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Control-free control: Manipulating a quantum system using only a limited set of measurements
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We present and discuss different protocols for preparing an arbitrary quantum state of a qubit using only a
restricted set of measurements, with no unitary operations at all. We show that an arbitrary state can indeed
be prepared, provided that the available measurements satisfy certain requirements. Our results shed light on
the role that measurement-induced back-action plays in quantum feedback control and the extent to which this
back-action can be exploited in quantum-control protocols.
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I. INTRODUCTION

Control techniques are applied in a wide variety of
practical applications, e.g., when a device is to be maintained
in a certain state in spite of the environmental fluctuations
that would normally push it away from that state [1]. The
basic structure of a closed-loop control system contains
two steps: measurement and feedback control. In the first
step, the measurement, information is acquired about the state
of the system and how far it is from the desired target state.
In the second step, a “control” is applied to the system, i.e.,
a signal or force is applied, in order to change the state of the
system and guide it toward the target state.

In classical mechanics, the measurement process only
extracts information about the state of the system, but (under
ideal circumstances) it does not change that state. In quantum
mechanics, this picture breaks down: the measurement itself
will change the state of the system no matter how ideal it is.
(Note that for any measurement outcome there are quantum
states that are not affected by the measurement; this absence
of back-action, however, cannot be true for a general state.)
One therefore needs to treat quantum-control problems using
a different frame of mind from that used when dealing with
classical-control problems [2—4].

One possibility for dealing with the unavoidable back-
action of the measurement is to calculate the effected change
and design the control signal accordingly [5,6]. Another
possibility, which might be conceptually more radical, is to use
the change caused by the measurement as the sole means for
manipulating the state of the system. In this case, closed-loop
feedback control involves only the measurement step; the
“control” is no longer needed. Indeed, there have been studies
on this possibility in the last few years [7-9].

In previous work [7-9] it was assumed that measurements
in any basis are allowed. Here we consider the case where
only a restricted set of measurements is implementable, and
we analyze various questions related to whether such a limited
set of operations is sufficient for the preparation of an arbitrary
target state. We also consider the question of the time required
to reach the desired target state.

II. STATE PREPARATION USING THE FULL
SET OF POSSIBLE MEASUREMENTS
In Refs. [7,8] the authors considered the problem of
preparing an arbitrary target state from an arbitrary initial state
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without imposing any constraints on the measurements that
can be performed on the system. There it was demonstrated
that an arbitrary target state can indeed be prepared using only
measurements. One can understand this situation as follows.
For any target state [{/r), one can construct (at least formally)
a projective measurement where |{/7) is one of the possible
outcomes. If now this measurement is performed on a system
in any initial state, there is a possibility that the outcome will
correspond to the state [{r), and one would have succeeded
in preparing the target state. This procedure is obviously
probabilistic; it is possible that one might obtain a differ-
ent outcome in the measurement. Turning this probabilistic
protocol into a deterministic one is straightforward: every
time the measurement fails to produce the desired outcome, a
perturbation, which can be thought of as a kick, can be applied
to the system, and the measurement is repeated. Unless the
perturbation does not create any population in the state |{r),
e.g., for symmetry reasons, this procedure is deterministic;
if one keeps trying, one will eventually obtain the target
state [10].

In an increasingly large Hilbert space, it becomes more and
more unlikely to obtain the desired measurement outcome,
which in turn leads to longer and longer average state-
preparation times. This problem can be alleviated by making
a better choice of measurements than the one we have
described. One can guide the quantum state of the system
from the initial state to the target state using a sequence of
projective measurements where one of the possible outcomes
gradually changes from the initial state [y;) to the target
state |yr). For example, one could design a sequence of N
projective measurements where each measurement (labeled by
the index i) has one outcome that corresponds to the projection

[} (], where

1Y) = cos (;—;V) Y1) + sin (;—;V) ). (D)

For best performance, we assume that the other outcomes of
the measurement are orthogonal to |1;). The probability that
the system will follow the state |;) in all the measurement
steps is given by cos*" [z /(2N)], which approaches unity in
the limit N — oo, regardless of the size of the Hilbert space.
This procedure was analyzed in Refs. [7,8,11].

In Ref. [9] the author considered the case of continuous
measurement, where one essentially performs weak mea-
surements rather than projective measurements. There it was
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demonstrated that by continuously adjusting the measurement
settings, an arbitrary target state can be prepared. The choice of
the measurement is done as follows: based on the instantaneous
quantum state and the desired target state, one chooses a
measurement basis that gives a high probability for the
quantum state to evolve toward the target state.

III. STATE PREPARATION USING A RESTRICTED
SET OF MEASUREMENTS

In Sec. II, we reviewed a number of ideas that can be
used for the preparation of an arbitrary target state using the
set of all possible measurements as available resources. Here
we consider the possibility of preparing an arbitrary target
state using a small number of available measurements. Indeed,
in realistic situations there typically are constraints on the
measurements that can be performed.

A. Measurements of spin along three orthogonal axes

We consider a two-level system, i.e., a qubit, and we
start by considering measurements of this (pseudo-) spin
along three orthogonal axes, i.e., the observables o, .. If
the measurements were projective, the o, measurement would
result in one of the states |0, = 1) and |o, = —1), depending
on the outcome of the measurement, and similarly for the
two other observables. As a result, only six target states can be
prepared: o, = 1), |0, = —1),]oy = 1),]0y = —1),|0, = 1),
and |o, = —1) (In this discussion we shall use the notation
1) =lo. =1)and |{) = |o; = —1)).

The situation changes drastically when, instead of strong
projective measurements, we consider weak, nonprojective
measurements. An example of a weak measurement could
be the following: a measurement of o, produces the outcome
+1 or —1, upon which the quantum state of the system is
transformed (or, in some sense, partially projected) according
to the formula

M:I:pbeforeM:t
Pafter = ——~ "~ > (2)
Tr(MipbeforeMi)
where the measurement operators M. are given by
A 1+e€ 1—¢
M, = I+ —— UL
2 2 )

Mo — 1—¢ 1+¢€
= ,/TIT)(TI +\/T|¢)(¢I,

and the probability of observing the two different outcomes
are given by

PI'Obj: = Tr(M:I:pbeforeM:I:)- (4)

The parameter € quantifies the strength of the measurement:
for a weak measurement € is small, whereas for a projective
measurement € = 1 (The parameter € can also be understood
as the measurement fidelity [12]). We shall assume similar
measurement properties for the two other observables. A weak
o, measurement does not project the system onto one of the
two states |1) and || ), but slightly modifies the quantum state
such that it experiences a small shift from the premeasurement
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FIG. 1. (Color online) Schematic diagram showing the transfor-
mation of the quantum state of a qubit as a result of a nonprojective
measurement. The double arrow represents the measurement axis.
The tail of the single-headed arrow represents the premeasurement
state, and the head represents the postmeasurement state. The
quantum state “moves” in the plane defined by the premeasurement
state and the measurement axis. The distance that the quantum state
moves depends on the different parameters in the problem, including
in particular the measurement strength €.

state in the direction of one of the states |1) and || ). For
example, if one starts with the state

1
h”)before = ﬁ(”) + N/))

= 0.707|1) 4 0.707]4), (5)

and one obtains the outcome +1 in a o, measurement
of strength € = 0.01, the postmeasurement state will be
(approximately)

[V )afier = 0.711|1) + 0.703[{). (6)

The transformation of the quantum state of a qubit following
a nonprojective measurement is illustrated in Fig. 1.

One can now observe that after a weak measurement of a
given observable, the postmeasurement state lies in the plane
defined by the premeasurement state and the measurement
axis. Using this observation, one can devise a protocol for
preparing an arbitrary target state using the three measure-
ments we have mentioned. One possibility is the following:
one performs a sequence of o, and o, measurements until
the quantum state of the system lies in the plane defined by
the z axis and the target state. Once that goal is achieved, one
performs a o, measurement (or measurements), such that one
either obtains the target state or one concludes that the state
has gone too far in the opposite direction and is unlikely to
come back (clearly this is a subjective explanation; however,
it can be made quantitative straightforwardly, as we shall do
shortly). As a general rule, one could say that success and
failure in this (i.e., second) step occur with probability 50%
each. In the case of failure, one goes back to the o, and o,
measurements. This time one requires again that the state lie
in the plane defined by the z axis and the target state, but one
also requires that the state approach the x—y plane to within a
certain tolerance (this new condition is designed to bring the
state back to roughly the middle between the states |1) and

062103-2



CONTROL-FREE CONTROL: MANIPULATING A QUANTUM ...

[} ), such that the next attempt at a o, measurement will have
a 50% success probability).

We now estimate the time required in order to prepare an
arbitrary quantum state using the described protocol. For this
purpose we assume that the measurement fidelity F in a single
measurement is a tunable parameter. (If one is constrained
to use measurements of a small fidelity €, any larger fidelity
F can be obtained by repeating the low-fidelity measurement
n times with n given by

F = erf(ey/nm /2) ~

and erf stands for the error function [12].) The target state can
be expressed as

1 — exp(—ne), 7

) sin T )

V) = or
= cos —

! 2¢

up to an irrelevant overall phase. For definiteness we assume

that the initial state points along the y axis, i.e., the initial state

is an eigenstate of 6. As we have explained, before performing

any o, measurements, one first needs to prepare the state

_ L —ipr/2 igr/2

ﬁ(e 1) +e“777). €))
A measurement of o, with fidelity F = |cos ¢r| results in
the desired state with probability 0.5. In the case of failure, a
strong (and ideally projective) o, measurement is performed,
followed by a new attempt using the o, measurement. (One
should note here that the strong o, measurement could result
in a state with a value of ¢ that differs from ¢ by more than
/2. In this case, it is impossible for any o, measurement
to produce the desired value of ¢. One could deal with this
case by performing a strong o, measurement, followed by
a o, measurement with a properly calibrated fidelity.) One
can therefore estimate that obtaining a state with the desired
value of the phase ¢y will, on average, require just a few
measurement steps. We now have a state that lies in the x—y
plane with the correct phase between the states 1) and || ).
At this point, a o, measurement with fidelity F' = | cos6r|
results in the target state with probability 0.5. In other words,
every time one succeeds in obtaining the desired value of ¢7,
one has a 50% chance of obtaining |y7) in the ensuing o,
measurement. In the case where the o, measurement fails to
produce the target state, one performs a strong o, measurement
and goes back to the first step of the procedure we have
explained. Since each attempt at preparing the target state
involves a few measurements (roughly three to five), and each
attempt has a success probability of 0.5, one can conclude that
one has a high probability of preparing the target state [7) in
under 20 measurement steps. In Fig. 2 we plot the probability
histogram for the number of measurement steps required to
prepare the target state |y7) = cos Fe ""/¥|1) 4 sin Ze'™/
|}) starting from the initial state |v/;) = (e "7/4|1) + €7/

N/V2.

V)

B. Single measurement setting: symmetric, informationally
complete, positive operator-valued measure

Another interesting setup to consider is that of a qubit
measured using a symmetric, informationally complete, pos-
itive operator-valued measure (SIC-POVM). The reason why
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FIG. 2. (Color online) The probability of obtaining the target
state |Yr) = cos Te~™/8|1) + sin Te"/8||) in N measurement steps
starting from the initial state |y;) = (e"™/*|}) + ¢/™/*|{))/+/2 and
following the procedure explained in Sec. IIl A. For this particular
choice of states, the average number of measurement steps is 10.5,
and the probability of successful state preparation in under 20 steps
is 0.86.

informationally complete POVMs are interesting in this
context is that they can (partially) project the state of the
system toward one of four different directions that span the
entire Bloch sphere, giving the quantum state the possibility
of moving in all directions about the Bloch sphere.

The SIC-POVM on a single qubit is a measurement with
four possible outcomes where the four different outcomes cor-
respond to quantum states that form a tetrahedon on the Bloch
sphere. One representative choice of a SIC-POVM, which is
equivalent to any other SIC-POVM of the same strength up a
rotation, is the one with the following measurement operators:

M; = m|w,><w,»|+‘/l?|%><%| (10)
with
) = 1),
y) = \[m fu
(11)

[¥3) = fm fz’”“m
V) = f 1) + \f “HT L,

where |$i) represents the quantum state orthogonal to |¢;),
and € quantifies the strength of the measurement.

In Fig. 3 we plot the coordinates of a quantum state that
is repeatedly measured using the SIC-POVM given here. If
one considers the case € =1 (not plotted), only the four
states Y1), [V2), |¥3), [Y4) are realized as postmeasurement
states. It should be noted here that (unlike von Neumann
measurements) even if the state is one of these four states
at a given step, repeated measurement will not necessarily
produce the same outcome; it is possible that in the next step
a different outcome is obtained, and the state of the system
changes to the corresponding state. As can be seen clearly
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f11)

FIG. 3. (Color online) The distribution of states obtained from
repeated measurement using a SIC-POVM. The different panels
correspond to different measurement strengths: € = 0.1 (a), 0.5
(b), 0.9 (c) and 0.99 (d). In each panel 400 points are plotted. Each
point represents the values of the spherical coordinates 6 and ¢ of the
quantum state |¢), plotted using a maplike scheme designed not to
distort the areas of different regions on the surface of the Bloch sphere.
To obtain a distribution that is representative of the long-time steady
state, each simulation involves a sequence of 103 measurement steps.
The 400 points in each panel represent the quantum state at equally
spaced measurement steps; that is, we plot the coordinates of the
state after measurement step number 250, 500, 750, etc. The results
shown in this figure are independent of the initial state used in the
calculations.

from Fig. 3(d), for values of € that are close to one, e.g., at
€ = 0.99, there are 16 possible states that appear as a result of
the repeated measurements: the original four states (i.e., the
ones that appear for € = 1) and three more states surrounding
each one of the original four states. These four sets of three
additional states correspond to obtaining the outcome i given
that the state was (approximately) given by |v;) in the previous
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step (with all the different combinations of i,j = 1,2,3,4).
When € is reduced to 0.9 [Fig. 3(c)], the 16-point structure
cannot be seen anymore, but we can clearly identify that
the points are concentrated in four regions on the surface of
the Bloch sphere. When e is reduced to 0.5 or below, we can
see that the states now cover the entire Bloch sphere, such
that any state can be prepared [13]. The reason why the states
are no longer concentrated around the four outcome states is
that for small values of ¢ the projection in each measurement
step is only partial, and the state undergoes a rather stochastic
motion on the Bloch sphere, allowing it to access all regions on
the surface of the Bloch sphere. It should be emphasized here
that even though the motion of the state is stochastic, one can
keep track of this motion given the record of the outcomes that
have been obtained in the sequence of measurements. One is
therefore able to tell if the state hits the target state |y7) (up to
the accepted tolerance level). It is therefor possible to prepare
any target state |{r7) by repeatedly performing measurements
using a single SIC-POVM, provided that € < 1.

One can obtain a quick estimate for the time required to
prepare an arbitrary target state by assuming that the state
after each measurement step is randomly located on the Bloch
sphere, independently of the measurement history. If the error
tolerance is set such that a deviation by an angle smaller
than § is accepted, then one can divide the solid angle of the
entire Bloch sphere, i.e., 47, by the solid angle defined by the
deviation 8, i.e., w82. The resulting estimate is that it would
take on average 4/ steps in order to prepare an arbitrary
target state.

This estimate for the average preparation time assumed
weak measurements. Alternatively one could assume a tun-
able measurement strength in order to speed up the state-
preparation process. We have used numerical calculations to
verify the following statement: Given any initial state, it is
possible to end up in any given target state after at most
three measurements, provided that the measurement strengths
are tuned properly and one obtains the correct measurement
outcomes. A typical example, where only two steps are needed,
is illustrated in Fig. 4. One can therefore conclude that it
should be possible to prepare any desired target state with high
probability in less than 20 measurement steps. We shall not go
into any detailed calculations of the average preparation time
here. It should also be noted in this context that a SIC-POVM
with a large value of € cannot be obtained by repeating a
SIC-POVM with a smaller value of €. Instead, performing
two of these four-outcome POVMs results in a 16-outcome
POVM.

IV. DISCUSSION AND CONCLUSION

In this paper we have given two examples demonstrating the
possibility of actively using the measurement-induced back-
action on a quantum system for purposes of manipulating the
system, in particular, preparing an arbitrary quantum state.

In one case we have shown how measurements of
the observables oy, o,, and o, can be used for arbitrary-
state preparation. Since the protocol is based on simple
principle of Euclidean geometry, it is not necessary that the
three measurement axes be orthogonal. The protocol can be
straightforwardly modified to work for any set of three linearly
independent axes. We have also shown that one does not need
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FIG. 4. (Color online) Schematic diagram showing how a given
initial state can be transformed into a given target state after two
applications of the SIC-POVM with appropriately chosen measure-
ment strengths. The first measurement brings the quantum state into
the plane defined by the target state and one of the SIC-POVM states
|1}, and the second measurement results in the target state. It should
be emphasized that the success of each one of these two steps is
probabilistic.

to have three different measurements as available resources.
Even a single measurement, the SIC-POVM, was sufficient to
prepare an arbitrary quantum state.

The examples presented in this paper demonstrate that
the only requirement for the available measurements is that
they must be informationally complete, i.e., they contain
d? linearly independent measurement operators (where d is
the size of the Hilbert space). This statement applies for
weak measurements, where the measurement only slightly
modifies the quantum state. As explained in Sec. III, strong
measurements can be more limited than weak measurements in
terms of the number of quantum states that they can be used to
prepare.

Our results also demonstrate that measurements can play
an active role in quantum control. This point is particularly
important in systems where it might be easier to perform
measurements rather than apply unitary operations. In such
a case, one could design the feedback-control protocol to rely
more heavily or exclusively on measurements.

In this context it should be noted that throughout this
work we have assumed minimally disturbing measurements,
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i.e., measurements whose measurement operators are the
square roots of the corresponding POVM elements [2]. In
other words, the measurement does not induce any unitary
operation on the quantum state, except for the the quantum
back-action associated with the gain of information. The
evolution of the quantum state is therefore solely due to
the gain of information in the different measurement steps.
The assumption of minimally disturbing measurements also
implies that we have neglected any classical noise that adds
some amount of uncertainty to the postmeasurement state; i.e.,
even if the premeasurement state is pure the postmeasurement
state can generally be mixed. Any such noise would reduce
the fidelity of the prepared state.

In control theory, including quantum control theory, an
important question is the minimum number of available
operations that are needed in order to fully control the system.
Much work has been done on the minimum requirements for
unitary operations required to fully control a quantum system,
and it is well known that any two infinitesimally small, linearly
independent rotations are sufficient to generate any finite
unitary operation on a single qubit [14]. In a similar spirit, it
would be interesting to understand the minimum requirements
on measurements that one needs in order to fully control a
system, and what requirements are needed for the case where
one has a combination of measurements and unitary opera-
tions. These questions concerning the minimum requirements
for controllability can be become mathematically challenging
when dealing with quantum systems with large Hilbert
spaces, in contrast with the two-level system considered in
this work.
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