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Quantum dynamics of spatial decoherence of two atoms in a ring cavity
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We study the spatial decoherence dynamics for the relative position of two atoms in a single-mode ring cavity.
We find that the spatial decoherence of the two atoms depends strongly on their relative position. Taking into
account the spatial degrees of freedom, we investigate the entanglement dynamics of the internal states of the
two atoms. It is shown that the entanglement decays to almost zero in a finite time, and the disentanglement time
depends on the width of the wave packets describing the atomic spatial distribution.
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I. INTRODUCTION

Superposition and its = many-particle  version—
entanglement—are two basic features of quantum physics,
distinguishing the quantum world from the classical
world. Because of its intriguing properties, quantum
entanglement has attracted considerable attention as an
important resource for quantum information processing [1,2].
However, quantum coherence can be destroyed due to the
physical system interacting with the environment, which has
been recognized as a main obstacle to realizing quantum
information processing. Hence a better understanding of the
mechanisms of quantum decoherence is not only crucial for
the understanding of the quantum-classical transition (see,
e.g., Refs. [3-5]), but also essential for the implementation of
quantum information processing.

In the last few years, theoretical studies in this context
have involved a variety of systems (see, e.g., Refs. [6—12]).
Moreover, experiments have also been done to demonstrate the
dynamic process of decoherence as well as the collapse and
revival of the quantum coherence (see, e.g., Refs. [13—15]).
In recent years, several physical systems have been studied to
learn more about environment-induced decoherence (see, e.g.,
Refs. [16,17]).

The influence of atomic spatial motion on quantum dy-
namics has been considered in different contexts (see, e.g.,
Refs. [18,19]). For a system of two cold atoms placed in a
noisy vacuum field, the back-action of emitted photons on the
wave-packet evolution about the relative position of the two
cold atoms was discussed in Ref. [20]. It was shown that the
photon recoil resulting from the atomic spontaneous emission
can induce the localization of the relative position of the two
atoms, through the entanglement between the spatial motion
of individual atoms and their emitted photons.

In contrast with previous works, here we consider the case
where a pair of atoms simultaneously interact with a single-
mode ring cavity. In fact, this kind of system is a typical
system in which the cavity field acts as a data bus inducing
two qubits to be entangled [21,22]. The system is efficiently
used in many schemes for proposing how to realize quantum
logic gates and teleportation in cavity QED [23]. In this paper,
we will study the spatial decoherence of the atomic relative
position and the disentanglement of the internal states of these
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two atoms induced by the back-action of the photons emitted
from these atoms. We find that the spatial decoherence of
the two atoms depends strongly on their relative position. Our
results show that the entanglement of the internal states decays
to almost zero in a finite time, and the disentanglement time is
determined by the width of the atomic wave packets.

This paper is organized as follows. In Sec. II we present
an effective Hamiltonian of the total system and then give the
solution for the eigenequation of the effective Hamiltomian. In
Sec. III we discuss the time evolution of the density operator
of the total system and obtain the reduced density matrix in the
relative-coordinate picture. Furthermore, a decoherence factor
for arbitrary cavity-field and general atomic spatial states is
introduced. In Sec. IV, under the assumption that the two
atoms’ relative position is initially in a superposition state
of two Gaussian wave packets, we demonstrate the spatial
decoherence when the cavity field is initially in a coherent
state. In Sec. V we study the disentanglement dynamics of the
two atoms’ internal states. Finally, a concluding summary is
given in Sec. VI.

II. MODEL

Our system consists of two identical two-level atoms that
interact with a single-mode cavity field (Fig. 1). The two atoms
are denoted here as atoms 1 and 2. The mass of each atom is
denoted by m, and their atomic transition frequency is wy.
Assume that the two atoms are spatially separated and located
at the positions *; and X, respectively, and the corresponding
momenta for atoms 1 and 2 are p; and p,. Then the momentum
for the center of mass (c.m.) of the two atoms is P = p; + p,
and the relative momentum of the two atoms is p = (p; —
$2)/2. The c.m. position and the relative position are X =
(%1 + X2)/2 and X = x| — X,, respectively.

Under the rotating-wave approximation, the Hamiltonian
of this system reads as

A2 A2 1
BB ol o)
+hw&Jf& 4 hg[&(&il)eikx‘ + 6_(,'_2)6”6"(2) +Hecl, (1)

H =

where 60 = |e;)(e:| — [8:)(gil. 6" = le;) (gi]and 67 = |g;)
(e;| (i = 1,2) are the atomic operators for the ith atom with
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FIG. 1. (Color online) A schematic diagram of the system
considered in this paper. A single-mode ring cavity contains two
atoms 1 and 2. Here p is the relative momentum of the two atoms,
and x is the relative position of the two atoms.

respect to the excited state |e) and the ground state |g) of the
atoms, &' and & are the creation and annihilation operators for
the cavity field, w and k are the frequency and wave number
of the cavity field, and g is the atom-field coupling constant.
There may be a counterpropagating running-wave mode with
a wave vector —k in such a ring cavity, which may affect
the atom-field dynamics and contribute to the interaction part.
However, as discussed in Refs. [18,24], we can consider that
an atom traverses only an arm of the optical ring cavity, and
only one cavity mode is excited by an external laser. Thus, it is
reasonable to consider a single propagating (e.g., a clockwise-
running) wave mode in a ring cavity.

We Aﬁrst factorize the evolution operator U (t) =
exp(—i Ht /h) into a product as
U@) = W)W ) U W (x2) W (x1)', )

where W(xi) (i = 1,2) is a unitary transformation defined by

ik —ikx;
W(x»—exp( Zx)|e,><ei|+exp (%) ) (gl 3

which concerns the coupling of the internal levels with the spa-
tial degrees of the atom i. The operator U (t) = exp(—i I:I t/h)
is easily proved to be determined by the effective Hamiltonian
H, = Hy + H, of the system with

LS
2m0 2]’/10 4mo’

“4)

Ay =

H =h [ (lei){ |g1><gi|)+g(&TIgi)(ei|+H.C-)]
i=1,2

+hwa'a 5)

Here Q] = wy + plk/mo and Qz = wq + pzk/l’l’l(). In the
following discussion, we consider that the atomic transition
is resonant with the cavity mode, i.e., @y = w. In this case,
we have wy = ck (c is the light velocity in vacuum). Note that
pik/mo = Vik (i = 1,2), where V; is the velocity of the atom
i. Thus, when the velocity of the atom i is far smaller than the
light velocity in vacuum (i.e., V; < ¢), we have p;k/my < wp.
On the other hand, the condition p;k/my < g needs to be met,
such that the influence of the momentum-dependent energy
shifts of the atomic internal levels on the system dynamics
is negligibly small. To see the availability of this condition,
let us consider a ’Rb atom with two circular Rydberg levels
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|g) and |e) (corresponding to principal quantum numbers 50
and 51). The transition frequency between |g) and |e) is
~51.1 GHz [25]. Thus, we have k ~ 10> m~! for the case
when the transition between |g) and |e) is resonant with the
cavity mode. The coupling constant g is on the order of
10° Hz [25-27]. For the laser-cooled and optically trapped
87Rb atom, we can assume that the atom has a measured
temperature of 7 ~ 180 uK [28]. A simple calculation shows
that the atomic velocity is V ~ 23 cm/s. Hence, we have Vk ~
230 Hz <« 10° Hz, which demonstrates that the approximation
of the condition |p;k/my| <« g could be satisfied in practice.
The analysis given here shows that the term p;k/mg in ©; can
be neglected, leading to 2; = wy + p;k/mo =~ wy. We note
that the same approximation was made in Ref. [20].

The total excitation number afa + |e;)(ei| + |e2)(es| is
conserved during the interaction. By resolving the eigenequa-
tion of H, in the subspace spanned by states with the total
excitation number (n + 2), the following eigenstates of H; are
obtained:

(") = V2fmler.ern) — V2 finlg.g2n+2),  (6)

V2 V2
W) = S lgnean+1) = lengan+1). (D)

)Y = fialer,ean) + Lgi,ern + 1)
+3ler.gan+ 1)+ falgr.gn+2), (8
W)Y = — fiuler,ea.n) + Llgi.ean + 1)
+3ler.gan+ 1) = falgr.g.n+2), (9

with the eigenvalues
E{) = (1 + Dho = Ey, EY" =
E{" = Ey —hA,,

where A, =/22n+3)g, fi,=+v/(+D/12@Qn+3)1, fon =
J(n+2)/[22n +3)], and n is an arbitrary nonnegative
integer.

EO +hAl’la
(10)

III. DECOHERENCE FACTOR

In this section we discuss the time evolution of the system
and investigate the spatial decoherence factor for the atom-
atom relative position.

Assume that the initial density operator of the whole system
is given by

p(0) = p5(0) pi(0) p7(0), (an

where p,(0) = | (0)) (¥ (0)] is the initial density operator for
the spatial motion of the two atoms, p; (0) = |¢(0)) (¢(0)] is the
initial density operator for the internal state of the two atoms,
and p(0) is the initial density operator for the cavity field.

Let us now assume that the state |1/ (0)) is expanded (in the
momentum representation) as

W (0) = / / dprdps Colprops)e (12)

where |p;) is the momentum eigenstate of atom 1, |p;)
is the momentum eigenstate of atom 2, and C, ,, is the
distribution function satisfying the normalization condition
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[[2 dp1dpa|Cp,p,|* = 1. The state |$(0)) is assumed to be
a pure separable state |ej,e;). In terms of Fock states |n) and
[n’), the density operator 5/(0) is, in general, written as

pr(0) = Z Cn,n’|”><”/|- (13)

The time evolution of p(0) can be obtained by p(r) =
U0)p0)01(0). Following the eigenstates (6)—(9), eigenvalues
(10) of 1-71, and based on Egs. (2), (3) and (11)—(13), we find
that the density operator p(¢) can be written as

A= Cuw | Wa(ON W (1), (14)

where

|, (1)) //ood dp, C i k)"
n = X — _—
. p1apz Cp p, €Xp 2moi P1 2

hk\>
+ (Pz - 7) ]}[Dl(n,t)lpl,m) ® lei,ez,n)

+ DZ(”J)('pl - hk7p2> ® |g1,€2,l’l + 1)
+|p1,p2 —hk) @ |e1,g2,n + 1))
+ D3(n,t)|p1 — hk,p> — hk) ® |g1,82,1n + 2)]

15)
and
Dy(n,t) = 2f2 cos(Ant) + 2 f5, (16)
Dy(n,t) = —ifin sin(A,t), 7)
D3(n,t) = 2 fi, fan[cos(At) — 1]. (18)

We assume that the distribution function C,, ,, in Eq. (12)
satisfies Cp, ,, = CpCp; i.e., the initial state [(0)) for the
spatial motion of the two atoms can be written as | (0)) =
[1£(0)) ® |¢(0)), with |u(0)) = ffooo dP Cp|P) describing the
initial c.m. state of the atoms with a momentum distribution
function Cp corresponding to the c.m. momentum eigenstate
|P), and |¢(0)) = ffooo dp C,|p) describing the initial relative
position state of the atoms with a distribution function
C, corresponding to the relative momentum eigenstate |p).
Both Cp and C, satisfy the normalization condition, i.e.,
[2ICpIPdP =1and [ |C,|%dp = 1.

By tracing over the cavity field, the c.m. motion, and the
internal states of the atoms, we obtain from Eq. (14) the
following elements of the reduced density matrix (in a relative
coordinate picture):

pCe,x' 1) = o(x,De*(x', ) F(x,x,1), (19)

where @(x,t) = [* dp C, exp[—ip*t/(moh) + ipx/h] is
the free-evolution state of |¢(0)) expressed in a relative
coordinate picture, and F(x,x’,t) is the decoherence factor,
which is given by

Fx.x'.t) =Y cun{D}(n.t) + Di(n.1)
n=0

+ 2|D2(n,t)|2 cos[k(x — x/)/2]}. 20)
The decoherence factor F(x,x’,t) given here will be used in

our analysis of the spatial decoherence of two atomic wave
packets.
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IV. SPATIAL DECOHERENCE OF TWO ATOMIC
WAVE PACKETS

We consider that the initial state |¢(0)) of the two atoms’
relative position is a superposition of two Gaussian wave
packets centered at @ and —a, respectively; i.e., we have (in
the x representation)

1
V28

where G4 (x) = (v2rd) "2 exp[—(x & a)?/(4d?)] and & =
1+ exp[—a2 / (2d?)]. Here § is a normalization constant,
and, for simplicity, we have assumed that the two Gaussian
distributions have the same spread d, which is limited in
dmin < d < a. Here dyy,;, is much smaller than the wavelength
A of the cavity field, but a zero spread is not permitted to avoid
the atoms indistinguishable by quantum dispersion [29].

Assume that the time for the atoms staying in the cavity is
so short that we can assume the spatial distribution remains
unchanged with respect to the initial spatial state for the atomic
free evolution. Then Eq. (19) can be written as a product of
the initial state and the decoherence factor

@(x,0) = [G+(x)+ G-_(x)], 1)

p(x.x' 1) > @(x,0)9" (x",0)F(x,x",t) = p(x,x",0)F (x,x",1),
(22)

where p(x,x’,0) = ¢(x,0)¢*(x’,0) describes the initial state
of the atomic relative position. The initial state is illustrated
in Fig. 2. Here the two peaks, along the x" = x direction,
correspond to the diagonal terms of p(x,x’,0), while the other
two peaks along the x’ = —x direction correspond to the off-
diagonal terms of p(x,x’,0), which represent the coherence
between the two wave packets.

Following Eq. (20), it can be proved that for the case of
x' = x, F(x,x,t) = 1, thus we have p(x,x,t) = p(x,x,0);i.e.,
the diagonal terms of the density matrix p(x,x’,t) remain
unchanged during the time evolution. However, for the off-
diagonal terms with x’ = —x # mA (m is an arbitrary nonzero
integer), it can be seen that | F(x’ = —x,7)| < 1. Thus we will
mainly analyze the evolution of the off-diagonal terms of a
reduced density matrix.

FIG. 2. (Color online) Plot of the density matrix p(x,x’,0)
representing the initial state for the relative position of the two
atoms. It is a superposition of two Gaussian wave packets. The two
peaks along the x” = —x diagonal direction represent the coherence
between the two wave packets.
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For the cavity field initially in a coherent state |«), we have
Cnn = exp(—|o %) /n! where « is a complex number. Thus,
Eq. (20) becomes

X 2n
2 o
F(x,x',t) = e E
n!
n=0

{Df(n,t)

42| Dy(n,1)|? cos [@} 4 Dg(n,t)}. (23)

Along the x” = —x direction, the decoherence factor takes the

following form:
/ laf? o,
— o
Fx'=—xt)=e¢e E F[Dl(nv[)

+2|Dy(n, 1) cos(kx) + D3(n,1)],  (24)

which is shown in Fig. 3. It can be seen that
(i) For x = mA, F(x' = —x,t) remains equal to 1 during
the time evolution [Fig. 3(a)].

X,t)

F(x'=-

0

(

1
X
I
=
w

g[:15
0
-2 -1 0 1 2

FIG. 3. (Color online) (a) Evolution of the decoherence factor
F(x" = —x,t) with time ¢ and relative position x. Decoherence factor
F(x' = —x,t) for (b) some selected relative positions and (c) a
selected time. Panels (a), (b), and (c) are plotted for the cavity field
initially in a coherent state with & = 10.
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p(x'=-%1)

FIG. 4. (Color online) Density matrix p(x’ = —x,t), which
evolves from the initial state (21) with a # mA for the cavity field
initially in a coherent state with o = 10.

(i) For x # mA, F(x’ = —x,t) decays to a constant after a
finite time, and the value of the constant is determined by the
value of x [Fig. 3(b)].

(iii) For a given time ¢, F(x’ = —x,t) oscillates with x in
a cosine law [Fig. 3(c)], and for the case of x = (m + 1/2)A,
the decay of F(x’ = —x,t) reaches the maximum with F(x’ =
—x,gt > 1.5) =~ 0.5 [Fig. 3(c)].

We presented an analysis on the decoherence factor for the
case of the initial state ¢(x,0) described by Eq. (21). According
to that analysis, the following can be concluded:

(i) For the case a = mA, the two peaks along the x = —x
direction remain unchanged during the time evolution. So the
relative motion of the two atoms decouples with the cavity
field, and thus there is no decoherence induced by the photon
recoil.

(i1) For the case a # mA, the two peaks along the x’ = —x
direction partially decay in a finite time and there is no revival,
and the decay of the two peaks depends on a in a cosine law,
with a maximum decay ata = (m + 1/2)A.

The evolution of p(x" = —x,t) for the initial state ¢(x,0)
with a # mA is shown in Fig. 4, which demonstrates that the
initial state ¢(x,0) undergoes a partial decoherence after a
finite time and a revival does not occur. Thus, the coherence of
the atomic relative position is strongly destroyed. The Wigner
functions for the initial density matrix p(x,x’,0) shown in
Fig. 2 and the density matrix p(x,x’,t) given in Eq. (22) are
shown in Fig. 5. Strong oscillations together with negative
values [Fig. 5(a)] indicate quantum coherence between the two
wave packets, and it turns out that the oscillations are partially
damped by decoherence [Fig. 5(b)]. This may be induced by
the entanglement between the two-atom spatial motion and
the cavity field resulting from the photonic back-action. This
entangling process inevitably destroys the coherence of the
spatial motion of the two atoms. Since the single-mode cavity
field is just an environment with a few degrees of freedom, the
spatial coherence is not completely destroyed.

V. DISENTANGLEMENT DYNAMICS OF TWO ATOMS

To begin, let us assume that
(i) The initial spatial state [y(0)) of the two atoms is a
separable state:

1V (0)) = )1 ® |1)a. (25)
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FIG. 5. (Color online) (a) The Wigner function for the initial
density matrix p(x,x’,0) shown in Fig. 2. (b) The Wigner function for
the density matrix in Eq. (22) whose off-diagonal terms are shown in
Fig. 4. Panels (a) and (b) are plotted for gr = 2. Here p is the relative
momentum of the two atoms, and x is the relative position of the two
atoms.

Here |pn); and |u), represent two Gaussian wave packets
describing the spatial distribution of the two atoms, respec-
tively. In the coordinate representation, |u); is expressed as
(i=12)

e i 1 1/4
I'L(-xiao) - \/;oo dpl Cp[ exXp <};lpixi) = <W)

(xi + a;)?
44> ’
where a; is the center of the Gaussian function u(x;,0) and d

is the width of the Gaussian function w(x;,0). The coefficient
C,, is given by

242\ '* d?p? ia;p;
c, == _Z L i), 27
() ()

For convenience, we assume that a; = —a, = a/2. The initial
density operator for the spatial motion of the two atoms is
ps(0) = [ (0)) (¥ (0)].

(i1) The initial internal state |¢(0)) of the two atoms is an
entangled state, which is given by

X exp |:— (26)

19(0)) = cos y|g1.82) +siny|er,ez). (28)

The initial density operator for the internal state of the two
atoms is p;(0) = [¢(0))(¢(0)].

(iii) The cavity field is initially in a vacuum state, i.e.,
pr(0) = 10)(0].

The initial density operator of the whole system is p(0) =
P5(0) i (0) 57(0). At time ¢, the density operator of the system
is p(t) = U(Z)ﬁ(O)UT(t). Here U (1) is the unitary operator in
Eq. (2). After tracing p(t) over the electromagnetic field and
the spatial degrees of freedom of the atoms, we obtain the
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following reduced density matrix for the internal state of the
two atoms:

a 0 0 w

R 0 b z O

pi() = 0 = ¢ ol (29)
w* 0 0 d

which is written in a basis formed by |e,e2), |e1,82), |g1,€2),
and |g1,g2). Here

a = D}(0,0)sin’ y,
b = ¢ = |D(0,0)|*sin’ y,

d = cos> y + D32(O,O) sin® v,

w = D(0,0) cos y sin ye 2 =51,

7 = be 50,
with £(t) = s(t) + d*k* — ika and s(t) = h*k*t*/(4d*m?).
The parameter s(z) is obtained after tracing p (#) over the
atomic spatial degrees of freedom, which causes the strong
time dependence of the concurrence as will be shown.

A popular measure of entanglement for g;(¢) is given by
the concurrence [30], which is defined as

C(p) = max{0,y/A1 —vho — Az —Vaa),  (30)

where A; are the eigenvalues of the non-Hermitian matrix §; Ei
in descending order, and p; = (6y1 ® 6y2)ﬁi*(6y1 ® 62). Here
P} is the complex conjugate of p;, and 6; is the usual Pauli
operator for atom i (i = 1,2). The concurrence C varies from
C =0 for a nonentangled state to C = 1 for a maximally
entangled state. The concurrence of the density matrix g; () in

Eq. (29) is [31,32]
C(pi (1) = 2max{0,|z| — vVad,|w| — Vbe},  (31)

which is shown in Fig. 6. Equation (31) demonstrates that the
concurrence evolves with a nonsmoothly exponential decay
due to the factor e, as shown in Fig. 6.

Alternatively, the initial internal state for the two atoms
could be another type of entangled state given by

1$(0)) = cos yler,g2) +siny|gi.ez). (32)

----- d=a/100
— d=a/200
- = d=a/1000

Concurrence C

~

|
/ \

‘\\ FANA)
8 10 12 14
gt

FIG. 6. (Color online) Time evolution of the concurrence C for
the case when the initial internal state of the two atoms is an entangled
state [¢(0)) = cos y|g1,£2) + siny|e;,e,), with y = 7 /4. The dotted
line is for e~ with d = a/100.
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By doing a calculation similar to the above, it can be seen that
for the entanglement state |¢(0)) considered here, the reduced
density matrix p;(¢) for the internal state of the two atoms is

00 0 0

X 0 b z 0

pi(t) = 0 ¢ ol (33)
00 0 w

where
b= AX(t)cos’y + AZ(t)sin’ y
+2A,(1)A_(1)cos y sinye~? cos(ak),
c= Az_(t) cos’ y + Ai(t) sin’ y
+2A,(t)A_(t) cos y sin ye° cos(ak),
w = |B(t)|> + 2 cos y sin ye° cos(ak),
z=e S O{AL()A_(D)[cos® ye @ + sin® ye P]
+[AZ(t) + A2 (t)e "] cos y siny},
with

A = cos(JZzgz) + 1’

B(t) = —i sin(ﬁgt)/ﬁ.

Here § = d*k*, o = d’k* +iak,B = d*k> —iak and n =
4d’k* + i2ak.

The concurrence for the reduced density matrix p;(¢) in
Eq. (33) is given by C(p;(t)) = 2|z|, which is shown in
Fig. 7. One can see that there is a common factor ¢~*®
with s(t) = h?k*t? /(4d’m3), appearing in the expression of
z. Because of this factor e=*®), the value of |z| decays to zero
with time asymptotically. Here Figs. 6 and 7 show that the
oscillations of the entanglement are damped exponentially,
but the decay of the entanglement occurs faster when the
width d of the initial Gaussian function becomes smaller,
and the entanglement decays to almost zero in a finite time.
So the back-action of the emitted photons may induce an
entanglement between the two-atom internal states and the
two-atom spatial motion states, and this correlation destroys
the coherence of the internal states of the two atoms. The
smaller the width of the wave packets, the larger the uncertainty

1
----- d=a/100
&) — d=a/200
3 - d=a/1000
c
L
5
[&]
[
[e]
(@)
7N\
0 , \
8 10 12 14
gt

FIG. 7. (Color online) Time evolution of the concurrence C for
the case when the initial internal state of the two atoms is an entangled
state |¢p(0)) = cos y|ey,g2) + siny|g,es), with y = /4. The dotted
line is for e~ with d = a/100.
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of the atomic spatial momentum, which results in a faster
destruction of the atomic internal-state entanglement.

VI. CONCLUSION

We have considered a system of two atoms interacting with
a single-mode cavity field. Since the spatial degrees of freedom
of the atoms are considered, the Hamiltonian of the whole sys-
tem becomes complicated. To solve the Schordinger equation,
we have introduced two unitary transformations (involving
the coupling of the internal levels with the spacial degrees of
the atoms), presented an effective Hamiltonian of the system,
and given the analytic solutions to the eigenequation of the
effective Hamiltonian. Based on these, we have investigated
the decoherence dynamics for the relative position of the
two atoms and presented a decoherence factor for a general
cavity-field state and an arbitrary atomic spatial state, which
might be useful for future related work.

Under the assumption that the atomic relative position
is in a superposition of two Gaussian wave packets, we
have demonstrated the spatial decoherence of the two atoms’
relative position for a cavity field initially in a coherent state.
Our results show that the spatial decoherence of the two atoms
depends strongly on the relative position of the two atoms.
Interestingly, we found that when the relative position of the
two atoms is an integral multiple of the wavelength of the
cavity field, the spatial coherence of the relative position
of the two atoms is not destroyed by the photon recoil.
However, when the relative position of the two atoms is not an
integral multiple of the wavelength of the cavity field, spatial
decoherence of the relative position of the two atoms happens.

Furthermore, we have studied the entanglement dynamics
of the internal states of the two atoms interacting with a single-
mode cavity field. Our results show that the entanglement,
measured by the concurrence, decays to almost zero in a
finite time. Thus, the back-action of the photons emitted from
the two atoms may be a fundamental process destroying the
entanglement of atoms.

From this work, it can be concluded that there exists a
phenomenon that the moving qubits (e.g., atoms) placed in a
cavity may suffer from the spatial decoherence. Therefore, it
is important to overcome the influence of the spatial motion of
qubits on their entanglement.
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