⊗2Pi |�ij 〉 + (n − 2)
∑

i

√
〈�ii |P +

i ρ⊗2Pi |�ii〉. (10)

Hence, inequality (5) is satisfied by all biseparable n-partite
pure states.

Next, we show that inequality (5) is also true for all
biseparable n-partite mixed states. Indeed, the generalization
of inequality (5) to mixed states is a direct consequence of

the convexity of its left-hand side and the concavity of its
right-hand side, which we can see in the following.

Suppose that
ρ =

∑
m

pmρm =
∑
m

pm|ψm〉〈ψm| (11)
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is biseparable n-partite mixed state, where ρm = |ψm〉〈ψm|
is biseparable. Then, by the Cauchy-Schwarz

inequality (
∑m

k=1 xkyk)2 � (
∑m

k=1 x2
k )(

∑m
k=1 y2

k ), one
has

∑
i �=j

√
〈�ij |ρ⊗2P |�ij 〉 �

∑
m

pm

∑
i �=j

√
〈�ij |ρ⊗2

m P |�ij 〉

�
∑
m

pm

⎛
⎝∑

i �=j

√
〈�ij |P +

i ρ⊗2
m Pi |�ij 〉 + (n − 2)

∑
i

√
〈�ii |P +

i ρ⊗2
m Pi |�ii〉

⎞
⎠

=
∑
i �=j

∑
m

√
〈φ0|pmρm|φ0〉

√〈φij |pmρm|φij 〉 + (n − 2)
∑

i

∑
m

pm〈φi |ρm|φi〉

�
∑
i �=j

√∑
m

〈φ0|pmρm|φ0〉
∑
m

〈φij |pmρm|φij 〉 + (n − 2)
∑

i

〈φi |ρ|φi〉

=
∑
i �=j

√
〈�ij |P +

i ρ⊗2Pi |�ij 〉 + (n − 2)
∑

i

√
〈�ii |P +

i ρ⊗2Pi |�ii〉, (12)

which finishes the proof of inequality (5). �
It is worth pointing out that inequality (III) of Ref. [27],

which can be rewritten as∑
i �=j

√
〈�ij |ρ⊗2P |�ij 〉 � (n − 2)

∑
i,j

√
〈�ij |P +

i ρ⊗2Pi |�ij 〉,

(13)

is the corollary of this theorem. The reason is as follows: Note
that the second summation in inequality (III) of Ref. [27], the
right-hand side of inequality (13), can be reexpressed as

(n − 2)
∑
i,j

√
〈�ij |P +

i ρ⊗2Pi |�ij 〉

=
∑
i �=j

√
〈�ij |P +

i ρ⊗2Pi |�ij 〉

+ (n − 2)
∑

i

√
〈�ii |P +

i ρ⊗2Pi |�ii〉

+ (n − 3)
∑
i �=j

√
〈�ij |P +

i ρ⊗2Pi |�ij 〉 (14)

in the case of n � 3, and all terms in the third summation term
of the right-hand side of Eq. (14) are expectation values of
positive operators, which implies that∑
i �=j

√
〈�ij |P +

i ρ⊗2Pi |�ij 〉 + (n− 2)
∑

i

√
〈�ii |P +

i ρ⊗2Pi |�ii〉

� (n − 2)
∑
i,j

√
〈�ij |P +

i ρ⊗2Pi |�ij 〉. (15)

Thus, inequality (13), i.e., inequality (III) of Ref. [27], follows
from Theorem 1 and inequality (15).

Theorem 1 deserves comments. It is better than inequality
(III) of Ref. [27] in the case of genuine multipartite-
entanglement detection for n-partite quantum states. This
criterion detects genuine n-partite entanglement [for n-qubit

states such as W states mixed with white noise, and the mixture
of the Greenberger-Horne-Zeilinger (GHZ) state and the W

state, dampened by isotropic noise] that had not been identified
so far.

Example 1. We consider the family of n-qubit states

ρ(G−Wn) = 1 − α − β

2n
I + α|GHZn〉〈GHZn| + β|Wn〉〈Wn|,

(16)

the mixture of the GHZ state and the W state, dampened by
isotropic noise. Here

|GHZn〉 = 1√
2

(|00 · · · 0〉 + |11 · · · 1〉) (17)

and

|Wn〉 = 1√
n

(|00 · · · 001〉 + |00 · · · 010〉 + · · · + |10 · · · 00〉)
(18)

are the n-qubit GHZ state and the W state, respectively. For
this family, our criteria can detect genuine n-partite (n � 4)
entanglement that had not been identified so far. The detection
parameter spaces of inequality (5) in Theorem 1, inequality
(III) in Ref. [27], inequality in Ref. [23], and inequality (II) in
Ref. [27] for n = 10 are illustrated in Fig. 1.

Example 2. Let us consider the n-qubit state, W states mixed
with white noise,

ρ(Wn)(p) = p

2n
I + (1 − p)|Wn〉〈Wn|. (19)

By our Theorem 1, and Theorem 3 of Ref. [29], we derive
that if 0 � p < 2n

n(2n−3)+2n , then ρ(Wn)(p) is genuinely n-partite
entangled, while from inequality (III) of Ref. [27], one can
obtain that if 0 � p < 2n

n2(n−2)+2n , then ρ(Wn)(p) is genuinely
n-partite entangled. That is, our criteria detect W states
mixed with white noise, ρ(Wn)(p), for 0 � p < 2n

n(2n−3)+2n

as genuinely n-partite entangled, whereas inequality (III) of
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FIG. 1. (Color) Detection quality for the state ρ(G−Wn) =
1−α−β

2n I + α|GHZn〉〈GHZn| + β|Wn〉〈Wn|, n = 10. Here the (red)
line a represents the threshold given by inequality (5) in Theorem
1 such that the region above it identifies genuine 10-partite entangle-
ment. The regions above lines b (blue) and c (green) correspond to
the genuine entanglement detected by inequalities (II) in Ref. [27]
(also Ref. [23]) and (III) in Ref. [27], respectively. The area enclosed
by the red curve a, the blue curve b, the green curve c, and the
β axis contains the genuine 10-partite entanglement detected only by
inequality (5) in Theorem 1.

Ref. [27] detects them only for 0 � p < 2n

n2(n−2)+2n . For the
special case n = 3 our criteria coincide. When n = 3, in
Ref. [30] ρ(Wn)(p) was found to be genuinely multipartite
entangled by means of the best known entanglement witness
up to a threshold of p < 8

19 . This bound was then improved
to p < 8

17 [23,27], which is also our result. When n = 4, both
Theorem 1 and the previous results [23,29] detect ρ(Wn)(p)
for p < 4

9 ≈ 0.444 as genuinely four-partite entangled, while
inequality (III) in Ref. [27] detects it only for p < 1

3 ≈ 0.333,
the fidelity-based witness detects it only for p < 4

15 ≈ 0.267,
and the improved witness detects it only for p < 16

45 ≈ 0.356
[30]. However, when n = 5, 6, 7, 8, and 9, Theorem 1 shows
that ρ(Wn)(p) is genuinely multipartite entangled in the cases of
p < 32

67 , p < 32
59 , p < 128

205 , p < 32
45 , and p < 512

647 , respectively,
while inequality (III) in Ref. [27] shows that ρ(Wn)(p) is
genuinely multipartite entangled in the cases of p < 32

107 , p <
4

13 , p < 128
373 , p < 2

5 , and p < 512
1079 , respectively. Therefore,

TABLE I. Thresholds of the detection for genuine n-partite
entanglement for W states mixed with white noise, ρ(Wn)(p) =
p

2n I + (1 − p)|Wn〉〈Wn|. The first row represents the number of
qubits, while the second row and the last row are the thresholds
identified by inequality (5) in Theorem 1 and inequality (III) in
Ref. [27], respectively. ρ(Wn)(p), for 2n

n2(n−2)+2n � p < 2n

n(2n−3)+2n , as
genuinely n-partite (n � 5) entangled, are detected only by inequality
(5) in Theorem 1.

3 4 5 6 7 8 9 n

8

17

4

9

32

67

32

59

128

205

32

45

512

647

2n

n(2n − 3) + 2n

8

17

1

3

32

107

4

13

128

373

2

5

512

1079

2n

n2(n − 2) + 2n

our criterion is better than that in Ref. [27]. W states mixed
with white noise, ρ(Wn)(p), for 2n

n2(n−2)+2n � p < 2n

n(2n−3)+2n ,
as genuinely n-partite (n = 5,6,7,8,9, . . .) entangled, are
detected only by our criterion. We summarize our results in
Table I.

IV. DETECTION OF NONSEPARABLE n-PARTITE
QUANTUM STATES

Theorem 2. Every fully separable n-partite state ρ satisfies

√
〈�|ρ⊗2P |�〉 �

(∏
A∈S

〈�|P +
A ρ⊗2PA|�〉

) 1
2n+1−4

(20)

for fully separable states |�〉, where S is the set of all nonempty
proper subsets of {1,2, . . . ,n}, the permutation operators PA

are the operators permuting the two copies of all subsystems
contained in the set A, and P is the total permutation operator,
permuting the two copies.

This inequality is equality for fully separable n-partite pure
states.

Proof. We start by showing that inequality (20) holds
for pure states. Let us suppose, then, that ρ is an n-
partite fully separable pure state and |�〉 = |�1〉|�2〉 with
fully separable n-partite states |�1〉 and |�2〉. The left-hand
side of inequality (20) is the absolute value of the matrix
element 〈�1|ρ|�2〉:√

〈�|ρ⊗2P |�〉 = |〈�1|ρ|�2〉|, (21)

since P simply permutes |�1〉 and |�2〉, i.e., P |�1〉 ⊗ |�2〉 =
|�2〉 ⊗ |�1〉. Beacuse it is fully separable, ρ⊗2 is invariant
under permutation of each element A of S:

P +
A ρ⊗2PA = ρ⊗2. (22)

Thus,√
〈�|ρ⊗2P |�〉 = |〈�1|ρ|�2〉| �

√
〈�1|ρ|�1〉〈�2|ρ|�2〉

=
√

〈�|ρ⊗2|�〉 =
(∏

A∈S

√
〈�|ρ⊗2|�〉

) 1
2n−2

=
(∏

A∈S

√
〈�|P +

A ρ⊗2PA|�〉
) 1

2n−2

, (23)

as claimed. Here we have used the positivity of the density
matrix in the first inequality and the cardinality |S| of S being
2n − 2 (S has exactly 2n − 2 elements) in the third equality.
In fact, for any fully separable pure state ρ, a straightforward
computation yields

|〈�1|ρ|�2〉| =
√

〈�1|ρ|�1〉〈�2|ρ|�2〉. (24)

Therefore, inequality (20) holds with equality if ρ is a fully
separable pure state.

It remains to show that inequality (20) holds if ρ is a mixed
state. Now we suppose that ρ = ∑

piρi is a fully separable
n-partite mixed state, where ρi is a fully separable pure state.
As the absolute value is convex, i.e., |a + b| � |a| + |b| for
arbitrary complex numbers a and b, and inequality (20) is
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satisfied by the fully separable pure state ρi , one gets√
〈�|ρ⊗2P |�〉 = |〈�1|ρ|�2〉| �

∑
i

pi |〈�1|ρi |�2〉|

=
∑

i

pi

√
〈�|ρ⊗2

i |�〉 =
∑

i

pi

(∏
A∈S

〈�|P +
A ρ⊗2

i PA|�〉
) 1

2n+1−4

.

(25)

By continuously using the Hölder inequality

m∑
k=1

|xkyk| �
(

m∑
k=1

|xk|p
) 1

p
(

m∑
k=1

|yk|q
) 1

q

,

(26)

p,q > 1,
1

p
+ 1

q
= 1,

we obtain that

∑
i

pi

(∏
A∈S

〈�|P +
A ρ⊗2

i PA|�〉
) 1

2n+1−4

�
[∏

A∈S

〈�|P +
A

(∑
i

p2
i ρ

⊗2
i

)
PA|�〉

] 1
2n+1−4

�
(∏

A∈S

〈�|P +
A ρ⊗2PA|�〉

) 1
2n+1−4

, (27)

where, in the second inequality, we have used ρ⊗2 −∑
i p

2
i ρ

⊗2
i = ∑

i �=j pipjρi ⊗ ρj � 0, since density matrices
ρi are positive semidefinite, i.e., ρi � 0. Combining inequal-
ities (25) and (27) gives inequality (20), as required. This
completes the proof. �

In particular, if ρ is a fully separable n-qubit state, then this
theorem for |�〉 = |00 · · · 0〉|11 · · · 1〉 implies

|ρ1,2n | � (ρ2,2ρ3,3ρ4,4 · · · ρ2n−1,2n−1)
1

2n−2 , (28)

the first inequality of Theorem 4 in Ref. [29], which is a
necessary and sufficient condition [29] for the GHZ state mixed
with white noise, ρ(p) = (1 − p)|GHZn〉〈GHZn| + p

2n I as
fully separable, where |GHZn〉 = 1√

2
(|00 · · · 0〉 + |11 · · · 1〉).

For detection of nonseparable quantum states, Theorem 2 is
as strong as the PPT criterion and criterion (∗) in Ref. [28]. We
consider the most general maximally entangled state (general
GHZ state) for n-qudit mixed with white noise,

ρ = p|�〉〈�| + 1 − p

dn
Idn , (29)

where

|�〉 = 1√
d

d−1∑
i=0

|i〉⊗n. (30)

A direct calculation of inequality (20) yields that these states
are nonseparable (not fully separable) if

p >
1

1 + dn−1
, (31)

which is exactly the threshold detected by the PPT criterion
and criterion (∗) in Ref. [28].

Theorem 3. Suppose that ρ is a fully separable n-partite
state. Then the inequality

∑
i �=j

√
〈�ij |ρ⊗2P |�ij 〉 �

∑
i �=j

√
〈�ij |P +

i ρ⊗2Pi |�ij 〉 (32)

holds with equality if ρ is a pure state.
Proof. Note that the left-hand side of inequality (32) minus

the right-hand side of (32) is a convex function of the matrix ρ

entries (since the left-hand side is the summation of absolute
values of density-matrix elements and the right-hand side is
the summation of the square root of a product of two diagonal
density-matrix elements). Consequently, it suffices to prove
the validity for fully separable pure states, and the validity for
mixed states is guaranteed.

As in the proof of Theorem 1, we need only to prove that
inequality (32) holds for fully separable pure states. Suppose
that ρ is a pure state. Since ρ is a fully separable pure state,
this gives

|〈φi |ρ|φj 〉|=
√〈φi |ρ|φi〉〈φj |ρ|φj 〉 = √〈φ0|ρ|φ0〉〈φij |ρ|φij 〉,

(33)

P +
i ρ⊗2Pi = ρ⊗2, (34)

where |φ0〉 and |φij 〉 are the same as in Theorem 1. By applying
these two equalities, we have

∑
i �=j

√
〈�ij |ρ⊗2P |�ij 〉 =

∑
i �=j

|〈φi |ρ|φj 〉|

=
∑
i �=j

√〈φi |ρ|φi〉〈φj |ρ|φj 〉 =
∑
i �=j

√〈φ0|ρ|φ0〉〈φij |ρ|φij 〉

=
∑
i �=j

√
〈�ij |P +

i ρ⊗2Pi |�ij 〉, (35)

as desired. This completes the proof. �
For the n-qubit W state mixed with white noise, ρ(Wn)(p),

Eq. (32) detects entanglement for

p <
2n

2n + n
; (36)

that is, ρWn (p) is entangled (not fully separable) if
p < 2n

2n+n
.

V. EXPERIMENTAL IMPLEMENTATION

Our criteria are experimentally accessible without
quantum-state tomography. Each term in the left-hand side of
our criteria can be determined by measuring two observables,
while each term in the right-hand side can be determined by
measuring one observable. For any fixed |�ij 〉, inequalities (5)
and (32) can be determined by n2 + 1 and n2 − n + 1 density-
matrix elements, respectively. For any fixed |�〉, inequality
(20) can be determined by 2n − 1 density-matrix elements.
Compared to the (d2

1 − 1)(d2
2 − 1) · · · (d2

n − 1) measurements
needed for quantum-state tomography, which requires an
exponential increase since (d2

1 − 1)(d2
2 − 1) · · · (d2

n − 1) =
(d2 − 1)n in the case of all subsystems with same dimension d,
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the numbers of density-matrix elements in our criteria not only
grow significantly slower with n, but have the great advantage
of being independent of the dimension dl of the subsystem
l, l = 1,2, . . . ,n.

The observables associated with each term (diagonal
matrix elements) of the right-hand sides of inequalities (5)
and (32) can be implemented by means of local observ-
ables, which can be seen from the expressions |φ0〉〈φ0| =
T ⊗n, |φij 〉〈φij | = T ⊗(i−1) ⊗ Q ⊗ T ⊗(j−i−1) ⊗ Q ⊗ T ⊗(n−j ),
and |φi〉〈φi | = T ⊗(i−1) ⊗ Q ⊗ T ⊗(n−i), where i < j , T =
|x〉〈x|, and Q = |y〉〈y|. Similarly, each term of the right-
hand side of inequality (20) can also be determined by
local measurements. Thus, determining one diagonal matrix
element requires only a single local observable.

Next, from
√

〈�ij |ρ⊗2P |�ij 〉 = |〈φi |ρ|φj 〉| and√
〈�|ρ⊗2P |�〉 = |〈�1|ρ|�2〉|, we should determine the

modulus of the off-diagonal elements |〈φi |ρ|φj 〉| by
measuring two observables Oij and Õij , and |〈�1|ρ|�2〉|
by measuring O and Õ, since 〈Oij 〉 = 2Re〈φi |ρ|φj 〉,
〈Õij 〉 = −2Im〈φi |ρ|φj 〉, 〈O〉 = 2Re〈�1|ρ|�2〉, and
〈Õ〉 = −2Im〈�1|ρ|�2〉. Here Oij = |φi〉〈φj | + |φj 〉〈φi |,
Õij = −i|φi〉〈φj | + i|φj 〉〈φi |, O = |�1〉〈�2| + |�2〉〈�1|,
and Õ = −i|�1〉〈�2| + i|�2〉〈�1|.

Without loss of generality, let i < j . From

Oij = 1
2T ⊗(i−1) ⊗ M ⊗ T ⊗(j−i−1) ⊗ M ⊗ T ⊗(n−j )

+ 1
2T ⊗(i−1) ⊗ M̃ ⊗ T ⊗(j−i−1) ⊗ M̃ ⊗ T ⊗(n−j ), (37)

Õij = 1
2T ⊗(i−1) ⊗ M ⊗ T ⊗(j−i−1) ⊗ M̃ ⊗ T ⊗(n−j )

− 1
2T ⊗(i−1) ⊗ M̃ ⊗ T ⊗(j−i−1) ⊗ M ⊗ T ⊗(n−j ), (38)

where M = |y〉〈x| + |x〉〈y|, M̃ = i|y〉〈x| − i|x〉〈y|, one can
determine the left-hand side of inequality (5) by 2(n2 − n)
local observables.

Suppose |�1〉 = |x1x2 · · · xn〉 and |�2〉 = |y1y2 · · · yn〉.
Let Rl = |yl〉〈xl | + |xl〉〈yl | and R̃l = i|yl〉〈xl| − i|xl〉〈yl|, l =
1,2, . . . ,n. Following the method of Refs. [31,32], the element√

〈�|ρ⊗2P |�〉 can be obtained from two local measurement

settings Ri and R̃i , given by

Ml =
[

cos

(
lπ

n

)
Rl + sin

(
lπ

n

)
R̃l

]⊗n

, l = 1,2, . . . ,n,

(39)

M̃l =
[

cos

(
lπ + π/2

n

)
Rl + sin

(
lπ + π/2

n

)
R̃l

]⊗n

,

l = 1,2, . . . ,n. (40)

These operators obey
n∑

l=1

(−1)lMl = nO, (41)

n∑
l=1

(−1)lM̃l = nÕ, (42)

which can be proved in the same way as in Refs. [31,32].
Therefore, in total, at most 5(n2−n)

2 + n + 1, 5(n2−n)
2 + 1, and

2n + 2n − 2 local observables are needed to test our separa-
bility criteria [inequalities (5), (20), and (32), respectively].

VI. CONCLUSION

In conclusion, we investigate n-partite quantum states
from elements of density matrices and derive practical
separability criteria to identify genuinely entangled and
nonseparable n-partite mixed quantum states. We show
cases in which our criteria are stronger than all known
separability criteria. In fact, our criteria detect genuine
n-partite entanglement that had not been identified so far. Our
approach has the added appeal of enabling relatively easy com-
putations and requiring far fewer measurements to implement
experimentally, compared to full quantum tomography.
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