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Simulation of classical thermal states on a quantum computer: A transfer-matrix approach
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We present a hybrid quantum-classical algorithm to simulate thermal states of classical Hamiltonians on a
quantum computer. Our scheme employs a sequence of locally controlled rotations, building up the desired
state by adding qubits one at a time. We identified a class of classical models for which our method is efficient
and avoids potential exponential overheads encountered by Grover-like or quantum Metropolis schemes. Our
algorithm also gives an exponential advantage for two-dimensional Ising models with magnetic field on a square
lattice, compared with the previously known Zalka’s algorithm.
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Simulation of a finite-temperature physical system with a
controllable quantum device is one of the most important goals
of quantum simulation [1,2]. Classical Markov-Chain Monte
Carlo (MCMC) algorithms are powerful tools for sampling
Gibbs distributions. They are efficient provided that the gap
� of the transition matrix is nonvanishing; the running time
typically scales as τ ∼ O(1/�). A quantum generalization
[3] of MCMC has recently been explored by the quantum
information community due to the connection to quantum
walks [4]. Richter [5] developed a method for sampling from
the Gibbs distribution for periodic lattices. Somma et al. [6]
combined quantum walk and quantum Zeno effect to achieve
quantum speedup. Wocjan and Abeyesinghe [7] improved it
by using fixed point quantum search. Generally, these quantum
algorithms allow the running time to scale as τ ∼ O(1/

√
�),

a quadratic speedup compared with the classical counterparts.
However, for many problems of practical interest, such as
optimization problems and spin glasses, the gap � may
become exponentially small when the system size increases,
making it unpractical to use MCMC algorithms for solving
them (see Fig. 1). Therefore, gap-independent methods are
more desirable for solving these problems.

A class of gap-independent methods is called belief prop-
agation [8], which generalizes the transfer matrix methods in
statistical physics. For problems involving a regular geometry,
it can be very efficient. This property will be exploited in this
Rapid Communication, where a different way for obtaining
samples from the thermal state is discussed. This approach is
a generalization of the state preparation method by Lidar and
Biham [9] and Zalka [10]. We show that in some cases, the
structure of the system under investigation allows for large
speedups over the general methods. This is because the cost
of our method is independent of the temperature and the gap
size.

Our proposed strategy is to construct a coherent encoding of
a thermal state (CETS) |ψCETS〉 directly, rather than sampling
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from the thermal probability distribution:

|ψCETS〉 =
∑

s

√
e−βH (s)/Z|s〉, (1)

where s = {0,1}N , β ≡ 1/kBT is the inverse temperature,
H (s) is the eigenenergy of some classical spin Hamiltonian
for the N -spin configuration s = s1s2 · · · sN , and Z is the
partition function. This CETS can be transformed into the
corresponding thermal state

ρth = e−βH /Tr(e−βH ) (2)

by including a set of N ancilla qubits, performing bit-by-bit
controlled-NOT (CNOT) transformations such that

|s〉 ⊗ |0 · · · 0〉A → |s〉 ⊗ |s〉A, (3)

and tracing over the ancilla system. However, for some
applications, such as the partition functions estimation in [11],
it is preferable to use the CETS directly. With the CETS, all
the thermal properties can be extracted. In Ref. [2], several
efficient methods of measurement applicable to CETS are
outlined. For completeness, in the appendix [12], we include
a self-contained description of the measurement methods, and
consider how randomness can be introduced efficiently.

We will present a method for preparing the CETS of
a classical Hamiltonian from the initial state |0 · · · 0〉 by a
sequence of locally controlled rotations. Zalka’s approach
[10], as applied to discrete cases [13], allows for preparing
the CETS by adding qubits one by one, and performing a
rotation (controlled by all of the previous qubits) on each new
qubit as

|s1 · · · sk〉|0〉 → |s1 · · · sk〉(cos θs |0〉 + sin θs |1〉), (4)

where cos2 θs is the conditional probability of sk+1 = 0, given
that the first k spins are in a particular configuration s1s2 · · · sk .
The problem here is that in general, this requires the knowledge
(or efficient calculation) of O(2N ) conditional probabilities.
Thus, Zalka’s method is efficient only when the probability
distributions are efficiently integrable [14]. Here we focus on
the cases where the controlled rotations are local, i.e., they
depend only on a few previous qubits. This in turn allows
efficient computation of the respective rotation angles.
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FIG. 1. (Color online) The running time τ ∼ O(1/�) of Markov
chain methods, limited by the gap � of the Markov matrix. A
quantum quadratic speedup τ ∼ O(1/

√
�) (black solid line) relative

to classical Markov chains (black dashed line) can be achieved by a
quantum computer. Below some critical gap size � < �∗, Markov
chain methods become inefficient (shaded region), and classical
belief propagation methods (red dashed line), including transfer
matrix methods (which are gap independent), become more efficient.
Combined with quantum amplitude amplification, a further quantum
speedup is possible (red solid line).

Real-space renormalization. This method is also related
to the renormalization group method [15], which idea is to
integrate out some degrees of freedom (coarse-graining) in
the partition function Z, and describe the subsystem with
a similar system with modified (renormalized) couplings.
As an example, consider a linear chain of three spins
[Fig. 2(a)]. The partition function after eliminating spin 3
[cf. Eq. (21)],

Z = �(β)
∑
s1,s2

eB(β)s1s2 , (5)
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FIG. 2. (Color online) Real space renormalization approach
for preparing the coherent encoding of a thermal state (CETS).
(a) Spin 3 is eliminated by integration, inducing an effective
interaction (green bond) between spin 1 and spin 2. (b) A controlled
rotation is performed on spin 3, inducing an effective interaction (red
bond) between spin 1 and spin 2. (c) A quantum circuit demonstrating
the sequential construction of the full thermal state.

is proportional to that of spin 1 and spin 2 interacting with an
effective interaction −B(β)/β. In contrast to this conventional
renormalization treatment, where the degrees of freedom of the
physical systems are progressively reduced, our method works
in a reverse fashion: at each step, we increase the number of
degrees of freedom, and then perform a controlled rotation
(Fig. 2(b)), which also changes the effective interaction of
spins 1 and 2.

We next define a sequential method for preparing a CETS
for a generalized Ising Hamiltonian of N classical spins which
has multiple spin-spin coupling constants:

Hs =
∑

j

Aj sj +
∑
ij

Bij sisj +
∑
ijk

Cijksisj sk + · · · . (6)

Our goal is to investigate how a CETS can be constructed by
locally controlled quantum rotations. Suppose we are given a
CETS as defined in Eq. (1) of k spins |ψk〉 for the Hamiltonian
given by Eq. (6), and an additional qubit initialized in the state
|0〉 that will become spin k + 1 of our CETS. Let us define the
rotation angle θs by

cos θs ≡
√

e−βms /Ws, (7)

where Ws ≡ e−βms + eβms = 2 cosh(βms), and

ms ≡ m(s1, . . . ,sk) (8)

is a function (to be determined later) of the spin variables of
the first k spins. After performing a controlled rotation (4) on
spin k + 1, with angles given by Eq. (7), we obtain a CETS
|ψk+1〉 of a new (k + 1)-spin Hamiltonian

Hk+1 = H̃k + mssk+1. (9)

To justify this statement, rewrite W in Eq. (7) as

Ws = e−βms + eβms = �ke
−β(Hk−H̃k), (10)

for some constant �k and some k-spin Ising spin Hamiltonian
H̃k (with possible higher order interactions). The state that we
get from |ψk〉|0〉 by the controlled rotation (7) is

∑
s

√
F (s)|s〉

with F (s) ≡ F (s1,s2, . . . ,sn) given by

F (s) = e−βHk

Zk

e−βmssk+1

Ws

= e−β(H̃k+mssk+1)

Zk�k

, (11)

i.e., a CETS for the Hamiltonian (9). Moreover, the new
normalization constant is the same as the partition function
Zk+1 for the system with Hamiltonian (9) and can be obtained
simply by

Zk+1 = �kZk. (12)

The term H̃k in (9) is an Ising Hamiltonian of the form
(6) for the first k spins, but associated with a different
set of renormalized couplings {Ãj ,B̃ij ,C̃ijk, . . .}. Finally, the
constant �n can be shown to be the geometric mean of the
left-hand side of (10)

�k = 2
∏
ms

[cosh(2βms)]
1/2k

. (13)

This is reminiscent of formulas which appear in classical
algorithms such as belief propagation [8] for calculating
some thermal properties of some spin systems. The controlled
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rotation is therefore the crucial element of our renormalization
step. Using our method iteratively as shown in Fig. 2(c), we
can generate the CETS of a particular spin Hamiltonian. In
general, H̃k could contain up to k-local interaction terms. If
all the terms in H̃k involve at most t spins, we call this a
t-renormalizable operation.

Finite-range interactions and belief propagation. As a
general construction, we consider spin chains with finite-range
interactions involving z neighboring spins. The computational
complexity of this approach generally scales exponentially in
z. As an example, consider two groups of spins s and t , each can
be considered as a 2z-dimensional system. The Hamiltonian is
of the form

H = Hs + Ht + Hst , (14)

where Hs and Ht are the internal interaction terms for spins
within group s and t , and Hst contains the interactions between
the groups. We start with preparing the state of the group s as

1√
M

∑
s

√
e−βHs γs |s〉, (15)

where M is a normalization constant, and γs is a function of
the spins s to eliminate renormalization effects induced by the
spins in group t . The group t is initialized in the state |0 · · · 0〉.
We choose the controlled rotation

|s〉|0 · · · 0〉 → |s〉
∑

t

√
e−β(Ht+Hst )(γt/γs)|t〉, (16)

with γt determined by the next group of spins to be included
in the preparation procedure. If group t is the last group, then
all γt are equal to 1. To ensure unitarity of this operation, we
require

γs =
∑

t

γt e
−β(Ht+Hst ), (17)

which is a recursion relation typically encountered in belief
propagation [8] problems. For a group of z spins, and a given
set of γt , the sum involves O(2z) terms, scaling exponentially
in z. To perform the multi-qubit rotation, we can apply
Zalka’s algorithm [10], which requires the computation of
O(2z) rotation angles, and a polynomial number of subsequent
quantum operations. To save computational resource for large
z, it is more efficient to determine the angles for rotation
“on the fly.” This can be achieved by the quantum amplitude
amplification algorithm [16] calculated with some ancilla
qubits.

We can apply this approach to an N × N square lattice
of Ising spins with nonuniform couplings and arbitrary local
magnetic fields. We make a group for each row of z = N

spins. In the worst case scenario, the number of required
operations in the above approach then scales1 as O(22N ),
which becomes O(2N ) after combining with the amplitude
amplification algorithm. This is still an exponential algorithm,
but nevertheless with an exponential speed up over the direct
application of Zalka’s algorithm, whose complexity scales

1With belief propagation, for a chain of d-dimensional qubits, the
partition function scales as (N − 1)d2.

as O(2N2
), as it requires the preparation of a probability

distribution with 2N2
amplitudes. However, for the uniform

two-dimensional Ising model without magnetic fields, an
efficient t-renormalizable approach might exist, as classical
polynomial algorithms exist for this problem [17].

Building blocks for frustrated magnets and spin ice. As
another example, we show how to generate a CETS of a
triangle plaquette of three Ising spins by a 2-renormalizable
operation. Our goal is to prepare a CETS of three spins (see
Fig. 2(b)) for the Hamiltonian

H3 = J (s1s2 + s1s3 + s2s3). (18)

Let us start with two qubits initialized as

1√
M

∑
s1,s2={0,1}

√
γs1s2e

−βJs1s2 |s1s2〉, (19)

where M is a normalization constant and γs1s2 > 0 is some
positive function of s1 and s2 to be determined later. Let us
add a third qubit in the state |0〉 to the system, and act with the
controlled rotation (7) depending on the values of the first two
qubits. When we choose

ms = J (s1 + s2) (20)

for some constant J , we can use the well-known result in
renormalizing the one-dimensional Ising chain [15], and write

Ws = e−βJ (s1+s2) + eβJ (s1+s2) = �eβBs1s2 , (21)

where the coefficients � and B are

� = 2
√

cosh(2βJ ),
(22)

B = (1/2β) ln cosh(2βJ ).

Observe now that if we chose γs1s2 = �eβBs1s2 when preparing
the first two qubits, applying the controlled rotation of the
third qubit eliminates this factor. Consequently, this operation
produces the CETS for the three-spin Ising cycle H3. We will
discuss more examples in the appendix [12].

Connection to matrix product state (MPS) representation.
Many-body quantum states can be expressed in the form
of matrix product states (MPS) [18,19]; our CETS is of no
exception. The representation in terms of MPS,

|ψMPS〉 =
∑

s

tr
{
A(1)

s1
A(2)

s2
· · · A(n)

sn

}|s1s2 · · · sn〉, (23)

where A1
s1

is a vector and the rest of the A’s are matrices,
is closely related to the classical algorithm called the density
matrix renormalization group (DMRG) [20]. In the practical
implementation of DMRG algorithms, the matrices A are
truncated to a constant size (m × m where m � 2n) and stored
in the memory, instead of the actual form of the quantum state;
this leads to a significant reduction of the memory requirement.

We investigated the validity of MPS truncation for a class
of CETS (details in the appendix [12]); the result suggests that
the truncation in MPS is efficient in the high-temperature limit.
This is expected as there is no entanglement in the CETS in
that limit. However, in the T → 0 limit, due to the degeneracy
of the ground state, the truncation would cause large errors.

On the other hand, the MPS representation of quantum
states can lead to an alternative way to obtain the CETS.
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This is because the CETS can in principle be mapped to the
ground state of certain artificial Hamiltonians [21]; a DMRG
procedure can therefore be implemented for the CETS, which
results in a MPS representation. For example, to solve the
ground-state problem, applying the phase estimation algorithm
(PEA) to the MPS can result a projection to the exact ground
state, with an efficiency depending on the fidelity of the
MPS [2]. To this end, we elaborate this point more by including
a discussion in the appendix [12] on how to modify our method
to map any given MPS representation to the state of a register
of qubits.

Conclusion. To summarize, we have developed an algo-
rithm which identifies a class of classical spin problems that
can be simulated efficiently with a quantum computer. In this
class of problems, our method scales efficiently compared
with MCMC methods [6,7,22], as it is independent of the
gap of the Markov chain and temperature. On the other hand,

we believe that the tools developed here could be useful for
classifying the complexity classes of certain spin models. An
avenue for further research is the complexity classification of
spin systems by their t-renormalizability, which may suggest
a deeper understanding of the connection between complexity
theory and quantum simulation.
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