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Geometric phase of mixed states for three-level open systems
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Geometric phase of mixed state for three-level open system is defined by establishing in connecting density
matrix with nonunit vector ray in a three-dimensional complex Hilbert space. Because the geometric phase
depends only on the smooth curve on this space, it is formulated entirely in terms of geometric structures. Under
the limiting of pure state, our approach is in agreement with the Berry phase, Pantcharatnam phase, and Aharonov
and Anandan phase. We find that, furthermore, the Berry phase of mixed state correlated to population inversions
of three-level open system.
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I. INTRODUCTION

A pure quantum state retains a memory of its evolution
in terms of a geometric phase [1–3] when it undergoes
a closed evolution in parameter space, where the geomet-
ric phase essentially arises as an effect of parallel trans-
port in the Poincaré representation of the manifold. More
precisely, the amplitudes of wave functions are mapped
onto given points on the Poincaré sphere for a pure state
[4–6]. Geometric phase has been observed in spin-1/2 sys-
tems through nuclear magnetic resonance (NMR) experi-
ments [7] and with polarized photons using interferometers
(PPI) [8].

The quantum geometric phase has been extensively ex-
plored for physical systems with two-level systems (qubits)
[9,10]. Common examples of qubits are an atom [11,12]
with spin Sz = ± 1

2 or photons [13] with two polarization
states. Indeed, quantum interference with a photon beam,
generated from a spontaneous parametric down-conversion
(SPDC), has been employed in a large number of experiments
[14–16] to verify and probe the intriguing properties of
quantum geometric phase and quantum entanglement. Such
a system has also been shown to be a versatile tool for testing
many concepts and approaches used in quantum information
theory.

Application of geometric phases in quantum computation
[17–19] has motivated their studies under more realistic situ-
ations [20–35]. In a real system, it is unavoidable interaction
of a quantum system with its surrounding environment. The
interaction may lead to an irreversible loss of information
on the system so the process limits the ability to maintain
pure quantum states in quantum information. Therefore, it is
necessary to include the effect of decoherence. Up to now,
however, the definition of the geometric phase for the open
system is still a controversial issue. It is therefore extremely
important to understand all aspects of the geometric phase in
open system [36,37].
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It is known that a d-dimensional qudit possesses a much
more complex but richer structure than the ordinary qubit.
In quantum information science, thus, information processing
tasks can not only be implemented using two-dimensional
qubits but also are sometimes more efficiently performed using
the qudits as carriers of information [38–41]. It has been found
that the qudits are better adapted for certain purposes, such as
quantum cryptography [42].

Following the pioneering experiment on SPDC [43], var-
ious protocols have been demonstrated using orbital angular
momentum states of photons [44], where the photons are a
promising carrier of quantum information. In optical imple-
mentations, therefore, the degrees of freedom of photons may
be used to define the qudits in which a physical realization
of the qutrits and four-dimensional quantum states (ququarts)
may be obtained by biphoton states arising in the processes
of SPDC. In order to construct the qutrits, for example,
one has sufficiently to use the collinear degenerate SPDC
processes in which state vectors of two photons in a SPDC
pair are strictly parallel to each other and frequencies are
also given and equal to each other. For the ququarts it is to
use either the noncollinear frequency-degenerate or collinear
but frequency-nondegenerate SPDC processes, where either
directions of state vectors or frequencies of two photons in
SPDC pairs differ from each other. When photon polarization
is a two-dimensional degree of freedom, furthermore, the
spatial (transverse momentum or angular momentum) and
spectral (time-frequency) degrees of freedom are intrinsically
continuous and can be used to define arbitrarily dimensional
qudits by appropriate discretization. Therefore, it is interesting
to extend the geometric phase to a higher-dimensional open
system [45].

It is known that there have been many proposals tackling
the geometric phase of two-level open systems from different
generalizations of the parallel transport condition [20,26].
However, it may be difficult to expand it to the three-level open
system. The generalizations especially are not unique so as to
give out different results. In addition, a general belief is that the
Berry phases are geometric in their nature, i.e., proportional
to the area spanned in parameter space. Therefore, we will
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express the geometric phase [31–33] for the three-level open
system in terms of geometric structures on a three-dimensional
complex Hilbert space.

II. GENERALIZED BLOCH SPHERE
OF THREE-LEVEL SYSTEM

Because a higher-dimensional Hilbert space may associate
with quantum cryptography and entanglement, an increasing
interest is to study the geometric phase of the three-level open
system.

Differing from the pure state, the mixed state for the three-
level open system is always written in many different ways as a
probabilistic mixture of distinct but not necessarily orthogonal
pure states. Thus, the density matrix was introduced as a way
of describing the quantum open system and the state of open
system is not completely known.

It is known that the unit matrices 13×3 and eight Gell-mann
matrices λ construct a complete basis of any 3 × 3 matrices.
Any 3 × 3 density matrix ρ for the three-level open system,
therefore, may be expanded as

ρ = c + d · λ, (1)

this expansion is unique, i.e.,

c = 1
3 Tr ρ, (2)

di = 1
2 Tr (ρλi), i = 1,2, . . . ,8. (3)

Thus the density matrix ρ of a three-level system may be
expressed as

ρ = 1
3 (1 + √

3n · λ), (4)

where n is a Bloch vector,

ni =
√

3

2
Tr (ρλi), (5)

a1

b1

c1

d1

0.0 0.2 0.4 0.6 0.8 1.0
0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

η 1 s

r

FIG. 1. (Color online) Bloch radius as a function of decay
coefficient η with unit of � = 1[1/s] for different initial conditions
(a1) δ1 = √

5/3, δ2 = √
2/3, and δ3 = √

2/3; (b1) δ1 = 3/4, δ2 =
2/4, and δ3 = √

3/4; (c1) δ1 = 4/5, δ2 = √
5/5, and δ3 = 2/5;

and (d1) δ1 = 5/6, δ2 = 3/6, and δ3 = √
2/6 at the quasicyclicity

T = 2π/�, where the corresponding population inversions of system
are w1(t)〉0 and w2(t)〉0.

with n · n = r2 � 1 as a radius of an eight-dimensional Bloch
sphere, where

r2 = 3
4 [(ρ12 + ρ21)2 − (ρ12 − ρ21)2 + (ρ11 − ρ22)2

+ (ρ13 + ρ31)2 − (ρ13 − ρ31)2 + (ρ23 + ρ32)2

− (ρ23 − ρ32)2] + 1
4 (ρ11 + ρ22 − 2ρ33)2 (6)

describes a mixed degree of a three-level open sys-
tem and eight components of Bloch vectors may be
defined as umn = ρmn + ρnm,vmn = i(ρmn − ρnm) (m < n =
1,2,3),w2 = ρ11 − ρ22 and w3 = 1

2 (ρ11 + ρ22 − 2ρ33), which
have obviously physical meanings, i.e., umn and vmn(m <

n = 1,2,3) measure overlaps between energy levels m and
n, respectively. While w2 and w3 are physical quantities to
describe population inversions.

Moreover, the set

S = {n ∈ R8|n · n = r2,n∗ = n}, (7)

is an analog of the generalized Bloch sphere with eight
dimensions for the three-level system.

Similarly to the two-level system [4–6,31–33], we may
introduce eight parameters, i.e., seven angles θ , φ, α, β, γ , χ ,
ξ , and radius r , to parametrize the eight-dimensional Bloch
sphere, where the Bloch vector n, its eight components, and r
are real.

According to Eqs. (5) and (6), the Bloch parameters in the
three-level open system may be defined by

cosθ = 1√
3

[
1 −

√
3

2r
(ρ11 + ρ22 − 2ρ33)

] 1
2

, (8)

cosφ = 1√
2

[
1 + ρ11 − ρ22

rsin2θ

] 1
2

, (9)

tan(β − χ − α + γ ) = n2

n1
= i

ρ12 − ρ21

ρ12 + ρ21
, (10)
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FIG. 2. (Color online) Same as described in the caption to Fig. 1
for the different initial conditions (a2) δ1 = 2/3, δ2 = 2/3, and δ3 =
1/3; (b2) δ1 = 2/4, δ2 = 3/4, and δ3 = √

3/4; (c2) δ1 = √
5/5, δ2 =

4/5, and δ3 = 2/5; and (d2) δ1 = 3/6, δ2 = 5/6, and δ3 = √
2/6 at

the quasicyclicity T = 2π/�, where the corresponding population
inversions of system are w1(t)〈0 and w2(t)〈0.
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FIG. 3. (Color online) Same as described in the caption to Fig. 1
for the Berry phase of the mixed state in the three-level open system.

tan(α − γ − ξ ) = n5

n4
= i

ρ13 − ρ31

ρ13 + ρ31
, (11)

tan(β − χ + ξ ) = n7

n6
= i

ρ23 − ρ32

ρ23 + ρ32
. (12)

Inserting Eqs. (8)–(12) into Eqs. (5) and (6), the Bloch vector
n is parameterized as

n = r
√

3
(

sin2 θsinφ cos φ cos(β − χ − α + γ ),

sin2 θ sin φ cos φ sin(β − χ − α + γ ),
1

2
sin2 θ (cos2 φ − sin2 φ),

sin θ cos θ cos φ cos(α − γ − ξ ),

− sin θ cos θ cos φ sin(α − γ − ξ ),

sin θ cos θ sin φ cos(β − χ + ξ ),

− sin θ cos θ sin φ sin(β − χ + ξ ),

1

2
√

3
(1 − 3 cos2 θ )

)
, (13)

where the physical properties of eight components of Bolch
vectors are effectively used, which differ from the standard
parametrization of an n-dimensional sphere.
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FIG. 4. (Color online). Same as described in the caption to Fig. 2
for the Berry phase of the mixed state in the three-level open system.

0.0 0.2 0.4 0.6 0.8 1.0 1.2
0.5

0.6

0.7

0.8

0.9

1.0

γB rad

r

FIG. 5. (Color online) Bloch radius at the quasicyclicity T =
2π/� as a function of the Berry phase with the initial conditions
c1 = 5/6, c2 = 3/6, and c3 = √

2/6.

It is known that, under the case r = 1, the eight-dimensional
Bloch sphere becomes unit Poincaré sphere and the three-level
system is in pure state. Thus the Bolch vector n is on the
unit Poincaré sphere. In the case of r < 0, the Bloch vector
n is in interior of this unit Poincaré sphere. Therefore, the
mixed states in the three-level system may be identified
with the interior points of this generalized unit Poincaré
sphere.

III. A NONUNIT STATE VECTOR FOR MIXED STATE
OF THREE-LEVEL SYSTEM

It is known that the pure state is a special case of mixed
state. It is very easy to unify them by using representation of
Poincaré sphere, where the pure and mixed states correspond
to the given points on the sphere and interior points in the
sphere, respectively.

In the two-level open system, a mapping of the nonunit
vector states in the two-dimensional complex Hilbert space
H2 onto the interior points in the three-dimensional Poincaré
sphere is used [31–33]. The mapping plays an important role
in connecting the open system with nonunit vector ray. By
using the nonunit vector ray in H2, the geometric phase may
be defined for the two-level open system and it is proved that
it is an agreement with the definition of nonunitary evolution
[31,46].

In the three-level open system, the state vector are
nonunit vector ray in the three-dimensional complex
Hilbert space H3 and the generalized Poincaré
sphere is eight dimensional. In order to define the
geometric phase, therefore, a reasonable approach is
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FIG. 6. (Color online) Bloch radius at the quasicyclicity T =
2π/� as a function of the Berry phase with the initial conditions
c1 = 2/3, c2 = 2/3, and c3 = 1/3.
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to seek for a mapping between the eight-dimensional
Poincaré sphere and the three-dimensional Hilbert
space.

According to Eq. (5), we find that a mapping of n ∈ S in
the eight-dimensional Bloch sphere for the three-state system
onto |ψ(t)〉 = �−1ρ(t) ∈ H3 may be expressed as

ni =
√

3

2
〈ψ |λi |ψ〉, i = 1,2, . . . ,8, (14)

where ρ = |ψ〉〈ψ | is used in Eq. (5). It is obvious that the state
vector |ψ〉, differing from the pure state, is a nonunit vector
ray in H3 to describe the mixed state. The solution of Eq. (14)
is direct, one has

|ψ〉 = √
r

⎛
⎜⎝

ei(α−γ )sinθcosφ

ei(β−χ)sinθsinφ

eiξ cosθ

⎞
⎟⎠ , (15)

which is a dressed three-level state vector including the effect
of interaction between the physical system and environment.

In terms of Eqs. (14) and (15), the action of SU(3) on the
vectors in H3 leads to an adjoint action on S. Under the SU(3)
transformation, the state vector becomes

|ψ ′〉 = u|ψ〉((u ∈ SU(3))), (16)

the corresponding Bloch vectors are transformed by SO(8)

group, such as

n′
i = Rik(u)nk, ((R(u) ∈ SO(8))). (17)

Substituting Eqs. (16) and (17) into Eq. (14), one finds

Rik(u) = 1
2 Tr (λiuλku

+), (18)

which means thatS2 may be a coset space SU(3)/U(1) × U(1).

IV. GEOMETRIC PHASE OF THREE-LEVEL
OPEN SYSTEM

We now begin with the smooth (open or closed) curve
C = {|ψ(t)〉 = �−1ρ(t)} and subdivide it into N parts. The
points of subdivision are at t0,t1, . . . ,tN and |ψi〉 = |ψ(ti)〉 =
�−1ρ(ti) are values at these points. Each trajectory, then,
is represented by a discrete sequence of quantum states
{|ψ0〉,|ψ1〉, . . . ,|ψN 〉}. Thus the geometric phase for the three-
level open system, expressed by the state vector in H3, is given
by the Pantcharatnam formula

γg = −LtN→∞ arg{〈ψ0|ψ1〉〈ψ1|ψ2〉 · · · 〈ψN−1|ψN 〉〈ψN |ψ0〉}

= arg〈ψ(t0)|ψ(t)〉 − Im

(∫ t

t0

dτ
〈ψ(τ )| d

dτ
|ψ(τ )〉

〈ψ(τ )|ψ(τ )〉

)
, (19)

where the total phase is given by

arg〈ψ(t0)|ψ(t)〉 = tan−1 sin(αt − γt − α0 − γ0)A + sin(βt − γt − β0 − γ0)B + sin(ξt − ξ0)C

cos(αt − γt − α0 − γ0)A + cos(βt − γt − β0 − γ0)B + cos(ξt − ξ0)C
, (20)

where A = sin θ (t) cos φ(t) sin θ (t0) cos φ(t0), B = sin θ (t)
sin φ(t) sin θ (t0) sin φ(t0), C = cos θ (t) cos θ (t0), αt = α(t)
γt = γ (t), βt = β(t), ξt = ξ (t).

Equation (19) is a gauge and reparametrized invariance.
Therefore, γg is a geometric phase associated with an
evolution of a quantum three-level open system. It may be
proved that, similarly to the two-level open system [31–33],
Eq. (19) was in agreement with the result directly from
nounitary evolution, where the geometric phase may be
expressed by the density matrix. It is interesting to note
that, furthermore, under the U(1) gauge transformation,
|ψ ′(t)〉 = exp[−i arg〈ψ(t0)|ψ(t)〉]|ψ(t)〉, the geometric phase
(19) may be rewritten as

γ A
g = −Im

∫ t

t0

〈ψ ′(t)|d|ψ ′(t)〉
〈ψ ′(t)|ψ ′(t)〉 , (21)

which is a generalization of the Aharonov and
Anandan phase for the pure state with the condition of
〈ψ ′(t)|ψ ′(t)〉 = 〈ψ(t)|ψ(t)〉 = 1. Therefore, γ A

g is called as
the Aharonov and Anandan phase for the mixed state.

Considering the interaction between the physical system
and environment, the system no longer undergoes a cyclic
evolution, where the exponent decay factors are included in
the density matrices, Bloch vectors, and nonunit state vectors.

When it is isolated from the environment, however, the system
may be regarded as a quasicyclic process so the total phase
in Eq. (20) is equal to 2π , which is not important and may
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FIG. 7. (Color online) Berry phase of the mixed state for the
different initial conditions (a3)δ1 = 2/3, δ2 = 1/3, and δ3 = 2/3;
(b3)δ1 = 2/4, δ2 = √

3/4, and δ3 = 3/4; (c3)δ1 = √
5/5, δ2 = 2/5,

and δ3 = 4/5; and (d3)δ1 = 3/6, δ2 = √
2/6, and δ3 = 5/6, where

the corresponding population inversions of system are w1(t)〈0 and
w2(t)〉0.
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be dropped off in quantum computation. Thus, the geometric
phase under the quasicyclic process may be expressed as

γg(C) = −	
∮
C

〈ψ |d|ψ〉
〈ψ |ψ〉 = −

∮
C
{sin2θ [cos2φd(α − γ )

+ sin2φd(β − χ )] + cos2θdξ}, (22)

which is called as Berry phase of mixed state, while C is a
closed circle arc on the generalized eight-dimensional sphere
for the three-level system.

Let us consider a projective map described by �(|ψ〉) =
{|ψ(t)〉 : |ψ(t)〉 = eiα(t)|ψ(t)〉}. Then |ψ(t)〉 defines a curve, C,
in Hilbert space: [0,τ ] → H3 with Ĉ = �(C) being a closed
curve in H3 for the quasicyclic evolution. It is obvious that
the same |ψ(t)〉 can be chosen for every curve C for which
�−1(C) = Ĉ by an appropriate choice of α(t).

It is noted that the Berry phase of mixed state, described by
Eq. (22), is an integral of the Mead-Berry connection one-form

K = 	〈ψ(t)|d|ψ(t)〉
〈ψ(t)|ψ(t)〉 around the closed curve Ĉ in H3. If there is

a different choice for α(t), such as |ψ∗
(t)〉 = eiβ(t)|ψ〉, then

K → K∗ = K − dβ because 〈ψ(t)|ψ(t)〉 = r is real so that
dK∗ = dK , which means that γg is invariant. Thus, the Berry
phase of mixed state, described by Eq. (22), is independent of
α(t) for a given closed curve Ĉ under the quasicyclic case.

V. MASTER EQUATION FOR DISSIPATIVE SYSTEM

As an example, let us consider a three-level system
interacting with environment. When a relevant dynamical time
scale of the open quantum system is long compared to the time
for the environment to the forgetting quantum information, the
evolution of system is effectively local in time (the Markovian
approximation) and may be described by the Lindblad’s master
equation [47],

∂ρ

∂t
= − i

h̄
[Ĥ,ρ] +

∑
i

(
�+

i ρ�i − 1

2
{�+

i �i,ρ}
)

. (23)

The first term on the right of Eq. (23) is a usual Schrödinger
term that generates a unitary evolution. The others describe all
possible transitions that the open system may undergo due to
interacting with the reservoir. The operators �i(i = 1,2, . . . ,8)
are called Lindblad operators or quantum jump operators. We
can readily check, using Eq. (23), that ρ̇ is Hermitian and
Tr ρ̇ = 0, which implies that the Lindblad’s master equation
in Eq. (23) preserves positivity of the density operator ρ(t) for
the open system.

It is noted that the Lindblad operators �i = √
ηi(t)λi

represent the couplings to the environment. The decoherent
time is approximately given by 1/�i(t). The noise can be
controlled by switching on and off ηi(t). Now suppose the
dephasing noise � = √

ηλ3 is applied to our three-level system
with the HamiltonianH = 1

2h̄�λ3. Thus the solution of master
equation can be obtained as

ρ11(t) = ρ11(0), (24)

ρ12(t) = ρ12(0) exp{(−2i� − 2η)t}, (25)

ρ13(t) = ρ13(0) exp{(−i� − η/2)t}, (26)

ρ21(t) = ρ21(0) exp{(2i� − 2η)t}, (27)

ρ22(t) = ρ22(0), (28)

ρ23(t) = ρ23(0) exp{(i� − η/2)t}, (29)

ρ31(t) = ρ31(0) exp{(i� − η/2)t}, (30)

ρ32(t) = ρ32(0) exp{(−i� − η/2)t}, (31)

ρ33(t) = ρ33(0). (32)

Under the case of initial pure state |ψ(0)〉 = δ1|1〉 + δ2|2〉 +
δ3|3〉, ρ11(0) = |δ1|2, ρ12(0) = δ1δ

∗
2 , ρ13(0) = δ1δ

∗
3 , ρ21(0) =

δ2δ
∗
1 , ρ22(0) = |δ2|2, ρ23(0) = δ2δ

∗
3 , ρ31(0) = δ3δ

∗
1 , ρ32(0) =

δ3δ
∗
2 , and ρ33(0) = |δ3|2, where δi(i = 1,2,3) are independent

of the evolving time and may be controlled by the external
conditions.

In Eqs. (24)–(32) the dephasing factors exp(−2ηt) and
exp(−ηt/2) parametrize the amount of decoherence. The
effects of dephasing are to decrease the size of the nondiagonal
elements of density matrix in a basis determined by the
dephasing interaction with the environment so that a single-
qutrit is corrupted by the dephasing.

Inserting Eqs. (24)–(32) into Eqs. (6) and (8)–(12), one
may obtain the eight Bloch parameters. Then the Berry phase
of mixed state (22) can be calculated by the Bloch parameters.

VI. DISCUSSIONS AND CONCLUSIONS

The Bloch radius as a function of decay rate η is shown
in Figs. 1 and 2 in units of � = 1[1/s] for different initial
conditions at the quasicyclicity T = 2π/�, respectively. From
Figs. 1–2, we see that, with increasing of the decay rate,
the Bloch radius decays, which means that the physical state
of three-level open system is from the pure state to mixed
state. The mixed degree is obviously dependent on the decay
rate.

We find that, furthermore, the corresponding Berry phase of
the mixed state may be separated into two groups with positive
(see Fig. 3) and negative (see Fig. 4) values for the different
initial conditions, where Figs. 3 and 4 have the same parame-
ters as Figs. 1 and 2, respectively. It is obvious that the sign of
the phase depends on population inversions w1(t) = ρ11(t) −
ρ22(t) − ρ33(t) and w2(t) = ρ11(t) − ρ22(t). The Berry phases
of the mixed state at Fig. 3 correspond to w1(t)〉0 and
w2(t)〉0; the others at Fig. 4 correspond to w1(t) � 0
and w2(t) � 0.

Figures 3 and 4 show that, as the decay rate increases,+
the Berry phases decrease. However, the absolute values of
the phases at Fig. 4 increase, which may be understand
by the relations between Bloch radius and Berry phase. From
Figs. 5 and 6, we see that the Bloch radius almost exponentially
increase with the Berry phase. At Fig. 5, the maximum
value for positive Berry phase corresponds to the pure state
with r = 1. At Fig. 6, the minimum value for negative one
corresponds to the pure state.

It is interesting that, when the population inversions have
differing signs, i.e., w1(t)〈0 and w2(t)〉0, the Berry phase
is an increasing function of the decay rate, differing from
the previous situations (see Fig. 7). The similar cases are
observed for the other signs among w1(t), w2(t) and w3(t). It
is known that the population inversions are physical quantities
describing the evolution of the system. It is shown that,
therefore, the three-level open system retains a memory of
its evolution in terms of the Berry phase of the mixed state.

062108-5



JIANG, JI, XU, HU, WANG, CHEN, AND GUO PHYSICAL REVIEW A 82, 062108 (2010)

Thus, our definition of the geometric phase for the three-level
mixed state may have a hidden rich physics.

In conclusion, a way is expanded to calculate geometric
phase for the three-level open system. By mapping the interior
points of the eight-dimensional Poincaré sphere onto field
amplitudes, we establish in connecting density matrices with
nonunit vector rays in H3. Geometric (Berry) phases, defined
according to the vector rays, depend only on the geometric
structure on this space, where the simple structure is exploited
so any state can be described as a (generally non-normalized)
vector in a Block sphere. Under the limiting of pure state,

moreover, our approach is in agreement with the Berry phase,
Pantcharatnam phase, and Aharonov and Anandan phases.
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