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Tailoring the filamentation of intense femtosecond laser pulses with periodic lattices

P. Panagiotopoulos,! N. K. Efremidis,> D. G. Papazoglou,'* A. Couairon,* and S. Tzortzakis""
Unstitute of Electronic Structure and Laser, Foundation for Research and Technology Hellas, P.O. Box 1527, GR-71110 Heraklion, Greece
2Department of Applied Mathematics, University of Crete, P.O. Box 2208, GR-71003 Heraklion, Greece
3Department of Materials Science and Technology, University of Crete, P.O. Box 2208, GR-71003 Heraklion, Greece
“Centre de Physique Théorique, Centre National de la Recherche Scientifique, Ecole Polytechnique, F-91128 Palaiseau, France
(Received 16 September 2009; published 23 December 2010)

We show numerically that by using periodic lattices the filamentation of intense femtosecond laser pulses,
otherwise a result of competing nonlinear effects, can be well controlled with respect to its properties. The
diffraction induced by the lattice provides a regularizing mechanism to the nonlinear self-action effects involved

in filamentation. We demonstrate a new propagation regime of intense lattice solitons bridging the field of spatial
solitons with that of femtosecond laser filamentation. The effective filamentation control is expected to have an

important impact on numerous applications.
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Femtosecond laser filamentation in transparent media has
grown into one of the most active fields of laser physics in
recent years [1]. Filaments appear for input powers close to or
above a critical value P and are the result of a competition
involving linear and highly nonlinear effects, such as the
optical Kerr effect, defocusing due to plasma created by
optical field ionization, nonlinear losses, and dispersion [1].
Their unique attributes have led to numerous propositions
and demonstrations of applications, such as single-cycle pulse
generation for attosecond drivers [2,3], electric discharge trig-
gering and guiding [4], remote sensing [5], intense tetrahertz
generation [6—8], and many others [1]. For many of these
applications, however, the possible use of filaments as tunable
intense light channels is still an open question.

Filamentation tailoring denotes the selective optimization
of specific filament attributes. Its importance is fundamental
in view of the numerous applications of filaments that are
promising but have remained compromised up to now by poor
control over the filamentation process. For instance, it has re-
cently been shown that the tetrahertz emission from two-color
filaments strongly depends on the uniformity of the plasma
string and its length [8]. In another example one could consider
the use of long filaments at intensities just below ionization
for generating higher harmonics and attosecond pulses.

However, as filamentation results from the competition
between self-action effects, its attributes are not easily con-
trollable, and control is further hindered by the high intensities
in filaments (exceeding 10'> W/cm? in air) that exclude
optical elements from being introduced in their path. Thus,
the majority of efforts, to date, were limited to the control
of the spatial and temporal characteristics of the initial laser
pulses [1]. Examples of these approaches include the use of
amplitude and phase masks or the introduction of aberrations
on the initial beam wave front [9,10]. More recently, impulsive
alignment of molecular gases has been shown to also strongly
affect the propagation of laser pulses [11].

To find more efficient ways to control filamentation, one
must return to the principles of nonlinear propagation. The
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propagation of intense pulses under fairly constant intensity
and beam waist has also been observed in solitons, where the
intensities are much lower than those observed in filaments.
In this case, self-focusing induced by the optical Kerr effect is
balanced by diffraction or other linear propagation phenomena.
Since the intensity never reaches values where multiphoton
absorption is important, these pulses propagate practically
without losses. However, it is known that in two spatial
dimensions the soliton solutions supported by the nonlinear
Schrodinger equation are unstable [12,13], leading to diffrac-
tion or wave collapse of the initial beam. Nevertheless, it was
shown that in the presence of a periodic waveguide lattice, light
has the tendency to be localized in the high-index areas, leading
to the formation of discrete solitons [14,15]. Interestingly,
in a two-dimensional setting, such soliton solutions can be
stabilized by the presence of a periodic lattice [16-19].
Experimentally, two-dimensional optical lattice solitons were
observed [20] using an optical induction technique [21]. It
was already demonstrated that the attributes of solitons can
be tailored by using discrete waveguide arrays (see [22] and
references therein). In the presence of a periodic potential,
self-focusing balances the linear diffraction induced by the
waveguide array. Furthermore, the soliton attributes, such as
the peak intensity and width, are controlled by the waveguide
array parameters and the total input power.

In this Rapid Communication, inspired by the waveguide
arrays and optically induced lattices used to control the
attributes of solitons, we investigate the use of lattices to
control the features of intense femtosecond laser filaments.
In this way, we demonstrate a propagation regime of intense
lattice solitons bridging the field of spatial solitons with that of
filamentation. By tuning the parameters of the lattice, we can
tailor the filaments’ uniformity, peak intensity, plasma density,
beam width, and total length. This tunability is not the result
of a linear guiding effect but of an enforced balance between
the nonlinear propagation effects and the linear diffraction
induced by the lattice.

To start with, we consider a discrete waveguide array
structure, similar to that used in [18] to control the attributes
of solitons. A proper choice of the array parameters allows
for a control of the full width at half maximum and the peak
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intensity of a propagating soliton. Application of this idea to
the dynamic propagation of optical pulses during filamentation
in gases, without introducing optical materials in their paths,
can be realized by using, for instance, plasma photonic lattices
that can survive high intensities. Plasma is an ideal candidate
for generating a waveguide array structure by interference of
intense light beams [23,24] since it withstands damage, in
contrast to classical optical elements, while the refractive index
of the medium can be easily perturbed with changes as large as
An ~ 1073, Another possibility is to use positive or negative
An lattices, exploiting the molecular alignment of air
molecules (or other gases) [11]. In the latter case the laser
intensities needed are lower than the ones needed for ion-
ization, and one can use pulse trains to further enhance the
alignment [25] and, consequently, the strength of the lattice.

The numerical model [1] that we use here resolves a
nonlinear envelope equation:
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which describes the evolution of the slowly varying envelope
E(x,y,z,t) of the electric field E of a laser pulse that propagates
in the z direction in a transparent Kerr medium. Details on this
widely used numerical model can be found in the supplemen-
tary material [26]. Before moving to the filamentation regime
we confirmed the existence of soliton solutions for a lattice
consisting of an array of equally spaced negative An rods using
a simplified form of Eq. (1), keeping only the diffraction, the
Kerr nonlinearity, and the linear potential terms. In this type
of lattice, light has the tendency to become localized in the
high index areas between the low-index leaky waveguides.
Although the An maxima are not isolated, this lattice supports
stable lattice solitons exhibiting both lower and upper power
thresholds. A detailed discussion on these soliton solutions can
be found in [26].

We are now interested in the transition from lattice solitons
to the regime of single filamentation with power close to P;.
We therefore consider the cylindrically symmetric version of
Eq. (1) which describes well the single filamentation regime
and a cylindrically symmetric waveguide array structure for
which stable lattice solitons exist, as in the case of square
lattices [26]. The isolated negative index plasma strings are
thus transformed into plasma cylinders and the structure now
resembles a multilayered waveguide. The refractive index of
this structure reads

Neyi(X,Y,2) = 1, + An, Z f [m - (m + %) Ai|,
m=0
2

where f(r)is the function describing a generic refractive index
distribution, in our case a super-Gaussian of order p, f(r) =
exp[—(r/w)?*P]; w is the typical width of the distribution
f(r) and p = 8; A is the period of the structures; n, is
the bulk refractive index; and An, is the refractive index
modulation amplitude. For the simulations that will be shown
here, unless stated otherwise, w = 100 um, A = 350 um, and
An, = —3.3 x 1077, corresponding to electron densities of
Pplasma = 1.14 x 10'3cm™3. The input laser pulse is 35 fs long,
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with a Gaussian spatiotemporal profile, a central wavelength
at 800 nm, and a beam waist of 500 um (1/ &2 radius), with
no initial wave-front curvature. Simulations were performed
for propagation in air at atmospheric pressure, where the input
power is either 10~°P,, for the linear regime or 1.25 P for
the nonlinear regime.

Figure 1 depicts simulation results that show the effect of
the lattice on the propagation of pulses in both the linear and
nonlinear regimes. Figure 1(a) shows the propagation of the
pulse in the linear regime (10~°P,;) without the presence of
the lattice, which corresponds to diffraction of the beam over
3 m of propagation. As the power is increased to 1.25 P
the beam self-focuses and reshapes into a typical filament
in air, which extends from 125 to 150 cm, as shown in
Fig. 1(b). In this case, the peak intensity in the nonlinear
focus reaches 3 x 10'> W/cm?, while the beam waist shrinks
down to ~100 pum. At this intensity, multiphoton ionization
is not negligible, and the plasma density reaches 10'® cm™3.
Figures 1(c) and 1(d) show the effect of the lattice on the
propagation of the pulse. In the linear regime [Fig. 1(c)], the
beam is coupled in the lattice, but the energy gradually spreads
out during propagation as a result of diffraction. When the
power is increased, the behavior is strikingly different. As
shown in Fig. 1(d), a quasistationary soliton-like filament is
formed with nearly constant intensity of 5 x 10'> W/cm? over
1.8 m of propagation. The peak intensity is about 1 order of
magnitude lower than that obtained in the typical filament
shown in Fig. 1(b), i.e., not significant enough to generate,
through multiphoton ionization, a plasma that could affect
propagation. This result clearly demonstrates filamentation
tailoring while the balance of the nonlinear propagation effects
of the high-power beam with the linear propagation effects
induced by the lattice reveals a new regime bridging solitonic
and filamentary propagation. This propagation regime is not
the result of a linear guiding effect. As shown in Fig. 1(c),
where only linear effects are present, the coupling between
the concentric waveguide structures leads to the spreading
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FIG. 1. (Color online) Comparison of peak intensities Ipea (1,2)
for propagation (a,b) in air and (c,d) in a cylindrical lattice. The
left column shows the linear propagation regime P, = 10~°P,;, and
the right column shows the nonlinear propagation and filamentation
regime P, = 1.25P,. Lattice parameters are A = 350 um, w =
100 um, and An, = —3.3 x 1077 Insets are graphic represen-
tations of the cylindrical lattice, where black represents lower
refractive index.

061803-2



TAILORING THE FILAMENTATION OF INTENSE ...

of the energy toward the outer waveguides. On the other
hand, practically all the energy is maintained in the central
waveguide when the input intensity is high; thus, the nonlinear
propagation effects balance the linear diffraction properties of
the lattice. In addition, the results of simulations made with
a lattice comprising only the central plasma ring are close
to the case without lattice and significantly differ from the
propagation in the full lattice.

The ability of the waveguide structure to affect filamenta-
tion properties is clearly visualized in Fig. 2, which shows
the evolution of the filament width as a function of the
propagation distance. Without lattice [Fig. 2(a)], the filament
width remains fairly constant, around 100 wm, for about
25 cm. Fig. 2(b) depicts the width of the filament tailored
by the lattice. The effect of the waveguide structure on the
beam waist of the propagating pulse is striking. The lattice
leads to an almost-constant beam waist of ~270 um for a
propagation distance of 180 cm. In this case, the beam width
actually depends on the lattice period, allowing control over
its size and, consequently, its peak intensity.

A systematic study of the effect of lattice parameters (period
and modulation) on the propagation of the filament is shown
in Figs. 2(c) and 2(d). Figure 2(c) depicts the peak intensity
as a function of the propagation distance for various depths
An, of the effective refractive index modulation for a constant
period of A = 350 um. The modulation depth An, is varied
from O (curve 1), corresponding to the absence of lattice, to
—5.0 x 1077 (curve v). As the modulation becomes deeper
the peak intensity drops, and its distribution is widened and
shifted toward longer propagation distances. Furthermore,
these curves show that the balance between nonlinear effects
and diffraction by the lattice is quite sensitive to the modulation
depth An,. Curve iv in Fig. 2(c), with An, = —3.3 x 1077,
presents the optimum value for this balance. For weaker
modulation depths [curves i, ii, and iii in Fig. 2(c)], the
peak intensity is still high, and nonlinear effects (mainly
the optical Kerr effect) dominate. By further strengthening the
modulation amplitude [curve v in Fig. 2(c)], the peak intensity
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FIG. 2. (Color online) Beam width as a function of the propaga-
tion distance z (a) without lattice and (b) with lattice. Peak intensity
Icax as a function of the propagation distance z for (c) lattice strengths
An, of 0 (curve i), —2 x 1077 (curve ii), —2.5 x 1077 (curve iii),
—3.3 x 1077 (curve iv), and —5.0 x 1077 (curve v) and (d) lattice
periodicities A of co (curve 1), 450 um (curve 2), 400 um (curve 3),
350 pum (curve 4), and 300 pum (curve 5). Insets are graphic
representations of the cylindrical lattice, where black represents lower
refractive index.
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monotonically decreases due to the prevailing linear effect of
the waveguide structure over nonlinear effects.

Another important parameter of the lattice that affects the
propagation attributes is its period A. Figure 2(d) depicts the
peak intensity as a function of the propagation distance for
various lattice periods for a constant modulation depth An, =
—3.3 x 1077, The period A is varied from infinity (curve [1]),
corresponding to the absence of lattice, down to 300 um
(curve [5]). The behavior is similar to that obtained for a
variation of the modulation depth. As the lattice period gets
smaller, the peak intensity drops, and its distribution is widened
and shifted toward longer propagation distances. As shown by
these curves the regime where nonlinear propagation effects
and the linear contribution of the lattice are balanced is also
sensitive to the period A. Curve 4 in Fig. 2(d), for which A =
350 pum, presents the optimum value for this balance.

It is of particular interest to exploit the transition be-
tween lattice solitons and lattice filaments. Figure 3 shows
simulations of Eq. (1) when the input pulse keeps the same
temporal profile as before and the input beam corresponds to a
lattice soliton for cylindrical [Fig. 3(a)] or rectangular lattices
[Fig. 3(b)]. When all effects in Eq. (1) are ignored except
diffraction and the optical Kerr effect, pulsed cylindrical lattice
solitons remain quasistationary over extremely long propaga-
tion distances. When group velocity dispersion (GVD) and
higher-order nonlinearities (multiphoton ionization, plasma
defocusing, optical shock) are also taken into account, as in
the filamentation dynamics, the propagation distance of lattice
solitons dramatically reduces [5 m in the example of Fig. 3(a)].
In general, as the maximum intensity of the input lattice soliton
increases and its beam width decreases, high-order effects
become more important, leading to faster reshaping of the
lattice soliton into a standard filament. Without the presence
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FIG. 3. (Color online) Peak intensity as a function of prop-
agation distance, which reveals the transition dynamics between
lattice solitons and lattice filaments. (a) The (2 + 1)-dimensional
(cylindrically symmetric) simulations. (b) The (3 + 1)-dimensional
(frozen time) simulations using a rectangular plasma lattice. Lattice
soliton indicates the pulsed version of the cylindrical lattice soliton
solution (taking into account only diffraction and Kerr effect).
Lattice soliton (all effects included) indicates including GVD, multi-
photon ionization, and plasma defocusing. Normal filament indicates
typical filament in air from a Gaussian spatiotemporal pulse. Lattice
filaments 1 and 2 indicate tailored lattice filaments for two different
cases of lattice strength An. Insets are graphical representations
of the lattices used in each case, where black represents lower
refractive index.
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of the lattice, a pulsed lattice soliton is rapidly self-focused,
and a filament is formed, reaching intensities as high as
3 x 10" W/cm? [normal filament in Fig. 3(a)]. The lattice
regulates the pulse propagation, as is clearly shown in Fig. 3(a).
The propagation distance of the lattice filaments and that of
the lattice soliton (with all effects included) are in the same
order of magnitude. More generally, our simulations show
that the features of lattice filaments closely follow those of
lattice solitons. Furthermore, filamentation tailoring by means
of lattices is feasible with various types of lattices beyond
the cylindrical lattices discussed here. For instance, results
using rectangular lattices, obtained from (3 4 1)-dimensional
simulations with “frozen” time (pulse duration fixed), are
shown in Fig. 3(b) and demonstrate tailoring properties of
filaments in a way similar to the cylindrical ones.

Finally, it is worth noting that the same approach of
filamentation tailoring using lattices in gases can also be used
for filaments in transparent solids. In that case the lattice can
be either transient (like plasma lattices) or permanently written
in the bulk in the form of an array of waveguides, which can be
easily fabricated (see, for instance, [27]). Related results will
be presented elsewhere.
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In conclusion, we have presented a robust way to tailor the
attributes of intense femtosecond laser filaments in transparent
media by using lattices. By tuning the parameters of the lattice,
we enforce the formation of a new kind of filament that can
also be described as intense lattice solitons, with regulated
attributes, such as their peak intensity, plasma density, beam
waist, length, and uniformity. We have shown that this
filamentation tailoring is not a linear guiding effect but a
result of the balance between the nonlinear propagation effects
and the linear diffraction induced by the lattice. In contrast
to typical filaments, where self-action effects dominate and
prohibit control over the filamentation attributes, we manage
to gain control by introducing a lattice and appropriately tuning
its period and modulation depth. Our approach opens the way
for extensive control of the filament attributes in the spatial and
temporal domains, with potentially a big impact on various
applications utilizing filaments, such as tetrahertz generation
or attosecond pulse generation, among many others.
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