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Detection of small atom numbers through image processing
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We demonstrate improved detection of small trapped atomic ensembles through advanced postprocessing and
optimal analysis of absorption images. A fringe-removal algorithm reduces imaging noise to the fundamental
photon-shot-noise level and proves beneficial even in the absence of fringes. A maximum-likelihood estimator is
then derived for optimal atom-number estimation in well-localized ensembles and is applied to real experimental
data to measure the population differences and intrinsic atom shot noise between spatially separated ensembles
each comprising between 10 and 2000 atoms. The combined techniques improve our signal-to-noise ratio by a
factor of 3, to a minimum resolvable population difference of 17 atoms, close to our ultimate detection limit.
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Trapped ultracold atoms and quantum degenerate gases are
novel systems for the study of many-body quantum physics
[1] and are key to new technologies such as trapped-atom
interferometers [2] and atomic clocks [3]. This is exemplified
by recent experiments on number or spin squeezing and
entanglement between small atomic ensembles [4], which
could serve as a resource for quantum metrology and quantum
information science. Essential to such applications is the
ability to precisely measure the populations of a pair of
atomic ensembles in, for example, a double-well potential for
Josephson physics or atom interferometry [2,5–7], or the spin
states of an atomic clock. Upon readout the interferometric
phase can be mapped to a population difference and the two
ensembles are imaged to different regions of a charge-coupled
device (CCD) camera. The relative population is robust against
common-mode technical fluctuations such as probe noise or
trap loading efficiency. However, imaging noise and intrinsic
atom-number fluctuations (atom shot noise) typically limit
measurement precision.

Here we demonstrate improved detection of trapped en-
sembles of ultracold atoms through advanced postprocessing
and optimal analysis of laser-illuminated absorption images.
This allows us to better measure the intrinsic atom-number
fluctuations in a magnetic lattice potential. We focus on
small ensembles localized close to the limit of our optical
resolution in the presence of added imaging noise. First we
apply a fringe-removal algorithm to reduce imaging noise to
the fundamental photon-shot-noise level. We then establish the
ultimate limit for measuring the relative populations based on
the Cramér-Rao bound (CRB) and derive maximum-likelihood
estimators that attain this limit [8]. These optimal analysis
techniques provide the basis to improve the readout of trapped-
atom interferometers to the quantum limit or to better resolve
number squeezing and entanglement.

In our experiment we prepare up to a total of N = 4 × 103

87Rb atoms in a multiwell trap formed by a current through a
Z-shaped wire and the permanent field of a magnetic-lattice
atom chip [9]. Recently we used this setup to study sub-
Poissonian atom-number fluctuations in an array of tightly
confining microtraps [10]. In this work we position the trap
at the edge of the magnetic lattice, 45 µm below the chip
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surface, to create four potential wells (two deep central wells
and two shallow outer wells), each separated by 70 µm. The
atoms are evaporatively cooled in this trap to a temperature of
∼1 µK, thereby creating independent atomic ensembles, each
occupying an area of ∼10 × 50 µm2 in our images (Fig. 1).
The mean number of atoms is varied by holding the atoms
in the trap for 0–4 s at a fixed temperature and partially
by reducing the amount of Rb dispensed during loading.
For 100 atoms/well the peak atomic density corresponds to
≈4 atoms/pixel, close to our typical noise levels limited by
optical fringes and photon shot noise.

We perform absorption imaging by briefly exposing the
atoms to a nearly homogeneous probe laser, typically tuned to
resonance with an atomic transition. The resulting absorption
signal A is imaged onto a CCD camera. Subsequently the
atoms are ejected from the trap and a reference image R is
recorded to normalize intensity variations of the probe. A dark
image may also be recorded without the probe to subtract any
stray light or CCD dark counts. The two-dimensional atomic
density is calculated as nx = −α[ln(Ax/Rx) + sx(Ax/Rx −
1)]/σ0 (where x indexes pixels in the images, throughout)
[11]. Here σ0 = 3λ2/2π is the absorption cross section, α

is a dimensionless parameter which depends, for example,
on the probe polarization, and s = IR/αI 0

s is the (spatially
dependent) saturation parameter, with IR the probe intensity
at the position of the atoms and I 0

s = 1.67 mW/cm2 the
saturation intensity for our transition.

The experiments employ a back-illuminated deep-depletion
CCD camera with a quantum efficiency of about 0.9 at λ =
780 nm, a measured gain of g = 0.87 ± 0.05 counts/photon,
and a readout noise level of σrd ≈ 13 counts. The resolution of
our optical system is 9.6 µm (Rayleigh criterion) with a pixel
area of � = (3.3 ± 0.1 µm)2 in the object plane. The probe is
slightly inclined with respect to the gold-coated chip surface to
create two mirror images of the atoms (Fig. 1) [12]. Correlation
of these images provides additional means to distinguish atom
shot noise and imaging noise.

We have experimentally optimized our imaging parameters
to provide the highest signal-to-noise ratios (SNR) for in-trap
imaging. Long exposure times τ tend to lower the effect
of photon shot noise; however, blurring or heating due to
photon recoil during the imaging pulse tends to increase
the effective area a over which the atoms are distributed.
Therefore, one finds an optimum intensity and exposure time.
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FIG. 1. (Color online) Typical absorption image of the atomic
distribution (90 × 71 pixels) for a hold time of 1.6 s. Four independent
atomic ensembles are visible (horizontally distributed) with two
mirror images (vertically separated). The two centermost clouds
each contain ≈400 atoms (≈100 in outermost wells). Dashed boxes
indicate the background pixels for the fringe-removal algorithm, and
the signal regions are indicated by solid lines.

We measure the SNR in a series of absorption images for
constant atom number as a function of both τ and s and
find a maximum for τ = 50 µs and s ≈ 0.54. Finally, we
calibrate α by comparing the integrated absorption signal
with a second set of images taken after free expansion using
a weak probe (s ≈ 0.02), yielding α = 3.0 ± 0.2. Detection
linearity with respect to atom-number variations is confirmed
by measuring a fixed ratio between the populations of the
center and outer wells. Our typical atom numbers correspond
to weak absorption signals (Ax/Rx >∼ 0.8) for which it can be
difficult to extract a signal buried in noise.

In practice additional imaging noise originates from fringes,
due to diffraction and interference of the probe beam by optical
elements and the atom chip surface. Small vibrations between
the absorption and reference images result in imperfect
normalization due to fluctuating fringe patterns. This noise
can be greatly reduced through the application of a fringe-
removal algorithm, while making no assumptions about the
atomic distribution. The algorithm works by composing for
each absorption image a matching optimal reference image
Q constructed as a linear combination of many reference
images Rk within a set, Qx = ∑

k ckRx,k [13,14]. The method
is closely related to that applied to facial recognition [15]
and recently in astronomical image analysis for detecting
extrasolar planets [16].

To obtain the coefficients ck we minimize the least
squares difference between the absorption and reference
images

∑
x mx(Ax − Qx)2, within a specified background

region (mx = 1) excluding the signal region (mx = 0). Setting
partial derivatives with respect to cj to zero, we obtain a
linear system of equations

∑
kckBj,k = ∑

x mxRx,jAx with
the square matrix Bj,k = ∑

xmxRx,jRx,k , which can be readily
solved for ck . As a typical data set consists of hundreds of
absorption images, we decompose B once using lower-upper
(LU) or singular value decomposition and then substitute to
obtain ck for each absorption image [17]. The algorithm is also
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FIG. 2. (Color online) Imaging noise for various probe inten-
sities with and without fringe removal, var(Ax/Qx) (circles) and
var(Ax/Rx) (squares), respectively. The predicted photon shot noise
plus camera readout noise is shown as a solid line. The dashed line
shows the ultimate photon-shot-noise limit.

sufficiently fast to decompose B and process new images in
less than 1 s for live processing between experimental cycles.

Figure 2 shows the imaging noise with and without fringe
removal, var(Ax/Qx) and var(Ax/Rx), respectively, calculated
for a signal-free region (separate from the fringe-removal
background region) for various probe intensities. Without
fringe removal the measured noise is in good agreement with
the expected photon shot noise and readout noise, given our
CCD parameters. Application of the fringe-removal algorithm
with a basis of ∼250 reference images reduces the measured
variances by a factor of 1.9 ± 0.3 over the full range of intensi-
ties. Remarkably, even in the absence of fringes, the algorithm
reduces the photon-shot-noise contribution originating from
R. This is possible since the optimal reference image is the
(weighted) average over many reference images, allowing an
additional decrease of uncorrelated noise by up to a factor of 2.
For our chosen imaging parameters the remaining noise from
pixel to pixel has a standard deviation of σn = 1.3 ± 0.3 atoms,
close to the ultimate limit of 1.1 atoms due to photon shot noise
in A. There is also a small residual correlated noise component
which fluctuates on a length scale comparable to our cloud size
with an rms amplitude of 0.06 ± 0.01 atoms.

We wish to measure the total and difference popula-
tions N± = Np ± Nq and the relative population difference
N−/N+. To establish the limit for extracting these populations
from our images we derive the Cramér-Rao bound. The
CRB gives a lower bound for the variance of any parameter
estimate, independent of the exact procedure used to extract
the information [8]. We focus on small atom numbers localized
close to the limit of our optical resolution, where the added
imaging noise (N independent) dominates over local density
fluctuations (spatially resolved shot noise). For our parameters
we expect our analysis to be beneficial for N+ <∼ 3000. We
describe our image data as the absorption signal from a pair of
atomic ensembles corrupted by uncorrelated additive Gaussian
noise di,x with variance σ 2

n : ni,x = Ni,ppx + Ni,qqx + di,x ,
where i labels a particular realization. The mean profile of the
clouds in the image is represented by the normalized spatial
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mode functions px and qx (
∑

x px = ∑
x qx = 1). These are

determined by the cloud shape and optical resolution of our
imaging system and are independent of total atom number.
The log-likelihood function is

l(Np,q ; ni,x) =−
∑

x

(ni,x − Ni,ppx − Ni,qqx)2

2σ 2
n

+ const. (1)

The CRB is then the inverse of the Fisher information matrix,
calculated from the second derivatives of l with respect to N±.
We obtain for the CRB

cov(N+,N−) � C = 4σ 2
n

(u+u−) − v2

(
u− −v

−v u+

)
, (2)

with the parameters u± = ∑
x(px ± qx)2 and v = ∑

x(p2
x −

q2
x ). Here var(N+) � C11, var(N−) � C22, and for the relative

atom number,

var

(
N−

N+

)
� 〈N−〉2C11 + 〈N+〉2C22 − 2〈N−〉〈N+〉C12

〈N+〉4
.

(3)

Taking typical numbers from our experiment (v ≈ 0 and
1/u± ≈ 30) we find the single-shot CRB to be C11 = C22 =
200 atoms2, or a minimum resolvable population difference
of 14 atoms. The CRB is also easily applied to estimating
the number of atoms within a single ensemble, for which our
detection limit is 10 atoms/shot.

The CRB can be attained by a maximum-likelihood
estimator (MLE), found by maximizing the log-likelihood
function and solving for N±,

N̂±
i = 2u∓

(u+u−) − v2

∑
x

ni,x

(
(px ± qx) − v(px ∓ qx)

u∓

)
.

(4)

Equation (4) can be interpreted as a sum over the imaged
density distribution weighted by px ± qx , where the second
term accounts for overlapping and uneven mode functions.
This gives a direct measure of the populations while mini-
mizing the influence of noise. The mode functions px and qx

can be obtained from the data in a model-independent way by
averaging over many images to suppress noise. If px and qx are
not spatially separated one can record a set of images where
each ensemble is individually populated or apply independent
component analysis to isolate signal components [18].

We compare the expected performance of the MLE to
naive estimates for N± obtained by separately integrating over
rectangular subimages containing the left and right ensembles.
For this case, the expected variance is var(N±) � aσ 2

n , with
a the total number of pixels in the integration regions. For
regions chosen to include more than 95% of the atomic signal
(a/2 = 10 × 22 pixels, Fig. 1) we expect a detection-noise
contribution to var(N±) of 730 atoms2, a factor 3.7 larger than
the CRB.

We have performed measurements of the relative atom num-
ber N−/N+ for varying total atom number to resolve intrinsic
atom-number fluctuations and demonstrate the improvements
gained using maximum-likelihood estimation. Our data set
spans 40 hold times between 0 and 4 s, corresponding to
varying 〈N+〉 from 4 × 103 down to ∼20 atoms. For each
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FIG. 3. (Color online) Relative variance as a function of total
atom number measured by maximum-likelihood estimation (squares)
or straight integration (circles). The dash-dotted line shows the
expected fluctuations combining atom shot noise (dashed line) and
the minimum detection-noise contribution given by the CRB (dotted
line). Solid lines indicate fits for the detection-noise contributions.
The inset shows the covariance between N−/N+ in the upper and
lower mirror images (squares) along with the predicted atom shot
noise (dashed line).

hold time we repeat the experiment 40 times. Subpixel image
registration is applied to align each image to the average
to eliminate small fluctuations in the atom cloud positions.
The mode functions of the left and right clouds, px and
qx respectively, are estimated by averaging all the data and
segmenting the result. We then extract from the images
the atom-number populations using Eq. (4) and compute
the variance var(N−/N+). The expected atom-shot-noise
contribution to the variance, accounting for a mean population
imbalance, is 1/〈N+〉 − 〈N−〉2/〈N+〉3.

Figure 3 shows the measured variance of the relative pop-
ulation for both the MLE and simple integration as a function
of 〈N+〉. We restrict our analysis to the lower mirror image
specified in Fig. 1. For large 〈N+〉 both estimation methods
yield results which are atom-shot-noise limited. For the inte-
gration method the measured variance is limited by detection
noise for 〈N+〉 below ∼1000 atoms. Detection is significantly
improved using the MLE, enabling atom-shot-noise-limited
detection down to fewer than 300 atoms. To the data we fit
the model var(N−/N+) = C̃22/〈N+〉2 + 1/〈N+〉 (for our data
〈N−〉 ≈ 0), to measure the detection-noise contribution. For
straight integration we find C̃22 = (1.3 ± 0.2) × 103 atoms2,
whereas for the MLE C̃22 = 270 ± 40 atoms2, corresponding
to a minimum resolvable difference of 17 atoms/shot. The
measured noise is slightly larger than the minimum value
given by the CRB, but is consistent with the added effect
of the residual correlated noise.

We can further distinguish atom-number fluctuations from
detection noise in our data by comparing the measured
population differences in the two mirror images. Here we
expect the detection noise to be uncorrelated, and true atom-
number fluctuations to be correlated between the two images.
To verify this, we measure N+ and N− for both mirror images
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separately and calculate the covariance of N−/N+ between
the upper and lower images for each hold time. The result is
shown in the inset of Fig. 3, along with the expected atom shot
noise 1/〈N+〉. Our data are consistent with atom shot noise
over the full range of atom numbers, demonstrating a robust
method to observe intrinsic atom-number fluctuations.

To summarize, we have demonstrated improved detection
of small atomic ensembles, to close to the ultimate photon-
shot-noise limit. A fringe-removal algorithm and maximum-
likelihood estimation are applied to absorption images to
reach a measured detection sensitivity of 17 atoms/shot for
population differences. The measured variance of the relative
populations is in excellent agreement with the lower limit given
by atom shot noise and the Cramér-Rao bound for our imag-
ing parameters. Combining fringe removal and maximum-
likelihood estimation, we have improved our signal-to-noise
ratio by a factor of 3, allowing for atom-shot-noise-limited
detection of ensembles comprising as few as 270 atoms, a
factor of 9 lower than without these methods. Averaging
measurements from both mirror images would offer a further√

2 improvement in SNR.
The sensitivity could be improved to the single-atom regime

by increasing the imaging resolution and better localizing the

atoms. Optimal imaging parameters are found by considering
a model for blurring due to photon recoil after release from
the trap, where the cloud size a increases proportionally
to sτ 3/(1 + s). Integrated photon shot noise scales with√

a(1 + s)2/sτ , yielding an optimal saturation parameter of
sopt = 2/3. For realistic imaging parameters (optical resolution
of 1.2 µm, quantum efficiency of 0.9, and α = 1) we find an
optimal exposure time of 13 µs and a single cloud detection
limit of 0.5 atoms/shot.

The atom clouds we prepare are considerably elon-
gated, highlighting the potential application of our analy-
sis to the study of one-dimensional quantum gases. Ap-
plying maximum-likelihood estimation column by column,
for our experimental conditions we infer a sensitivity of
0.8 atoms/µm. This is below the typical linear density required
to reach the crossover from the weakly interacting to the
strongly interacting regime on an atom chip [19], which could
be directly imaged in a single realization.
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V. Vuletić, Phys. Rev. Lett. 104, 073602 (2010).

[5] M. Albiez et al., Phys. Rev. Lett. 95, 010402 (2005).
[6] B. V. Hall, S. Whitlock, R. Anderson, P. Hannaford, and A. I.

Sidorov, Phys. Rev. Lett. 98, 030402 (2007).
[7] S. Levy et al., Nature (London) 449, 579 (2007).
[8] S. M. Kay, Fundamentals of Statistical Signal Processing:

Estimation Theory (Prentice-Hall, Upper Saddle River, NJ,
1993).

[9] R. Gerritsma et al., Phys. Rev. A 76, 033408
(2007); S. Whitlock et al., New J. Phys. 11, 023021
(2009).

[10] S. Whitlock, C. F. Ockeloen, and R. J. C. Spreeuw, Phys. Rev.
Lett. 104, 120402 (2010).

[11] G. Reinaudi et al., Opt. Lett. 32, 3143 (2007).
[12] S. Schneider et al., Phys. Rev. A 67, 023612 (2003).
[13] The idea of the algorithm originates from M. Erhard, Ph.D.

thesis, Universität Hamburg, 2004; J. Kronjäger, Ph.D. thesis,
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