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Modal approach to Casimir forces in periodic structures
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We present a modal approach to calculate finite-temperature Casimir interactions between two periodically
modulated surfaces. The scattering formula is used and the reflection matrices of the patterned surfaces are
calculated by decomposing the electromagnetic field into the natural modes of the structures. The Casimir force
gradient from a deeply etched silicon grating is evaluated using the modal approach and compared to experiment
for validation. The Casimir force involving a two-dimensional periodic structure is computed and deviations
from the proximity force approximation are examined.
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I. INTRODUCTION

The dynamics of a classical or a quantum field drastically
depends on the external boundary conditions imposed on it.
These boundary conditions lead to a modification of its power
spectrum with consequences on measurable quantities such as
the radiation pressure. One of the most notable examples of
this kind of phenomena is the Casimir effect [1]: In its original
formulation the change in the spectral density of zero-point
fluctuations of the quantum electromagnetic field induced by
the presence of two perfectly reflecting parallel plates causes
a net radiation pressure that pushes one plate toward the
other or, in other words, into an attractive force between the
plates.

Recently, thanks to technological advancements, we have
witnessed an increased interest in Casimir interactions [2–9].
Indeed, the Casimir force offers new possibilities for nanotech-
nology, such as actuation in micro- and nanoelectromechanical
systems (MEMS and NEMS) mediated by the quantum
vacuum. However, it also presents some challenges since the
same force is generally recognized as one of the possible
sources of stiction and consequently of malfunctioning of
these devices. Researchers have therefore started an intense
theoretical [10–17] and experimental [18–26] program in
order to impose some theoretical constraints [10–13] and to
understand how to engineer the strength and possibly also the
sign of the Casimir force—a repulsive Casimir force would
provide an anti-“stiction” effect. Inevitably a lot of attention
has been focused on the role of the boundary conditions
and very recently on the interplay of material properties,
temperature, and geometry.

In this paper we present our results for the computa-
tion of finite-temperature Casimir forces between periodic
nanostructures using a modal approach. Our calculation is
based on the scattering approach to the Casimir effect,
which gives the Casimir force between two objects starting
from their scattering properties. In our case this reduces the
problem to the calculation of the reflection matrices of the
periodic nanostructures. We will pay particular attention to
two-dimensional (2D) lamellar gratings, which are periodic
metallic and/or dielectric structures that consist of planar
layers. Many complex three-dimensional (3D) structures, such
as photonic crystals and metamaterials, can be thought of
as being constructed from individual 2D extruded metallic

and dielectric strata [27]. The problem of the reflection of an
electromagnetic field impinging on a periodic structure is a
topic that has a huge literature, and there are a large variety of
methods to efficiently compute the reflected and transmitted
electromagnetic power from such a surface (for a review see,
for example, Refs. [28] and [29]). Among the most famous
methods, one finds the differential approach [30], the integral
approach [31], and the modal approach [27]. Our numerical
results are based on the last technique that, due to its simplicity,
flexibility, and stability, lends itself to be the most adequate to
our purpose. (See Ref. [32] for a review of several numerical
techniques specifically adapted to the computation of Casimir
forces.)

While other more general numerical scattering techniques
exist, the modal expansion of the electromagnetic field
provides insight into the anatomy of the Casimir force. This
microscopic analysis provides an understanding of the nature
of the electromagnetic fluctuations that give rise to the Casimir
force and a means to modify their contribution to the Casimir
force [33–37]. These dominant eigenmode and frequency
contributions to the Casimir force can be identified within the
modal expansion and their influence under perturbation of the
permittivity of the structure explored. Our modal expansion,
based on a plane-wave expansion of the fields and a Fourier
decomposition of the permittivity of the structure, is limited
to periodic structures but is the natural choice to examine
the Casimir force in structures such as photonic crystals and
metamaterials.

The paper is organized as follows. In Sec. II we briefly
review the calculation of the Casimir interaction free energy
and force at finite temperatures within the scattering approach,
and we specialize the general formula to periodic structures.
In Sec. III we describe the modal approach and its applica-
tion to generic (nonlamellar) periodic structures. Our finite-
temperature numerical code is then benchmarked in Sec. IV
against experimental data for the Casimir interaction between a
metallic sphere and a doped Si one-dimensional (1D) lamellar
grating [23]. Related zero-temperature computations using the
differential approach have been performed in Refs. [38–40] for
dielectric 1D lamellar gratings, and in Ref. [41] for metallic
1D sinusoidal gratings. We also compute Casimir forces in 2D
structures consisting of a 2D array of silicon pillars, or a 2D
array of square holes (the complementary structure to the array
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of pillars). In Sec. V we discuss our results and prospects for
future studies.

II. THE CASIMIR FREE ENERGY

A. General framework

In the past few years several authors have developed
many powerful (semi)analytic [42–49] and numerical [50,51]
approaches to calculate Casimir forces. They allow for the
treatment of quite general geometric and material setups going
beyond the simple plane-plane geometry of Casimir’s seminal
calculation. For our purposes, the scattering approach [45,48]
is the most convenient formulation. The advantage of this
technique is that it exclusively relies on the knowledge of the
reflection properties of the objects seen as isolated scatterers
for the electromagnetic radiation. Indeed, for linear magnetodi-
electric media, i.e., media that are completely characterized by
permittivity ←→ε (ω) and permeability ←→µ (ω) tensors, virtual
and real photons are treated at the same level [52], so that
vacuum fluctuations are scattered in the same way as real
fields.

The interaction free energy between two bodies in thermal
equilibrium at a temperature T is given by

F(a) = 1

β

∞∑
l=0

′
Tr ln [1 − S1 · X12(a) · S2 · X21(a)] , (1)

where β = 1/kBT . Si is the scattering operator characterizing
the ith object. X12(a) and X21(a) are the so-called translation
operators [45] and they carry no information about the objects
but only depend on the distance a between the origins of
appropriately chosen coordinate systems in each body. All
operators depend on l through the Matsubara (imaginary)
frequencies ωl = iξl = i2πl/h̄β (the prime in the summation
indicates that the l = 0 term is weighted by 1/2), and
their detailed expressions depend on the functional basis we
choose to describe the electromagnetic field. The symbol “Tr”
indicates the trace over all spatial degrees of freedom, making
the final result basis independent.

B. Periodic systems

Expression (1), being the infinite-dimensional trace of a
very involved operator, is in general an extremely complicated
object. Most of the difficulty consists in finding the appropriate
functional basis in which the operators in Eq. (1) can be
efficiently calculated and, when possible, can be recast into
simple expressions. Most of the time the suitable basis forS1 is
completely different from the one forS2. In such circumstances
other matrices representing the change of bases have to be
included in the representation of Eq. (1) (see, for example,
Refs. [45] and [53]).

Fortunately, the symmetry properties of periodic systems
suggest specific bases that allow for further manipulation
and useful simplifications. This is the case of the simple
setup where two gratings are facing each other, as shown in
Fig. 1. The periods of the gratings are assumed to be the
same for simplicity (whereas for gratings with nonequal but
commensurable periods, the technique we are about to describe
uses the minimum common period for the two gratings). The
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FIG. 1. (Color online) Casimir setup for two periodic structures
(possibly multilayered) parallel to each other and separated by a
gap a.

medium in between is assumed to be homogeneous (and it
will become evident in the following that this condition can
be easily relaxed). Both structures lie in the (x,y) plane of a
orthonormal Cartesian coordinate system. The z coordinate
is called longitudinal because it is normal to both grating
surfaces. The choice of a rectangular basis is not mandatory but
dictated by symmetry, and it has been shown that sometimes
the introduction of a nonrectangular coordinate system can
improve the numerical convergence [54].

As usual for periodic system [55,56], it is convenient to
introduce the transverse reciprocal space basis |k||,nm, ⇀↽,λ〉
associated with the reciprocal lattice described by the 2D
vector,

K||,nm ≡ k|| + 2πn

Lx

x̂ + 2πm

Ly

ŷ

≡ αnx̂ + βmŷ, n,m ∈ Z, (2)

where we have defined

k|| = kx x̂ + ky ŷ, (3)

αn = kx + 2πn

Lx

, and βm = ky + 2πm

Ly

. (4)

Lx and Ly are the periods of the grating along the x̂ and
ŷ directions, respectively. The polarization is denoted by
λ and is chosen to be one of the orthogonal polarization,
s or p, where s-polarized fields have the electric field along
the direction ês = K||,nm × ẑ/|K||,nm × ẑ|, and p-polarized
fields have the electric field along the direction êp = K||,nm ×
ês/|K||,nm × ês |. The transverse wave vector k|| is constrained
by −π/Lx � kx � π/Lx and −π/Ly � ky � π/Ly , which
define the domain B known as the first Brillouin zone [55,56]
of the reciprocal lattice (n = m = 0); the other Brillouin zones
are defined by n,m �= 0. The symbol ⇀↽ indicates forward (→)
or backward (←) propagation. The corresponding longitudi-
nal wave vector ±k(c)

z,nm is automatically obtained from the
value of the frequency ωl = iξl and transverse wave vector,
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K||, together with the appropriate cavity material dispersion
relation [57]

−εc(iξl)
ξ 2
l

c2
= K2

||,nm + [
k(c)
z,nm

]2
. (5)

Here Re k(c)
z,nm + Im k(c)

z,nm > 0 and εc(ω) is the permittivity of
the medium in the cavity formed by the two gratings. The
two bases are indeed connected by a transformation that is
equivalent to a 3D Fourier series, and we have

〈r|k||,nm, ⇀↽,λ〉 = eıK||,nm·R±ık
(c)
z,nmz, (6)

where R = (x,y). The basis is also orthonormal.
All operators in Eq. (1) can now be represented as (infinite)

matrices. Let us consider that the object “1” is located to the left
of the object “2” [i.e., if z1 < z2 since both gratings are parallel
to the (x,y) plane]. The scattering operators take the form

S1 =
(
R←−1 T−→1

T←−1 R−→1

)
, S2 =

(
R←−2 T−→2

T←−2 R−→2

)
. (7)

Due to the periodicity and the symmetry, each operator
connects wave vectors that differ by a multiple of the
reciprocal lattice vector.

Therefore, denoting by O−→←−
the generic block matrix, we

have then:

〈k||,nm,λ|O−→←−
|k′

||,n
′m′,λ′〉 = O−→←−

λ;λ′
nm;n′m′δ(k|| − k′

||). (8)

Because of the symmetry, in this basis, the translation operators
behave in a very similar way:

X12 =
(

0 X−→
0 0

)
, X21 =

(
0 0

X←− 0

)
, (9)

where X−→←−
are diagonal matrices with elements

X−→←−
λ
nm(a) = −e±ıK||,nm·R−κ

(c)
z,nmz, (10)

with κ (c)
z,nm = −ık(c)

z,nm =
√

εc(iξl)ξ 2
l /c2 + K2

||,nm.

By using Tr ln ≡ ln det and the Leibniz formula for the
determinant of block matrices, Eq. (1) takes the form [48]

F(a) = 1

β

∞∑
l=0

′
ln det[1 − R←−1 · X−→(a) · R−→2 · X←−(a)], (11)

or, more explicitly,

F(a) = LxLy

β

∞∑
l=0

′

×
∫
B

d2k||
(2π )2

ln det
[
δ

λ;λ′
nm;n′m′ − R←−1(k||,iξl)

λ;λ′′
nm;n′′m′′

× R−→2(k||,iξl)
λ′′;λ′
n′′m′′;n′m′e

−a(κ (c)
n′m′+κ

(c)
n′′m′′ )

]
, (12)

where, in the second term, the double primed indices are
summed over. Alternatively, one can also first diagonalize
the matrix and then take the sum of the logarithm of each
eigenvalue [58]. Equation (12) clearly reduces the problem of
the calculation of the Casimir free energy to the determination

of the matrix elements Ri(k||,iξl)λλ′
nm;n′m′ . We will see in

Sec. III that these quantities correspond to the (Rayleigh)
reflection coefficients associated with the scattering of the
electromagnetic field from an isolated grating.

III. MODAL EXPANSION FOR 2D GRATINGS

Several well-developed theoretical and computational tech-
niques exist for the evaluation of scattering from periodic
structures [29]. One class of scattering techniques makes use
of the plane-wave expansion for the electromagnetic fields
in the spirit of the derivation of the previous section. These
techniques are typically referred to as rigorous coupled wave
approaches (RCWA) [32], or as Fourier modal techniques or
plane-wave techniques. In this section, we will adapt this
technique to compute the Casimir force from a periodically

A(0)

B(0)

A(L+1)

B(L+1)

A(i)

B(i)

A(L)

B(L)

A(1)

B(1)

{ { {hL
hi h1{ h2

(a)

(b)

FIG. 2. Schematic representation of a generic periodic structure.
Each unit cell can be thought of as the result of the superposition of
different lamellar layers with the same period. This can be used to
calculate scattering properties of arbitrary 3D scatterers, provided the
period is fixed. An incident plane wave in media 0 is scattered into
reflected diffraction orders, and the transmitted diffraction orders in
(L + 1)th media are illustrated.
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patterned substrate. Each periodic structure will be thought of
as the result of the superposition of 2D lamellar gratings (see
Fig. 2). For each layer one can derive a direct eigenvalue
problem for Maxwell’s equations or the associated wave
equation [54]. The corresponding complex eigenmodes in
the 2D stratum will form a natural basis for the electromagnetic
fields in the structure. The scattering properties of the total
multilayer medium (lamellar or nonlamellar) are obtained by
an iterative application of the scattering matrix following the
theory of optical networks (S-matrix approach). To help the
physical intuition in this section we work with real frequencies
ω. However, at the end, the relevant quantities that enter into
Eq. (12) are functions of the imaginary Matsubara frequencies
ωl = ıξl . We discuss the analytical continuation of the modal
approach to complex frequencies at the end of this section.

A. The eigenvalue problem in the modulated region

To begin, let us consider a single-layer 2D periodic
structure described by the complex dielectric permittivity
ε(x,y) and the complex magnetic permeability µ(x,y), both
assumed to be scalars for simplicity. The permittivity and the
permeability are periodic functions with periods Lx and Ly of
the transverse coordinates (x,y). Our eigenmode calculation
starts by decomposing Maxwell’s equations into transverse
and longitudinal components and follows the approach of
Li [27,54,59]. This splitting yields the so-called waveguide
equations

−ık0∂zEt = ∇t[χ ẑ · ∇t × Ht] − k2
0µẑ × Ht, (13a)

−ık0∂zHt = −∇t[ζ ẑ · ∇t × Et] + k2
0εẑ × Et, (13b)

with χ (x,y) = 1/ε(x,y), ζ (x,y) = 1/µ(x,y), and k0 = ω/c.
We assume that all fields depend on time as e−iωt . The
longitudinal electric Ez and magnetic Hz fields are not
independent and can be determined from the transverse
components

Ez = i

k0ε
ẑ · ∇t × Ht and Hz = − i

k0
ẑ · ∇t × Et. (14)

Equations (13a) and (13b) further imply that the displacement
field and magnetic induction are divergence free. We have

not made any assumptions regarding the transverse mode
structure in Eqs. (13a) and (13b) since in general the modes
will not be classified as, e.g., transverse electric (TE) or
transverse magnetic (TM) in a general complex metallic-
dielectric composite structure.

According to the Floquet-Bloch theorem, inside each layer
the field is a pseudoperiodic function and can be decomposed
as follows:

f(r) =
∑
nm

fnm(z) eıK||,nm·R, (15)

where we have combined the transverse components of the
electric and magnetic fields into a single vector,

f(r) =

⎛
⎜⎜⎜⎝

Ex(r)

Ey(r)

Hx(r)

Hy(r)

⎞
⎟⎟⎟⎠ , fnm(z) =

⎛
⎜⎜⎜⎝

Ex,nm(z)

Ey,nm(z)

Hx,nm(z)

Hy,nm(z)

⎞
⎟⎟⎟⎠ , (16)

where Ex(y),nm and Hx(y),nm are the Fourier coefficients of
the TE and TM fields, respectively. We similarly decompose
the dielectric permittivity, magnetic permeability, and their
inverses in Fourier series:

ε(x,y) =
∑
nm

εnmei2πnx/Lx+i2πmy/Ly , (17)

µ(x,y) =
∑
nm

µnmei2πnx/Lx+i2πmy/Ly , (18)

χ (x,y) =
∑
nm

χnmei2πnx/Lx+i2πmy/Ly , (19)

ζ (x,y) =
∑
nm

ζnmei2πnx/Lx+i2πmy/Ly . (20)

By collecting all the Fourier coefficients fnm in one single large
vector F, it is possible to show that the waveguide equations
(13) can be recast as a first-order matrix differential equation
[58,59]:

−ik0∂zF(z) = H · F(z). (21)

The matrix H has a block form and each block element is
given by [54]

Hnm:n′m′ =

⎛
⎜⎜⎜⎜⎜⎜⎝

0 0 αn′βmχ
[nn′]
[mm′] −αnαn′χ

[nn′]
[mm′] + k2

0µ
[nn′]
[mm′]

0 0 βmβm′χ
[nn′]
[mm′] − k2

0µ
[nn′]
[mm′] −βmαn′χ

[nn′]
[mm′]

−αnβm′ζ
[nn′]
[mm′] αnαn′ζ

[nn′]
[mm′] − k2

0ε
[nn′]
[mm′] 0 0

−βmβm′ζ
[nn′]
[mm′] + k2

0ε
[nn′]
[mm′] βmαn′ζ

[nn′]
[mm′] 0 0

⎞
⎟⎟⎟⎟⎟⎟⎠

, (22)

where αn = kx + 2πn/Lx and βm = ky + 2πm/Ly . The sym-
bol (·)[nn′]

[mm′] means that we have to take the shifted Fourier
expansions of the complex permittivity, permeability, and
their inverses (e.g., ε

[nn′]
[mm′] ≡ εn−n′,m−m′ ) that derive from the

application of the Laurent rule [60]. The solution of the
first-order matrix differential equation (21) has the form

F(z) = Y exp(ık0γ z), (23)
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where Y and γ are, respectively, eigenvectors and the cor-
responding eigenvalues that are solutions to the eigevalue
problem [58,61]

γ k2
0Y = H · Y. (24)

Note that the value of the transverse momentum in the first
Brillouin zone, k||, is fixed in these equations, so that the
set of eigenvectors Yν and corresponding eigenvalues γν are
functions of k||. Given the fact that H is non-Hermitian, the
eigenvalues are, in general, complex and the eigenvectors
are not orthogonal [58,61] to each other. However, the
eigenvectors are biorthogonal [58,61] to the eigenvectors of
the corresponding adjoint equation

λk2
0Y† = Y† · H†. (25)

From the theory of non-self-adjoint differential equations,
one knows that the eigenvalues and eigenvectors of the two
mutually adjoint equations can be ordered in such a way that
λν = γ ∗

ν . Defining the scalar product

〈ψ |ϕ〉 ≡
∑
nm

ψ∗
nmϕnm, (26)

we have that

〈Y†
ν |Yν ′ 〉 = δν,ν ′ . (27)

Note that the dimension of the matrix H is even:

dim[H] = 2D × 2D, (28)

where D = 2(2N + 1)(2M + 1) and 2N + 1 and 2M + 1 are
the number of Fourier terms in the series expansion along the
x and y directions, respectively. The characteristic equation
for the eigenvalues is an equation of an even order with 2D

solutions: If γν is a solution, then γ ∗
ν is also a solution, so

that half of the eigenvalues and half of the eigenvectors can
be obtained by simple conjugation. Notationwise, it is also
possible to associate to the same value γν one eigenvector of
Eq. (21) and one eigenvector of the adjoint equation, i.e.,

γν ↔ Yν,Y†∗
ν , (29)

and, in the literature, Yν and Y†∗
ν are generally called right-

handed and left-handed eigenvectors, respectively (and the
biorthogonality property can also be reinterpreted in terms
of the previous definition). Furthermore, if we rearrange the
vector F(z) to have the form

F(z) =
(

FE(z)

FH(z)

)
, (30)

where FE and FH contains all electric field and magnetic field
components, respectively, then the matrix H takes the block
form

H =
(

0 HH

HE 0

)
. (31)

The eigenvalue problem (24) can be reduced to the following
separate equations [54]:

γ 2k4
0YE = HH · HE · YE, (32a)

γ 2k4
0YH = HE · HH · YH, (32b)

so that we can deduce that the eigenvalues come in pairs and
so do the eigenvectors,

γν ↔ Y−→ν and − γν ↔ Y←−ν, (33)

representing forward (→) and backward (←) propagation,
respectively.

These considerations ensure that the previous eigenmodes
constitute a natural basis for the electromagnetic field in the
modulated region. Collecting all these results and definitions,
we have

F(z) =
∑

ν

Y←−ν(k||)e−ık0γνzAν + Y−→ν(k||)eık0γνzBν. (34)

Here we have explicitly indicated the dependency of the
eigenvectors on k||. The expression for the total field f(r) can be
obtained by isolating the four-dimensional vectors fnm from the
previous expression and inserting them into Eq. (15). The only
unknowns in Eq. (34) are the coefficients Aν and Bν , the field
amplitudes (scalars), and they will be completely determined
in Sec. III B once we impose the boundary conditions on
the fields at the interface of each modulated region. Note
that the Rayleigh basis defined in Sec. II for the cavity is a
particular (homogeneous medium, that is no modulation) case
of the modal solution just described here, and the eigenvalues
coincide with the longitudinal vector k(c)

z,nm, with multiplicity
two (one for each polarization λ = s,p). This correspondence
means that we can safely use the same formalism throughout
the structure.

B. Scattering and boundary conditions

Let us now consider the problem of the scattering of an
electromagnetic wave by a periodic structure in its com-
pleteness and assume that the network element of Fig. 3
is composed of several 2D periodic layers with thickness
hi , electric permittivity εi(x,y), and magnetic permeability
µi(x,y) (i = 1 . . . L; see Fig. 2). The first (1|0) interface is at
the right of the network element at position z = 0, while the last
(L + 1|L) is at the left of the network at z = −h = −∑

i hi .
The first medium (ε0,µ0 and z > 0) and the last medium
(εL+1,µL+1 and z < −h) are assumed to be uniform layers

?R−→
T−→ R←−

T←−

A(Left)

B(Right)

A(Right)

B(Left)

Left Right

FIG. 3. (Color online) Schematic description of the scattering
process by a generic object. The scattering matrix formalism connects
the output field amplitudes as a function of the input field amplitudes
for a general scattering object.
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with plane-wave-type eigenmodes (Rayleigh basis). For each
layer we can write the expression given in Eq. (34) in the
following form:

F(i) = Y (i) · t (i)
pr ·

(
A(i)

B(i)

)
. (35)

The matrix Y (i) contains all eigenvectors as columns:

Y (i) ≡ (
Y←−

(i)
ν=1, . . . , Y←−

(i)
ν=D, Y−→

(i)
ν=1, . . . , Y−→

(i)
ν=D

)
. (36)

The block matrix

t (i)
pr =

⎛
⎝ eık0γ

(i)hi 0

0 e−ık0γ
(i)hi

⎞
⎠ (37)

has the exponential functions with the eigenvalues γ (i)
ν along

the diagonal of each of the two D × D block submatrices and
describes the propagation through the layer of thickness hi .
The field amplitudes for each layer A(i)

ν and B(i)
ν are collected

in the column vectors A(i) and B(i). That means that the vectors
A(0) and B(0) with components A(0)

ν and B(0)
ν give the incident

and reflected field amplitudes from the right of the network.
Similarly, A(L+1) and B(L+1) are the reflected and incident
fields from the left of the network. The right and left reflection
matrices are then defined as (see Fig. 3)

B(0) = R←− · A(0), A(L+1) = R−→ · B(L+1). (38)

Similarly the left and right transmission operators can be
defined as follows:

A(L+1) = T←− · A(0), B(0) = T−→ · B(L+1). (39)

Imposing the continuity of the tangential fields at the z =
zi = −∑i

j=1 hj interface means that F(i+1)(zi) = F(i)(zi), and
the transfer operator that relates the field amplitudes in the ith
and (i + 1)th layer is defined as(

A(i+1)

B(i+1)

)
= t (i+1|i) ·

(
A(i)

B(i)

)
, (40)

where

t (i+1|i) =
(

t
(i+1|i)
11 t

(i+1|i)
12

t
(i+1|i)
21 t

(i+1|i)
22

)
. (41)

Each single block of the transfer matrix has a dimension
D × D. By defining rectangular D × 2D matrices

Y−→←−
(i) ≡ (

Y←−−→
(i)
ν=1, . . . , Y←−−→

(i)
ν=D

)
(42)

the block elements can be expressed as overlaps of the mode
eigenvectors with respect to the scalar product defined in
Eq. (26):

t
(i+1|i)
11 = Y←−

(i+1)† · Y←−
(i),

t
(i+1|i)
12 = Y←−

(i+1)† · Y−→
(i),

(43)
t

(i+1|i)
21 = Y−→

(i+1)† · Y←−
(i),

t
(i+1|i)
22 = Y−→

(i+1)† · Y−→
(i).

The field at the point z = zi+1 is related to that at z = zi by

F(i+1)(zi+1) = θ (i+1|i)F(i)(zi), (44)

with

θ (i+1|i) = t (i+1|i) · t (i)
pr (45)

being the total transfer matrix from layer i to layer i + 1.
Now we could construct the transfer matrix of the whole

structure by iterating through the multilayer (lamellar or non-
lamellar) structure, and then solve for the reflection operator.
However, if numerically implemented, the transfer matrix
method is known to suffer from instabilities when the layers
are thick, due to the growing exponentials contained in the
transfer matrix [62]. A remedy to these numerical instabilities
is the S-matrix approach, where the ordering of the matrix
elements is taken in terms of forward and back propagating
modes (see Fig. 3). The layer scattering matrix is defined by:(

A(i+1)

B(i)

)
=

( 1 0

0 eık0γ
(i)hi

)
·
(

σ
(i+1|i)
11 σ

(i+1|i)
12

σ
(i+1|i)
21 σ

(i+1|i)
22

)

×
(

eık0γ
(i)hi 0

0 1

)
·
(

A(i)

B(i+1)

)

≡ �(i+1|i) ·
(

A(i)

B(i+1)

)
. (46)

where the elements of the interface scattering matrix can be ex-
pressed in terms of the elements of the interface transfer matrix(

σ
(i+1|i)
11 σ

(i+1|i)
12

σ
(i+1|i)
21 σ

(i+1|i)
22

)

=
⎛
⎝ t

(i+1|i)
11 − t

(i+1|i)
12

[
t

(i+1|i)
22

]−1
t

(i+1|i)
21 t

(i+1|i)
12

[
t

(i+1|i)
22

]−1

−[
t

(i+1|i)
22

]−1
t

(i+1|i)
21

[
t

(i+1|i)
22

]−1

⎞
⎠ .

(47)

The stability of the S-matrix approach is guaranteed in
Eq. (47) owing to the exponential decay (Imγ i

ν > 0) of the
backward propagating mode. The layer scattering matrix,

�(i+1|i) =
(

s
(i+1|i)
11 s

(i+1|i)
12

s
(i+1|i)
21 s

(i+1|i)
22

)
, (48)

incorporates the propagation phase factor and the scattering
properties of the interface. Again, the scattering matrix of
the multilayer object can be constructed using an iterative
procedure with the following recursion relations:

�
(i+1|0)
11 = s

(i+1|i)
11

(
1 − s

(i+1|i)
21 �

(i|0)
12

)−1
�

(i|0)
11 ,

�
(i+1|0)
12 = s

(i+1|i)
12 + s

(i+1|i)
11

(
1 − s

(i+1|i)
21 �

(i|0)
12

)−1
s

(i+1|i)
22 �

(i|0)
12 ,

�
(i+1|0)
21 = �

(i|0)
21 + �

(i|0)
22

(
1 − s

(i+1|i)
21 �

(i|0)
12

)−1
s

(i+1|i)
21 �

(i|0)
11 ,

�
(i+1|0)
22 = s

(i+1|i)
22 �

(i|0)
22

(
1 − s

(i+1|i)
21 �

(i|0)
12

)−1
. (49)

It is clear that the scattering matrix of the multilayer scatterer
that connects the incident media (incident and reflected
modes) to the exit media (transmitted modes) is given by
�(L+1|0). Unfortunately, the definition of the scattering matrix
in the grating literature [54] does not match the one used in
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the network theory (see Sec. II). However, this last one can be
obtained by a simple reordering of the block matrices:

S =
(

�
(L+1|0)
21 �

(L+1|0)
22

�
(L+1|0)
11 �

(L+1|0)
12

)
. (50)

From here all the relevant reflection (and transmission)
operators for the calculation of the Casimir free energy can
be obtained.

C. Analytical properties of the modal approach

In Sec. III B we derived the scattering matrix for a general
2D periodic structure, keeping in mind a real value for the
frequency of the field. For the calculation of the Casimir free
energy, it is more convenient to work with imaginary frequen-
cies from the very beginning, since the quantities entering
in Eq. (12) are functions of ω = ıξ . From an analysis of
Sec. III B, one can easily realize that the consequence of a
(Wick) rotation in the complex plane (from the real frequency
axis to the imaginary frequency axis) is automatically con-
nected with the analytical properties of the involved functions.
Maxwell waveguide equations (13) can be written easily in
terms of imaginary frequency. The dielectric permittivity and
the magnetic permeability are analytic functions in the upper
part of the complex plane with the property [57]

ε(ζ ) = ε∗(−ζ ∗), µ(ζ ) = µ∗(−ζ ∗), (51)

(ζ = ω + ıξ is a generic complex frequency) from which it
immediately follows that ε(ıξ ) and µ(ıξ ) are real. Since we are
dealing with passive media, they also are positive quantities
for ξ > 0. Clearly now the matrix H is real. By looking at
the elements of H, one can easily show that its characteristic
equation �2D(ζ,α,β,γ 2) = 0 inherits some of the properties
of the permittivity and of the permeability; in particular, it is
true that

�2D(ζ,α,β,γ 2) = �2D(−ζ ∗,α,β,[γ 2]∗), (52)

which means that the eigenvalues satisfy the property
γ 2

ν (ζ,α,β) = [γ 2
ν (−ζ ∗,α,β)]∗. The choice of the definition of

the square root and its continuity in the complex plane finally
implies that

γν(ζ,α,β) = −γ ∗
ν (−ζ ∗,α,β), (53)

from which it is possible to conclude that γν(ω,α,β) =
−γ ∗

ν (−ω,α,β), and that γν(ıξ,α,β) (ξ ∈ Re) is purely imagi-
nary. Since they depend only upon the sign of the eigenvalues,
the concepts of forward and backward propagation can be
easily generalized and we can still write an expansion like
Eq. (34), working with imaginary frequencies. The main
difference is that now the exponentials are real functions. The
formalism of the scattering matrix can be reapplied to derive
the reflection operators at imaginary frequencies. Naturally,
in the numeric calculation, the necessary truncation of the
matrix H leads to some small deviations from the previous
conclusions. For example, the eigenvalues as a function of the
imaginary frequency can acquire a small real part.

In summary, to calculate the Casimir free energy between
periodic structures, it is sufficient to write the waveguide
equation for each Matsubara frequency and perform the

corresponding modal expansion procedure. The resulting
reflection matrices are then inserted in Eq. (12), and one can
choose between the calculation of the determinant of the final
expression or its diagonalization followed by the calculation of
the trace of the resulting diagonal matrix. Special attention is
required when computing the zero Matsubara frequency con-
tribution to the free energy ξ = 0 in the scattering formalism.
This is outlined in the following section.

D. Zero-frequency modal solutions

The computation of the Casimir free energy requires ex-
plicitly the l = 0 (zero Matsubara frequency ξ0 = 0) scattering
matrices from the modal solution to Maxwell’s equations. In
the following, we will consider nonmagnetic media for sim-
plicity [µ(x,y) = 1]. The zero-frequency limit is intrinsically
tied to dispersive models of the permittivity since in general the
product ωε(ω; x,y) appears explicitly in Maxwell’s equations.
Therefore, when the permittivity is finite at zero frequency the
electric and magnetic field are irrotational. However, when the
permittivity has a simple pole at zero frequency the fields are
coupled.

The simplest and most useful model for the permittivity
of a homogeneous dielectric medium is the oscillator model
or Drude-Lorentz model [57]. In this model it is assumed
that harmonically bound charges to an ion core make up a
neutralizing background. The resulting dielectric permittivity
is

ε(ω) = 1 − �2
pl

ω2 − ω2
0 + i�ω

, (54)

where � is the damping coefficient, ω0 is the oscillator
frequency, and the plasma frequency is defined as

�2
pl = 4πe2n

m
. (55)

This simple model of a dispersive media can be generalized
to multiple oscillators with different resonance frequencies,
oscillator strengths, and linewidths and forms the basis for
models of optical dispersion in dielectrics and metals. The
Drude model for a metal is found by considering the limit of
free electrons [i.e., ω0 → 0 of Eq. (54)] and is given by

ε(ω) = 1 − �2
pl

ω2 + i�ω
. (56)

The Drude model has two poles: one pole at zero frequency
and the other pole in the lower half of the complex plane [35].
The connection with constituent relationships in Maxwell’s
equations is obtained by expanding Eq. (56):

ε(ω) = 1 − i�2
pl

�(ω + i�)
+ i�2

pl

�ω
, (57)

and we can identify the first two terms as the Debye
permittivity, and the last term with the Drude conductivity,
σ = �2

pl/�. In the limit � → 0, the Drude conductivity is
infinite and we recover the London’s superconductor [63] or
also the plasma model for the metallic media. The singular
behavior of the conductivity in the plasma model makes
relevant the order in which the limits ω → 0 and � → 0 are
taken, and this can yield differing results [3,64]. In all our
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calculations, we consider the zero-frequency limit first with
finite conductivity at zero frequency.

The zero-frequency limit to Maxwell’s equations
[(13a) and (13b)] is

∂zEt = ∇t

[ c

4πσ
ẑ · ∇t × Ht

]
(58)

and

∂zHt = ∇tHz − 4πσ

c
ẑ × Et, (59)

where we have used the Drude model of Eq. (57), and
σ = σ (x,y) is the spatially varying dc conductivity of the 2D
periodic structure. These two equations replace the waveguide
equations and are the basis for the zero-frequency modal
solutions. The corresponding transverse fields are the zero-
frequency limits of the transverse propagating solutions,
and as such they are different from purely static solutions.
The zero-frequency waveguide equations depend on the
z component of the magnetic field. We therefore consider
only TM zero-frequency solutions, Hz = 0, since a nonzero
value would imply a dc surface current is flowing, which is
inconsistent with a nonzero dissipation. Furthermore, for a
planar metallic mirror, the zero-frequency Fresnel reflection
matrix for the TE mode vanishes, and we are therefore
restricted to TM solutions (Hz = 0) that contribute to the
zero Matsubara frequency in the expression for Casimir free
energy. As a technical remark, we point out that, in the regions
within the structure containing vacuum, the conductivity
σ (x,y) is obviously zero, and these equations are singular.
In the numerics, we choose a vanishingly small but nonzero
conductivity for those regions. The final results turn out to
be independent of this choice. Alternatively, we can consider
small but finite frequencies approaching the zero-frequency
limit using the assumed material dispersion. Both approaches
lead to the same converged zero-frequency contribution for the
grating structures examined.

IV. RESULTS

Most experiments measuring the Casimir force between
two objects use a sphere or a spherical lens as one of
the intervening objects. This avoids parallelism issues that
could affect the precision required by the measurements (see
Fig. 4). Although the scattering approach allows one to take
into account spherical or even more complicated geometries
[45,53,65–67], the modal method presented in this paper is
not suited for nonperiodic, spherical surfaces. However, the
radius of curvature R of the sphere (or spherical lens) used
in experiments is so much larger than the distance to the
other plate that one can safely use the so-called proximity
force approximation (PFA) [68,69]. In our case PFA relates
the Casimir force between a spherical surface and a grating to
the free energy per unit of area between a plane and a grating,

Fsph-g(a) = 2πRFpl-g(a), (60)

and the force gradient in the sphere-grating configuration is
then related to the force per unit area in the plane-grating
geometry. The quantity on the right-hand side can be calculated
starting from the results presented in the previous sections. In
this section we benchmark our finite-temperature numerical

Position Sensor

Casimir Force

D
ep

th

Distance (a)

FIG. 4. (Color online) AFM setup for measuring Casimir inter-
actions between a sphere and a 1D lamellar grating.

code against a recent precise measurement of the Casimir
force gradient between a metallic sphere and a deeply etched
(≈1 µm) 1D lamellar silicon grating [23]. We then move on
to more complex 2D periodic structures.

The 1D lamellar grating in the experiment of Ref. [23]
was p-doped Si and the sphere was metallized with Au. In
order to have a precise comparison between our numerics
and the experimental data, one should input into our code the
actual optical properties of the samples used in the experiment.
Unfortunately, these were not measured in Ref. [23], so here
we use tabulated optical data for Au and p-doped Si that have
been compiled and studied by several authors [70–72]. We
model the intrinsic Si permittivity by a Drude-Lorentz model,

εSi(iξ ) = ε∞ + (ε0 − ε∞)
ω2

0

ξ 2 + ω2
0

, (61)

with ε0 = 11.87, ε∞ = 1.035, and ω0 = 6.6 × 1015 rad/s. The
p-doped Si is modeled by adding a Drude background to the
intrinsic part:

εdoped(iξ ) = εSi(iξ ) + ω2
p

ξ (ξ + γ )
, (62)

with ωp = 3.6151 × 1014 rad/s and γ = 7.868 × 1013 rad/s.
Similarly, the Au sphere is modeled by a Drude model,

εAu(iξ ) = 1 + �2
p

ξ (ξ + �)
, (63)

with �p = 1.27524 × 1016 rad/s and � = 6.59631 × 1013

rad/s.
With the materials parameters at hand, we can begin

comparing the experimental data and the computed exact
scattering solution for the grating. Our code is designed for
2D periodic systems, so in order to treat 1D gratings we use a
period along the translational invariant direction (say y) equal
to that along the noninvariant direction x, i.e., Lx = Ly , so that
the resulting structure is 2D periodic. In all our calculations
we will truncate all the Fourier series to N = M = 5. This
implies that the dimension of the reflection matrices is
2(2N + 1)2 × 2(2N + 1)2 = 242 × 242. The k||-space inte-
gration is performed using a 16-point Gauss-Legendre quadra-
ture. We set the temperature to T = 300 K, and we use the first

062111-8



MODAL APPROACH TO CASIMIR FORCES IN PERIODIC . . . PHYSICAL REVIEW A 82, 062111 (2010)

0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50
0.8

0.9

1.0

1.1

1.2

1.3

1.4

z µm

F
A
'F

' A
,P

F
A

0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50
0

50

100

150

z µm

F
A
'

pN
µm

FIG. 5. (Color online) Casimir force gradient in the sphere-
grating geometry for sample A in Ref. [23]: exact numerics (solid)
and experimental data (dots with error bars). The inset shows the ratio
of the Casimir force gradient divided by the PFA prediction: exact
numerics/theoretical PFA (solid), exact numerics/“experimental”
PFA (squares), and experimental data/“experimental” PFA (hollow
circles with error bars). The geometrical parameters of grating A are
as follows: period = 1000 nm, depth = 1070 nm, and filling factor =
0.510. The radius of the sphere is 50 µm, and the temperature is set
to T = 300 K.

36 Matsubara frequencies for all the studied range of distances
between the sphere and the grating.

We consider the two 1D lamellar gratings used in Ref.
[23]. The Casimir force in the plane-grating configuration is
evaluated by numerical differentiation of the plane-grating free
energy. The resulting force gradient in the sphere-gradient
geometry calculated with our numerical code is shown in
Figs. 5 and 6, where we also show the experimental data
with their errors, kindly provided to us by H. B. Chan. Given
the uncertainty in the optical parameters used in our numerics
compared to those of the actual samples, the experiment-theory
agreement seems to be very reasonable. A calculation of the
reduced chi square value gives χ2

red = 2.9 for sample A and
χ2

red = 8.7 for sample B. One can also test the deviations of
the exact numerical results from the prediction of the PFA. In
this approximation, the force between the plane and the deeply
etched grating is computed by multiplying the force between
two plane (i.e., the usual Lifshitz force for the plane-plane
geometry) by the filling factor of the grating (in which we
neglect the contribution of the bottom part of the grating
to the PFA result since its depth is sufficiently large). In
the insets of Figs. 5 and 6, we plot the ratio between the
exact and PFA results for the Casimir force gradients in
the sphere-grating configuration. There are three sets of data
represented in those insets: (a) The solid line is the ratio of
our exact numerics and the theoretical PFA prediction based
on Lifshitz theory, both using the parameters here for the
optical data of the samples. (b) The hollow circles with their
error bars are the ratio of the experimental data of Ref. [23]
for the force gradient in the sphere-grating geometry with
respect to the “experimental” PFA. This latter data set was
obtained from a separate measurement of the force gradient
in the sphere-plane geometry and subsequently multiplied by
the grating’s filling factor [23]. Note that, since the plane and
the grating in Ref. [23] were fabricated following identical
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FIG. 6. (Color online) Casimir force gradient in the sphere-
grating geometry for sample B in Ref. [23]: exact numerics (solid)
and experimental data (dots with error bars). The inset shows the ratio
of the Casimir force gradient divided by the PFA prediction: exact
numerics/theoretical PFA (solid), exact numerics/“experimental”
PFA (squares), and experimental data/“experimental” PFA (hollow
circles with error bars). The geometrical parameters of grating B are
as follows: period = 400 nm, depth = 980 nm, and filling factor =
0.478. The radius of the sphere is 50 µm, and the temperature is set
to T = 300 K.

procedures, one can expect them to have the same optical
properties. (c) The squares represent the ratio of our exact
numerics and the “experimental” PFA. Given the uncertainty in
the optical parameters used in the numerics, the most unbiased
comparison is to compare case (b) against case (c). In that case,
one is effectively comparing numerators normalized by the
same denominator. Again, the theory-experiment comparison
is reasonably good in view of the experimental and theoretical
uncertainties.

The numerical errors in the computation of the Casimir
force originate from three sources: (1) The truncation of
the Matsubara frequency summation, (2) the truncation of
the discrete spatial frequency spectrum resulting in finite-
dimensional reflection matrices, and (3) numerical integration
over the continuous transverse wave vector in the first Brillioun
zone. The truncation of the Matsubara summation is deter-
mined by the temperature and the minimum distance required
in the force-displacement curve. This minimum distance sets
the maximum Matsubara frequency for fixed temperature, such
that, for a minimum spacing of 100 nm at 300 K, we find that 36
Matsubara frequencies give free-energy convergence of better
than 10−4. This frequency cutoff is used in all numerical results
presented here.

The truncation of the discrete spatial frequency (diffraction
orders) is needed to deal with finite matrices. Our modal
approach improves with an increasing number of diffraction
orders, but so does the computational cost. By increasing the
number of diffraction orders, we find that the short-distance
behavior for the grating is improved. We have used N = 5 for
all calculations, which was observed to be enough to ensure
the convergence at approximately 1% accuracy at 100 nm
separation. It is important to note that matrices are dense and
scale as 4N4, which practically limits the spatial frequency
cutoff.
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FIG. 7. (Color online) Computed Casimir force gradient for 1D
and 2D Si gratings. Together with the 1D grating of sample B (dotted-
dashed curve), two simple but representative 2D extensions have been
considered. The first example is an array of p-doped Si pillars, and the
second is the complementary structure, i.e., a free-standing membrane
etched with an array of square holes. The period of the structures is
400 nm and the filling factors of the pillar and of the membrane are
1/4 and 3/4, respectively. The etch depth for all the structures is
1070 nm. For all cases, a Au sphere with radius R = 50 µm has been
used. It has also been assumed that the temperature is T = 300 K. We
find that the force gradient scales as the filling factor. The deviation
from the PFA is shown in the inset and scales this time with the
inverse of the filling factor, having the strongest deviation in the case
of the pillars.

The final source of numerical error is the numerical
integration over the continuous transverse wave vector in
the first Brillioun zone. It is desirable to have minimal
k-space sampling to reduce the assembly and computation
of the reflection matrices for each Matsubara frequency.
The integration of the continuous wave vector is performed
numerically using an n-point Gauss-Legendre quadrature. In
order to estimate the integration error, we have computed the
force gradient for five different n-point (9, 16, 25, 36, and 49)
Gaussian quadratures in the first Brillioun zone. The relative
error (the standard deviation divided by the mean) for the
experimental displacement range is less than 3%. From our
three estimates of error, our estimated total error in computing
the Casimir force is expected to be less than 3% over the entire
force gradient-displacement curve.

The detailed analysis of the 1D lamellar grating problem
allowed us to validate our modal approach by comparing to
high-precision experimental data. Here we want to extend the
method to 2D periodic structures that provide more tailorable
properties in which we can manipulate the Casimir force.
We will consider two simple but representative extensions
of the 1D grating. The first example is an array of p-doped
Si pillars. Similar geometries have been used to obtain a
negative index of refraction [73] in the optical range [74,75].
They have also been exploited to investigate the phenomenon

of quantum reflection [76,77] of an atom over the purely
attractive Casimir-Polder potential generated by the periodic
structure. The second case is the complementary structure,
i.e., a free-standing membrane etched with an array of square
holes. This structure is very similar to the one used to measure
the extraordinary light transmission through subwavelength
apertures [78–80].

In Fig. 7 we show the prediction for Casimir force gradient
for the sample B 1D grating (dashed-dotted line), the pillars
(dotted line), and the membrane (dashed line). The period of
the structures is in all cases 400 nm and the etched depth is
1070 nm, and the filling factors of the pillars and of the
membrane are 1/4 and 3/4, respectively. We find that the
Casimir force gradient scales as the filling factor: That is,
the force is less attractive for the pillars than for the membrane,
with the case of grating in between these two cases. The inset
shows the comparison with the relative PFA approximation
(filling factor times the Lifshitz force between the plane and
sphere). If the PFA were valid, the ratio (inset) would be
unity for all separations. The deviation from the additive
approximation scales with the inverse of the filling factor
having the strongest deviation in the case of the pillars.

V. DISCUSSION AND CONCLUSION

We have developed a finite-temperature modal approach
to compute Casimir interactions between 2D periodic struc-
tures. We have compared our computational approach to
high-precision published experimental data for 1D lamellar
gratings. This benchmark validated our modal approach and
led to good agreement between theory and experiment, as
confirmed by reduced chi square values of 2.9 and 8.7 for the
two samples used in Ref. [23].

In order to demonstrate the flexibility of our approach,
we also calculated the Casimir force between the first simple
extensions of a 1D grating, namely, an array of square pillars
and an array of square holes. In both cases, as already known
for the 1D grating, we observe deviation of the Casimir force
gradient from the value obtained from the PFA. This deviation
scales with the filling factor and it is more accentuated in the
case of the pillars.

In the near future, we plan to extend these results to complex
metallic structures, such as 3D metamaterials, which were
recognized as possible candidates to engineer the Casimir force
between two vacuum-separated objects.
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