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The quantum reprojection method within the standard adiabatic Born-Oppenheimer approach is derived for
multielectron collision systems. The method takes nonvanishing asymptotic nonadiabatic couplings into account
and distinguishes asymptotic currents in molecular-state channels and in atomic-state channels. The method is
demonstrated for the example of low-energy inelastic Li 4+ Na collisions for which the conventional application
of the standard adiabatic Born-Oppenheimer approach fails and leads to paradoxes such as infinite inelastic cross

sections.
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The majority of theoretical treatments of inelastic collisions
involving atoms, ions, molecules, clusters, surfaces, and
so on is performed within the standard adiabatic Born-
Oppenheimer (BO) approach (or simply the BO approach),
which is described, for example, in [1,2]. The approach is
based on the separation of electronic and nuclear motion.
First the electronic fixed-nuclei Hamiltonian is treated and
the electronic molecular states are determined, and then the
nuclear dynamics is studied using an expansion of the total
wave functions in terms of electronic molecular-state wave
functions. The BO approach gives a clear physical picture of
the scattering process and allows one to use the well-developed
quantum-chemical methods and computer programs.

Although the BO approach looks straightforward, it
encounters severe difficulties. The problem was first recog-
nized in Ref. [3] and became known as the “electron translation
(ET) problem.” The proposed remedies are essentially based
on (i) the inclusion of ET factors [3,4] or common translation
factors [5,6] into the expansion of wave functions, or (ii) the
use of state-specific reaction coordinates [7-9], (specific)
hyperspherical coordinates [10], Eckart coordinates [11], and
so on. The methods were reviewed in Refs. [1,2,12,13]. The
remedies lead to modifications of basis functions, potentials,
couplings, and dynamical equations. It has been stated that it is
“not possible to extract a meaningful scattering matrix” [12],
and finally the problems have been interpreted as conceptional
limitations of the entire BO approach [2]. This fundamental
problem still presents unresolved features, for example, infinite
scattering lengths in ultralow-energy collisions [14]. Efforts to
solve the ET problem have been continued, and in particular,
the one-electron quantum reprojection method has been
derived [15-17], which is conceptually rather simple and
uses BO molecular potentials and couplings. This method is
generalized in the present paper for a multielectron case.

In most applications, however, the ET problem is simply
neglected, that is, (i) all asymptotic nonadiabatic couplings are
cut off at a finite internuclear distance, and (ii) the asymptotic
boundary conditions are taken in the BO (see the following)
or similar form [18]. Let us refer to this application of the
standard adiabatic BO approach as the “conventional BO
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method,” because most of the cross-section calculations are
carried out with this procedure, in contrast to the previously
mentioned methods which take the ET problem into account.
When applying the conventional BO method, it is assumed
that the approximations described give negligible errors, at
least for low collision energies (see, for example, [18,19]).

Taking as an example Li + Na collisions, the present Rapid
Communication shows that in some cases no proper cutoff
can be found to obtain reliable results and that the previously
mentioned approximations can lead to errors that are several
orders of magnitude larger than correct values, even at low
collision energies. Moreover, it is shown that in the case of
nonzero asymptotic couplings, which are the rule rather than
the exception of the BO approach, the conventional BO method
leads to infinitely large inelastic cross sections. Therefore, the
coupling-cutoff procedure can give any value for an inelastic
cross section.

For the sake of simplicity, let us treat atomic collisions in
% molecular states. Within the BO approach the total wave
function ¥, (r,R) is expanded as
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with ¢ (r,R) being the electronic molecular-state wave func-
tions, r and R being the sets of electronic and nuclear
coordinates, and J, M; being the total angular momentum
quantum numbers. This results in a system of coupled
channel equations (CCEs) for radial nuclear wave functions
F;(R) (see Ref. [1]). Nonadiabatic transition probabilities are
then calculated in the asymptotic (R — oo) region, where
the conventional BO method assumes that an incoming or
outgoing current in a single atomic state proceeds completely
into a single molecular state and vice versa. The asymptotic
boundary conditions for the total wave function read

Yo, (R =Y K@) Fap ), )
Y

with the wave numbers K; and the incoming or outgoing
amplitudes a7 in the atomic-state channel j. The conventional
BO method assumes the following incoming and outgoing
asymptotic (R — oo) BO wave functions:

Bo...+ €xp(XiK;R)

\IJj = TYJMI(®,(D) ¢j(r,R)- (3)
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The CCEs are solved numerically from zero to an upper
integration limit Ry that is large enough to calculate transition
probabilities based on the asymptotic wave functions (3) [1].
The use of electronic molecular states leads to the following
fundamental features. Both radial and rotational nonadiabatic
couplings [1,15,20,21], as well as the form of CCEs [15,21],
depend on the origin of the electron coordinates, although
the CCEs themselves are independent of the origin choice
[15,21,22]. The CCEs take their standard and simplest form
in Jacobi coordinates, where the electrons are measured
from the center of nuclear mass (CNM) (neglecting the
mass-polarization term). The asymptotic values of the radial
nonadiabatic couplings calculated with the electron origin at
the CNM read [15,16]
0 m :
<]|8_R|k>oo = Y —1Vj(00) = Vi()I(jld'|k),  (4)
h
with (j|d*|k) being the atomic transition dipole moment,
m the electron-nuclei reduced mass, and V;(R) an adiabatic
potential. The scalar factors y; depend on with which nucleus
an active electron is bound in the asymptotic region:

_ M .
Vi = YA = —ira0  an electron bound with A, 5)
vB = +%, an electron bound with B.

The nuclei labeled A and B have masses M, and Mp. See
Ref. [16] regarding the rotational couplings. It is seen that
some radial nonadiabatic couplings remain nonzero in the
asymptotic region, even for the noninteracting model system
n + H [17,21]. Note that choosing another electron origin
(e.g., at one of the nuclei) does not help to avoid nonzero
asymptotic couplings in the CCEs, because the same nonzero
values appear in the equations due to new terms in the
Hamiltonian [15,21]. According to the BO approach, nonzero
couplings provide transitions between molecular states even
at R — oo.

In fact, the nonvanishing asymptotic couplings are a conse-
quence of a more fundamental shortcoming. The coordinates
used to describe molecular states of the collision complex
at small and intermediate distances are not suited for the
description of the free atoms in the asymptotic region. The
correct asymptotic incoming or outgoing wave functions
[1,3,12,15,16]

exp(+iK;R

i= %Ym,(@ D) ¢, (6)
are written in another set of Jacobi coordinates and are different
from the BO functions (3). The vector Ra‘ connects the centers
of mass of the atoms, in contrast to R which connects the
nuclei.

The reprojection method for multielectron collision systems
consists of the following. The vector Rf}‘ can be written as
follows:

RY =R+ b, )

where the vector b; is equal to a sum over all electrons

b_Zy]Mr—yR) (8)
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with index o labeling the electrons, r = {r*}. The value of

m¢, the electron-nucleus reduced mass in the channel j, is
m =m MA/(me + M), if the electron « is bound to nucleus
A, and m =m.Mp/(m, + Mp), if it is bound to nucleus B,
where me is the electron mass. M is the reduced mass of
the nuclei. The shift b; depends on the asymptotic electron
rearrangement in the channel j and hence can be different for
different channels. It is small, but it does not vanish at infinity
and therefore should be taken into account.

A single term in the expansion (1), describing a current in
the molecular state k, does not coincide with a single term
in Eq. (2), describing a current in the corresponding atomic
state [see Eq. (6)]. An incoming or outgoing current in a single
atomic state is distributed among several molecular states and
vice versa. Projecting the atomic-channel asymptotic wave
functions (6) on the molecular asymptotic wave functions (3)
gives

wi = LDy, @) D ineR. O
where the elements of the matrices ¢ * represent the reprojec-
tion coefficients o

= (klexp (£iK;b;.)|j)oo- (10)

At low collision energies these matrix elements can be
approximately evaluated via corresponding atomic transition
dipole moments and furthermore, taking into account Eq. (4),
via asymptotic values of the derivative couplings calculated in
the Jacobi molecular coordinates

N iK;h? I

=0 E g g kgt (D
where all values are taken in the asymptotic region. Thus
the asymptotic couplings are responsible for the correct
asymptotic wave functions in the r, R coordinates.

A numerical solution of the CCEs for a molecular channel
at R — oo gives a superposition of the BO asymptotic wave
functions in atomic channels. Within the reprojection method,
the CCEs with nonzero asymptotic nonadiabatic couplings are
integrated numerically from zero up to a large distance Ry,
resulting in the R matrix (R). Finally, taking into account
Egq. (9), the S matrix is expressed via the R matrix as follows:

S = (=1’ exp(—iKR)K™'*(t” +iRt"K)
x (17 —iRtTK) ' K" exp(—i K Ro). (12)

The formula (12) is valid for multielectron collisions and turns
into the formula derived previously in the limiting one-electron
case [15,16]. The difference between the conventional BO
method and the reprojection method is in the presence of the

* matrices in the latter instead of the unit matrix in the former
[see Eq. (12)]. Implementation of the reprojection method (also
called the f-matrix method) is no more complicated than the
implementation of the conventional BO method and does not
require additional input data if Eq. (11) is used.

Let us consider Li 4+ Na collisions. The adiabatic poten-
tials for the three lowest LiNa('=1) states and the radial
nonadiabatic couplings between them are plotted in Fig. 1.
The ab initio potentials are taken from Ref. [23], while the
nonadiabatic couplings have been calculated in the present
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FIG. 1. (Color online) The adiabatic potentials (a) for the three
lowest LiNa('+) states (X, A, C) and the radial nonadiabatic
couplings (b) between these states.

work by means of the MOLPRO package (the ab initio Multi-
Reference Conguration Interaction method). Figure 1 clearly
shows that two nonadiabatic couplings remain nonzero in the
asymptotic region, in agreement with Eq. (4). Their values
are not negligible compared with the typical maximum value
of ~0.2 a.u.. Moreover, the X-A coupling has its maximum
value in the asymptotic region (except for the range R < 2 a.u.,
which is not important for transitions). Thus no proper cutoff
can be found to obtain a reliable result.

The transition probabilities P;s(J,E) for the Li(2s)+
Na(3s) — Li(2p) 4+ Na(3s) and Li(2s) + Na(3s) — Li(2s) +
Na(3p) excitation processes are shown in Fig. 2 for collision
energy E =5 eV and J =0 as a function of the upper
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FIG. 2. (Color online) The transition probabilities for Li(2s —
2p) + Na(3s) (upper panels) and Li(2s) + Na(3s — 3p) (lower
panels) excitation calculated for £ =5 eV and J = 0 by means
of the conventional BO method (solid lines) and by means of the
reprojection method (blue and green dashed lines) as a function of
the upper integration limit Ry. The right panel shows the probabilities
in an enlarged scale.
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FIG. 3. (Color online) The transition probabilities for Li(2s —
2p) + Na(3s) (a) and Li(2s) + Na(3s — 3p) (b) excitation as a
function of the total angular momentum quantum number J for
E = 5eV. The black and red thin lines show the probabilities obtained
by means of the conventional BO method; the blue and green thick
lines depict the probabilities calculated by the reprojection method
and multiplied by 1000 (a) and 200 (b).

integration limit Ry. It is seen that P;s(J,E), calculated by
means of the conventional BO method, oscillates between
roughly zero and relatively large values with increasing Ry.
The variations represent nonadiabatic transitions between
molecular states at large R and are a consequence of the
nonzero asymptotic couplings.

The reprojection method yields transition probabilities
which are independent of the upper integration limit, when
it is large enough (see Fig. 2). The transition probabilities are
several orders of magnitude smaller than those obtained by the
conventional BO method and are not equal to averaged values
of the latter. Nonadiabatic transitions between molecular states
still remain at an arbitrary large R, but they do not produce
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FIG. 4. (Color online) The Li(2s — 2p) + Na(3s) [black (top
dashed) and blue (solid, third from top) lines] and Li(2s) + Na(3s —
3p) [red (dashed, second from top) and green (bottom solid) lines]
excitation cross sections calculated by means of the conventional BO
method (dashed lines) and by means of the reprojection method (solid
lines) as a function of the maximum value of the angular momentum
quantum number Jmax for £ = 5eV.
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transitions between atomic states at large distances. The ¢
matrices correct the S matrix (12). Thus transitions between
atomic states in the asymptotic region are unphysical, while
transitions between molecular states in the same region are
physical.

The same probabilities P;s(J,E) as a function of J are
plottedin Fig. 3 for E = 5eV, Ry = 500 a.u.. The conventional
BO method gives probabilities that remain oscillating with
increasing J due to the nonzero asymptotic couplings: at any
J a centrifugal term does not prevent reaching a nonadiabatic
region. In contrast to this, the transition probabilities obtained
by means of the reprojection method are substantial only
within a limited range of J, roughly up to J =~ 500 for
E =5 eV. Note that the probabilities calculated by the re-
projection method and plotted in Fig. 3 are multiplied by 1000
and 200.

The inelastic cross sections are calculated as a sum over
J from O until infinity or a value Jmax where convergence is
reached. If the range of J with nonzero transition probabilities
is unlimited, as shown in Fig. 3 for the conventional BO method
results, convergence cannot be reached and cross sections
infinitely increase with increasing upper summation limits
Jmax, as depicted in Fig. 4. Nonzero asymptotic couplings
lead to infinite inelastic cross sections obtained with the
conventional BO method. A lack of convergence within the

RAPID COMMUNICATIONS

PHYSICAL REVIEW A 82, 060701(R) (2010)

conventional BO method at high energies was noticed in
Ref. [6].

Within the framework of the reprojection method, the
P;¢(J,E) values are nonzero only within a limited range of
J (as it must be), which leads to the convergence of the cross
sections with increasing Jmax (see Fig. 4), and finally, to the
finite values of the inelastic cross sections. All remedies for
the ET problem are supposed to lead to the convergence, (see,
for example, [6]). Thus the conventional BO method has its
limitation both in the formalism and in its applications, while
the standard adiabatic BO approach with any ET remedy is
free from such limitations.

It has thus been demonstrated that the conventional BO
method applied to collision processes with nonzero asymptotic
nonadiabatic couplings, which are fundamental features of
the BO approach, leads to paradoxes such as infinite inelastic
cross sections even at low collision energies. The ET effects are
severe for all kinds of collisions. The reprojection method takes
into account nonzero asymptotic couplings and distinguishes
asymptotic currents in molecular and atomic-state channels.
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