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Precisely mapping the magnetic field gradient in vacuum with an atom interferometer
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The magnetic field gradient has been measured with an atom interferometer using the magnetic sublevels
of 87Rb atoms. The Doppler-insensitive measurement effectively eliminates the contribution from gravity and
background vibration noise, and the differential measurement also can reject some systematic errors. A resolution
of 300 pT/mm has been demonstrated with a 90-s integration time and a spatial resolution of 1.4 mm. The
gradiometer was then used to measure the magnetic field gradient in an ultrahigh-vacuum environment. The
technique will also be very useful to subtract the systematic error arising from the magnetic field inhomogeneity
in precision atom-interferometry experiments, such as gravity measurement.
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Magnetic gradiometers with high sensitivity and spa-
tial resolution have been widely applied in earth’s mag-
netic field mapping, detection of natural resources [1–3],
biomagnetism [4], and fundamental physical experiments [5].
The superconducting quantum interference device (SQUID)
gradiometer comprising two SQUID magnetometers with
a baseline of 4 cm reached an ultrahigh sensitivity
of 60 fT/(m Hz1/2) at a frequency of 0.3 Hz [3]. Atomic
magnetometers based on nonlinear magneto-optical rotation or
the coherent population trapping method have been realized by
several groups [6,7]. Gradiometers with atomic magnetome-
ters are also demonstrated at baselines of 25 [8] and 15 mm [9].

In recent years, atom interferometers have proven to be
increasingly valuable sensors for the precision measurement
of gravitational acceleration and rotation [10,11], the gravita-
tional constant G [12,13], the scalar Aharonov-Bohm effect
[14], the fine structure constant [15], and the gravitational
red shift [16]. The atom’s acceleration due to the interaction
between atom and magnetic field was proposed to be measured
based on the atom-interferometry technique suggested by F. A.
Narducci et al. [17,18]. However, it is difficult to distinguish
the magnetic effect from gravity and the seismic vibration
background in principle. The magnetic-field-sensitive Raman
transition (RT) method with π pulse was used to directly
measure the magnetic field in an atom interferometer for
determining the systematic effect due to the magnetic field
inhomogeneity [19].

In this paper, an atom interferometer constructed in a
Doppler-insensitive but magnetic-field-sensitive configuration
is described to measure the magnetic field gradient directly.
The magnetic gradient experienced by the atoms in their
trajectories are then encoded in the atom interferometer’s
phase. As will be shown, contribution to the phase of
the gravity and seismic vibration can be neglected in the
present work with the copropagating Raman beams, and the
differential interferometry signals of each magnetic sublevel
are used to extract the magnetic gradient signal and suppress
some systematic errors.

The principle of Raman pulse atom interferometry has been
described by several groups for gravity measurements and
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other inertial sensors [20,21]. However, the magnetic-field-
insensitive states with magnetic quantum number mF = 0 were
chosen to avoid the first-order Zeeman effect in those measure-
ments. For measuring the magnetic field gradient, we choose
the nonzero magnetic quantum number atom interferometer to
measure the phase due to the magnetic field inhomogeneity.
Considering the D2 line of 87Rb atom as shown in Fig. 1(a),
we choose the ground hyperfine states |F = 1,mF = 1〉 and
|F = 2,mF = 1〉 and excited states |5 2P3/2〉 as a three-level
� system. The interstate transition is realized by coupling
with the phase-locked Raman lasers. For a large detuning �

from the excited states, the three-level atom can be treated as a
two-level atom, and the laser field may be considered to have an
effective wave vector �keff = �k1 − �k2. The atoms are coherently
driven between the ground hyperfine states by a two-photon
Raman transition to form a Rabi oscillation. The tools for
manipulating the wave packets in the atom interferometer are
π/2 Raman pulse as a 50:50 beam splitter and π pulse as
a reflector. We consider a free-falling atom with initial state
|F = 1,mF = 1〉 as shown in Fig. 1(b). First, a π/2 pulse with
duration τ is applied to the atoms, and the atoms are driven to
the superposition state of |F = 1,mF = 1〉 and |F = 2,mF =
1〉 with 50% probability for each state. Second, after T time
free evolution, the atom’s hyperfine states are inversed via
exposure to a π pulse with duration 2τ . Finally, another π/2
pulse is used to recombine the wave packets for observing
the interference signal. The probability of an atom in state
|F = 2,mF = 1〉 after the sequence of π/2 − π − π/2 Raman
pulses is P = (1 − cos φ)/2, where the interference phase
φ for a free-falling atom is φ = φL + φg + φB + φo, where
φL is the Raman-laser-induced phase, φg is the local gravity
acceleration g-induced phase, φB is the magnetic-field-induced
phase, and φo is the other-physical-effects-induced phase.

For the configuration of an atom interferometer shown
in Fig. 1(b), and in the case of the copropagating Raman
beams (Doppler-insensitive case), the magnetic-field-induced
phase is

φB = µB

h̄
(gF ′mF − gF mF )

[∫ T

0
B(t) dt −

∫ 2T

T

B(t) dt

]
,

(1)

where µB is the Bohr magneton, gF (gF ′) are the g factors
for 87Rb ground state |F = 1,mF = 1〉 (|F = 2,mF = 1〉), and
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FIG. 1. (Color online) (a) 87Rb magnetic sublevels and Raman
beam configuration; (b) interferometry sequence π/2 − T − π −
T − π/2 and the magnetic field experienced by the atoms.

µB

h̄
gF ′mF = −µB

h̄
gF mF = 0.70 MHz/G [22], which is de-

noted as β in the following text. Considering that the variation
of the magnetic field is linear in a small atom’s free-falling
region, the phase due to the magnetic field can be written as
φB = 2β�BT . It means that the atom interferometer can be
used to measure the magnetic field gradient. For a typical value
of �B = 200 µG and T = 1 ms, φB is estimated to be 1.7 rad,
while the gravity-induced phase φg = (k1 − k2)gT 2 is only at
the 10−3 rad level, so this atom interferometer is relatively
insensitive to gravity and background vibration noise and
sensitive to the magnetic field gradient. However, it is not easy
to extract φB from the interferometer total phase φ, which is a
sum of φL,φB , and φo. Fortunately, for an atom interferometer
of mF = −1 atoms interacting with σ− − σ− polarization
Raman beams as shown in Fig. 1(a), the phase due to magnetic
field is −φB , while φL and φo are almost the same as those
of the mF = 1 state with σ+ − σ+ Raman beams. Therefore,
we can design a differential measurement which measures the
interferometry phase φ+1 for mF = 1 states and the interferom-
etry phase φ−1 for mF = −1 states respectively. The magnetic-
field-induced phase is then obtained by the phase difference of
the two measurements as φB = (φ+1 − φ−1)/2; thus the spatial
difference of magnetic field can be measured by this method as

�B = (φ+1 − φ−1)/(4βT ). (2)

Furthermore, the differential measurements can reject some
systematic errors such as the ac Stark phase shift.

Our atom-interferometry magnetometer is based on an
atomic fountain. We use a standard magneto-optical trap
(MOT) [23,24] shown in Fig. 2(b) to trap and launch atoms.
The vacuum pressure of our aluminum MOT chamber is
about 10−9 Torr. The top and bottom windows are prepared
for the Raman beams to pass through. The 87Rb atoms
are released from a rubidium dispenser. The six trapping
beams are provided by the laser system (Toptica TA100),
which is locked to the 87Rb’s crossover peak of |5S1/2,F =
2〉→|5P3/2,F = 2〉 and |5S1/2,F = 2〉→|5P3/2,F = 3〉 by the
saturation absorption method. The frequency shift of the
trapping beam is controlled by the acoustic optical modulators
(AOMs) for loading, launching, and moving molasses. After
1 s of loading time, about 108 atoms are trapped and then
cooled down in the moving molasses stage to a temperature of
9(1) µK measured with the time-of-flight method. The velocity
of atoms after launch is 3.7 m/s, and the maximum height of
the atom fountain is 0.7 m. Atoms will enter the interferometry
chamber after 230 ms of flying time.

FIG. 2. (Color online) Schematic diagram of the experimental
facility. (a) Optics for an OPLL. PD, photo diode; PBS, polarization
beam splitter; DBM, double balance mixer; EOM, electric optical
modulator; and DDS, direct digital synthesizer. (b) Atom interferom-
eter and the vacuum system.

As shown in Fig. 2(a), the setup of Raman lasers consists of
three external-cavity diode lasers (Toptica DL100) operating
at around 780 nm. The reference laser (RL) is locked on a 87Rb
atomic transition of |5S1/2,F = 1〉→|5P3/2,F = 0〉 using the
modulation-transfer (MT) method [25]. This laser constitutes
an optical frequency standard and is also used as a repumping
laser for MOT. The master laser (ML) is directly frequency
locked to the RL with a frequency offset of 1 GHz by an
optical phase-locked loop (OPLL) [26]. The slave laser (SL)
is phase locked to the ML by another OPLL with a frequency
offset of 6.83 GHz, which is the frequency difference between
the 87Rb ground-state hyperfine energy levels. Both ML and
SL serve as the Raman lasers in the atom-interferometry
experiment. In the closed-loop case, the phase noise of
the 6.8-GHz beat note within 30–300 kHz measured by a
spectrum analyzer is less than −90 dBc/Hz. The main beams
of the ML and the SL are overlapped and diffracted by an
80-MHz AOM switch, which is used to control the pulse
length. A polarization-maintaining single-mode fiber spatially
filters the Raman beams before they are collimated to an e−2

diameter of 18.5(1) mm. The Raman beams’ output power is
30.0(1) mW, measured at the end of the fiber.

The copropagating σ+ − σ+ Raman beams first are used to
search the resonance frequency of the transition between the
hyperfine magnetic sublevels. When the launched atoms arrive
at the interferometry chamber, the resonance frequency is
measured by adding a π pulse and scanning the Raman lasers’
frequency with a direct digital synthesizer (DDS), where the
resonant transitions of |F = 1,mF = 0〉 to |F = 2,mF = 0〉 and
|F = 1,mF = 1〉 to |F = 2,mF = 1〉 occur at the Raman lasers’
offset frequency of 50.000 and 50.112 MHz, respectively. The
bias field is estimated to be 80.2 mG with this resonance
frequency. We start timing the atom interferometer to measure
the interferometry chamber’s magnetic field gradient as soon as
we obtain the resonance frequency of mF = +1 states. Atoms
are first pumped to the |F = 2〉 state by keeping the repumping
laser on for 20 ms after moving molasses. At t = 223 ms after
launch, a 60-µs-long state selection π pulse is applied to the
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FIG. 3. (Color online) (a) The atom interference fringes for the mF = +1 and mF = −1 states. (b) The Allan standard deviation of magnetic
gradient measured by the atom-interferometry magnetogradiometer. (c) The atom interferometer phase for mF = +1 and mF = −1 at different
heights of the atomic fountain. (d) The magnetic gradient in the vacuum chamber measured by the atom interferometer.

atoms to transfer the atoms from the |F = 2,mF = 1〉 state to
the |F = 1,mF = 1〉 state. Then 1 ms later, the blow-away
beam is turned on for 5 ms to clear the residual atoms
in the |F = 2〉 state. After the state preparation, about 106

atoms are prepared in the initial state of |F = 1,mF = 1〉 with
a purity of more than 90%. At t = 231 ms, a π/2 pulse,
following with π and π/2 pulses with a time interval of
T = 1 ms, is applied to the atoms. The atom’s flying distance
between the successive pulses is approximately 1.4 mm.
The population of the final state |F = 2,mF = 1〉 is recorded
by the fluorescence detection system when the atoms fall back
to the detection chamber. It takes 1.75 s for a throughout
experiment run, including atom loading, state preparation,
interferometry process, and detection. The interference fringe
is observed via changing the Raman beams’ phase of the final
π/2 pulse, and each fringe comprises 51 continuous shots. In
order to get a magnetic-induced phase with Eq. (2), the mF =
−1 state interference fringe is also observed by manually
changing the Raman beams’ polarization to σ− − σ− with
a quarter-wave plate in about 3 min.

The fringes of mF = +1 and mF = −1 state at t = 231 ms
are shown in Fig. 3(a). The least-square fitting shows that
the phases for mF = +1 and mF = −1 state fringe are
φ+1 = 2.18(4) rad and φ−1 = −2.47(3) rad, respectively.
This sensitive atom-interferometry magnetic gradiometer was
then used to measure the distribution of the magnetic field in
the interferometry chamber. We changed the time tπ/2 of the
first π/2 pulse from 231 to 360 ms step by step and finally

obtained 130 pairs of interference fringes for both mF = +1
and mF = −1 states at different heights of the atomic
fountain. As shown in Fig. 3(c), the blue dots (red diamonds)
represent the interference phase for the mF = +1 (mF = −1)
state. It can be seen that the phases of the mF = +1 and
mF = −1 states are almost inverse. The magnetic gradient
�Bi = (φ−1 − φ+1)/(4βT ) calculated from each pair of
fringes is shown in Fig. 3(d). The gradient’s error in the top
of the fountain is larger than that of the bottom, because the
baseline becomes smaller due to the deceleration of the atoms.

The least square fit of mF = +1 state fringe shown
in Fig. 3(a) leads to an uncertainty of the interferometer
phase δ(φ+1) of 0.040(6) rad, which gives a resolution of
300(45) pT/mm for the magnetic field gradiometer after 90 s
of integration time. The spatial resolution of the gradiometer
is about 1.4 mm. The Allan standard deviation of the magnetic
gradient is shown in Fig. 3(b). We can see that the resolution
could be improved by increasing the integration time. It
also tells us that the resolution of the gradiometer at 90 s
is 346(35) pT/mm, which is consistent with the result of
least squares fit. The current experimental sensitivity of our
atom-interferometry magnetic sensor is possibly limited by
the magnetic field fluctuation due to the current instability of
bias coil.

From the magnetic gradient data, we calculated the mag-
netic field offset from the first measured point (tπ/2 = 231) ms
as Bn = ∑n

i=1 �Bi (black dots in Fig. 4). However, the
magnetic field was also obtained by measuring the resonance
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FIG. 4. (Color online) Magnetic distribution in the vacuum
chamber measured by atom interferometry (AI) and the magnetic-
field-sensitive RT methods.

frequency f+1 (f−1) between |F = 1,mF = +1〉 (|F = 1,mF =
−1〉) and |F = 2,mF = +1〉 (|F = 2,mF = −1〉) states with
the magnetic-field-sensitive RT method. The value of magnetic
field measured by this method is plotted as blue diamonds
in Fig. 4 for comparison, and each point of data took about
100 s of measuring time. In this experiment, the resolution
of the RT magnetometer is about 20 nT, which corresponds
to a resolution of 20 nT/mm for a magnetic gradient
measurement at a baseline of 1 mm. We can see that the
magnetic field distribution measured with the interferometry
method is coincident very well with that obtained with the
RT method, while the resolution of the atom-interferometry
magnetogradiometer is about 66 times higher than the RT
method in mapping the magnetic gradient in this experiment.
The resolution of RT magnetometer is limited by determining
the resonant frequencies f+1 and f−1. Theoretically, the Raman
spectroscopy is similar to the spectra of transitions in an

atomic clock, which also needs to precisely find the resonant
frequency of a two-level atom. The relative uncertainty of the
frequency measurements in an atomic clock could be estimated
by the Allan standard deviation [27] as σ (t) = 1/(QR

√
t),

where Q is f/δf , R is the signal-to-noise ratio, and t is the
total measurement time. In the case of the RT method, δf

is the full width at half maximum of the Raman spectroscopy
and is about two times Rabi frequency fR , and f = f+1 − f−1.
The R due to the atom shot-noise limit for RT method could be
written as

√
N , where N is the number of atoms per shot. In our

experiment, fR ≈ 8 kHz, f ≈ 230 kHz, and N is about 106 per
shot, so the potential sensitivity of the RT magnetogradiometer
in this experiment is at a level of 1 nT/mm per shot.

The atom shot-noise limit for an atom interferometer’s
phase resolution is σφ = 1/

√
N [19], where N is the number

of atoms contributing to the interference signal. Given approx-
imately N = 106/shot in our experiment, a phase resolution
limited by the shot noise is about 1 mrad. With an atom
free evolution time T = 1 ms, the potential sensitivity of an
atom-interferometry magnetic field gradiometer will be at a
level of 10 pT/mm per shot.

In conclusion, we have demonstrated an atom-
interferometry magnetic gradiometer with a sensitivity of
300 pT/mm after 90 s of integration time. The differential
method using mF = +1 and mF = −1 states was used to ex-
tract the magnetic field gradient signal, and the common mode
rejects some systematic errors. This sensitive and high-spatial-
resolution magnetic gradiometer can be used to measure the
magnetic field gradient in a vacuum system and correct the
systematic error due to magnetic field inhomogeneity in an
atom-interferometry gravimeter.
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