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Addendum to “Behavior of a bipartite system in a cavity”
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This note is an Addendum to our previous article [Phys. Rev. A 81, 053820 (2010)]. We show that under the
assumption of a Bose-Einstein distribution for the thermal reservoir, zero-temperature properties of the entangled
states considered there are not changed by heating, for temperatures up to the order of room temperatures. In this
case, the system is dissipative in free space and presents stability for a small cavity, both for T = 0 and for finite
temperature.
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In this note we consider how heating could affect the
properties of the bipartite system studied in [1]. This bipartite
system consists of two dressed atoms inside a reflecting
cavity that do not interact with each other, only with an
environmental field. Our approach to this problem makes use
of the notion of dressed thermal states [2], in the context of a
model already employed in the literature, of atoms—or, more
generally, material particles—in the harmonic approximation,
coupled to an environment modeled by an infinite set of
pointlike harmonic oscillators (the field modes). The dressed
thermal state approach is an extension of the dressed (zero-
temperature) formalism that was introduced earlier. The reader
is referred to [1] and [2] for details of our formalism.

Here we consider entanglement as a pure quantum effect, a
characteristic of quantum mechanics, which is also nonlocal,
in the sense that distant and noninteracting systems may be
entangled. This is due to the physical meaning attributed
to superposed states, a concept with no correspondence in
classical physics, and not to the interaction between the
(in our case, dressed) atoms. Indeed, such properties of
entanglement of noninteracting systems have been used in
the realm of teleportation and quantum information theory
and to conceive quantum communication devices. We think
that investigation the measure to which the properties of such
systems are affected by heating is important, particularly in
the case of room temperatures. The possibility of constructing
such devices at temperatures of everyday life would be an
interesting matter.

In this note we remain on theoretical grounds and perform
a study of thermal effects on our bipartite system, assuming
that the dressing fields of the atoms obey a Bose-Einstein
distribution and that the first-level excited dressed atomic states
evolve in the same way as in [1]. Under these assumptions, it
results that the reduced density matrix does not depend on
temperature. In contrast, employing methods and relying on
results obtained in [2] and [3], one finds that the individual
dressed atoms in the bipartite system are very little affected
by heating for temperatures of about 300 K. The overall
conclusion is that the methods and results from [1] are valid if
we consider the system at room temperatures.
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Our bipartite system is composed of two subsystems, A
and B; the subsystems consist of dressed atoms A and B,
respectively, and the whole system is contained in a perfectly
reflecting sphere of radius R in thermal equilibrium with an
environment (field) at a temperature β−1. We consider each
atom to carry its own dressing field cloud, independently of
each other. This means that we are considering the behavior
of a noninteracting bipartite system. Also, we take a specific
type of reservoir, in the thermal Bose-Einstein state, where the
excitation distribution is diagonal in the number basis.

We start, at time t = 0, from a family of superposed states
of the bipartite system given by

|�AB〉 =
√

ξ
∣∣�(AB)

10 (0)
〉 + √

1 − ξeiφ
∣∣�(AB)

01 (0)
〉

≡
√

ξ |1A0B〉 +
√

1 − ξeiφ|0A1B〉, (1)

where 0 � ξ � 1.
In Eq. (1), |�(AB)

10 (0)〉 ≡ |1A0B〉 and |�(AB)
01 (0)〉 ≡ |0A1B〉

stand, respectively, for the t = 0 states in which the dressed
atom A (B) is at the first level, and the dressed atom B (A) in
the ground state. They are∣∣�(AB)

10 (0)
〉 = ∣∣�A

1 (0)
〉 ⊗ ∣∣�B

0 (0)
〉

(2)

and ∣∣�(AB)
01 (0)

〉 = ∣∣�A
0 (0)

〉 ⊗ ∣∣�B
1 (0)

〉
. (3)

To take into account temperature effects, we consider the
density matrix,

ρAB(t,β) = |�AB〉〈�AB| ⊗ ρA(β) ⊗ ρB(β),

in terms of dressed objects. We take the density matrix for the
thermal bath obeying the Bose-Einstein distribution,

ρA(β) =
∏
k

1

Zk

e−h̄βωka
†
kak

=
∏
k

1

Zk

∞∑
nk=0

e−h̄βωknk |nk〉〈nk|, (4)

where nk = 0,1,2, . . . correspond to the occupation numbers
of the dressed field modes k, and Zk is obtained by imposing
the condition of unit trace for ρA(β); this gives

Zk = 1

1 − e−h̄βωknk
, (5)
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and so,

ρA(β) =
(

1

Z1

∑
n1

e−h̄βω1n1 |n1〉〈n1|
)

⊗
(

1

Z2

∑
n2

e−h̄βω2n2 |n2〉〈n2|
)

⊗ · · ·

=
∑

n1,n2,...

e−h̄β(ω1n1+ω2n2+···)

Z1Z2 · · · |n1〉〈n1| ⊗ |n2〉〈n2| ⊗ · · · .

(6)

For the part containing only the atoms, we have

|�AB〉〈�AB| = ξ [|1A(t)〉〈1A(t)| ⊗ |0B〉〈0B |]
+ (1 − ξ )[|0A〉〈0A| ⊗ |1B(t)〉〈1B(t)|]
+

√
ξ (1 − ξ )eiφ[|0A〉〈1A(t)| ⊗ |1B(t)〉〈0B |]

+
√

ξ (1 − ξ )e−iφ[|1A(t)〉〈0A| ⊗ |0B〉〈1B(t)|],
(7)

where we have changed the notation, |�A
1 (t)〉 ≡ |1A(t)〉, and

similarly for the other states.
Putting together Eqs. (6) and (7), the reduced density matrix

is obtained by taking the trace over the field modes,

ρrArB

pApB
(t,β) = ξ

∑
{ni }

e−h̄β
∑

ωini∏
Zi

∞∑
{ki }=1

〈pA,k1, . . . |1A(t); n1, . . .〉〈1A(t); n1, . . . |rA,k1, . . .〉

×
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∑

ωimi∏
Zi
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∑
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×
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∞∑
{qi }=1
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+
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ξ (1 − ξ )eiφ
∑
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ωini∏
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×
∑
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e−h̄β
∑

ωimi∏
Zi

∞∑
{qi }=1

〈pB,q1, . . . |1B(t); m1, . . .〉〈0B ; m1, . . . |rB,q1, . . .〉

+
√

ξ (1 − ξ )e−iφ
∑
{ni }

e−h̄β
∑

ωini∏
Zi

∞∑
{ki }=1

〈pA,k1, . . . |1A(t); n1, . . .〉〈0A; n1, . . . |rA,k1, . . .〉

×
∑
{mi }

e−h̄β
∑

ωimi∏
Zi

∞∑
{qi }=1

〈pB,q1, . . . |0B ; m1, . . .〉〈1B (t); m1, . . . |rB,q1, . . .〉. (8)

To calculate the preceding matrix elements, we use the time
evolution of the states involved [1],

|1A(t); n1,n2, . . .〉 =
∑

ν

fAν(t)|1ν(0); n1,n2, . . .〉, (9)

where the coefficients fAν(t) are

fAν(t) =
∑

s

t sµt sν e
−i	s t ,

∑
ν

|fAν(t)|2 = 1. (10)

A similar equation holds for |1B(t); n1,n2, . . .〉. Inserting
Eq. (9) and its equivalent for atom B into Eq. (8), we obtain,

after some rather long manipulations,

ρrArB

pApB
(t) =

⎛
⎝∑

{ni }

e−h̄β
∑

ωini∏
Zi

⎞
⎠

⎛
⎝∑

{mi }

e−h̄β
∑

ωimi∏
Zi

⎞
⎠

×
{

ξ

[
|fAA(t)|2δpA1δrA1 +

∞∑
i=1

|fAi(t)|2δpA0δrA0

]

× δpB 0δrB 0 + (1 − ξ )δpA0δrA0

×
[
|fBB(t)|2δpB 1δrB 1 +

∞∑
i=1

|fBi(t)|2δpB 0δrB 0

]

+
√

ξ (1 − ξ )eiφf ∗
AA(t)fBB(t)δpA0δrA1δpB 1δrB 0

+
√

ξ (1 − ξ )e−iφfAA(t)f ∗
BB(t)δpA1δrA0δpB0δrB 1

}
.
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But

1

Zi

∑
ni

e−h̄βωini = 1, ∀i, (11)

and therefore, the temperature-dependent terms disappear,
leaving the reduced density matrix with exactly the same
form as in [1]. For identical atoms we have fAA(t) = fBB(t) ≡
f00(t), and the nonvanishing matrix elements of ρ are

ρ00
00 (t) = 1 − |f00(t)|2,

ρ01
01 (t) = (1 − ξ )|f00(t)|2,
ρ10

10 (t) = ξ |f00(t)|2, (12)

ρ10
01 (t) =

√
ξ (1 − ξ )eiφ|f00(t)|2,

ρ01
10 (t) =

√
ξ (1 − ξ )e−iφ |f00(t)|2.

Note that this property is not specific to the Bose-Einstein
distribution we have employed, but it is common to any
normalized distribution which is diagonal in the number
basis. This may not happen for other types of reservoirs, like
coherent squeezed thermal states, where factorization of the
temperature-dependent terms may not occur.

At finite temperature, all the results that depend only
on the reduced density matrix remain the same as in the
zero-temperature case [1]. This conclusion is valid for our
choice of Bose-Einstein distribution to the heated environment,
using Eq. (9) for the time evolution of the first-level excited
atomic states. The choice of the Bose-Einstein distribution to
the field modes can be justified: in the case of an arbitrarily
large cavity, the dressed field modes coincide with the bare
ones [2], and in the limit of vanishing coupling with the atom,
these modes follow the Bose-Einstein distribution exactly.
Strictly speaking, this is not the case for the coupled atom-field
system in a finite cavity. Nevertheless, in many situations this
approximation is acceptable in the weak-coupling regime [4].
The use of Eq. (9) for the time evolution of first-level excited
atomic states, as we will see, is a good approximation for room
temperatures.

In this case, heating does affect each atom individually.
In [2] and in [3], some of us studied the time evolution of the
temperature-dependent occupation number of a single dressed
atom, n′

0(t,β), for a very large cavity (free space) and for
confinement in a small cavity, respectively, with the same
heating procedure that we have used here. In the case of a
large cavity, we have shown that, starting from an initial value

n′
0(t = 0,β) = 1, n′

0(t,β) evolves, for weak coupling, steadily
from 1 to an equilibrium value of

n′
0(∞,β) = 1/(eh̄βω̄ − 1).

For T = 300 K, for a frequency ω̄ = 4.0 × 1014/s, we have
n′

0(∞,T = 300) ≈ 0.09, a value slightly higher than the
corresponding value for T = 0, n′

0(∞,T = 0) = 0. For the
same initial condition, n′

0(t = 0,β) = 1, and the same value of
the emission frequency and temperature as in the large cavity, it
is found in [2] that, for a small cavity (radius R ∼ 10−6 m), the
time evolution of the occupation number shows an oscillating
behavior. Raising the temperature increases the average value
of the occupation number, but this increase is significant only
for high laboratory temperatures. For instance, for T = 105 K
(∼8.4 eV; a value lower than the ionization temperature of
13.6 eV for the hydrogen atom) and a frequency ω̄ = 4.0 ×
1014/s, as before, one obtains that the average occupation
number is about 3.5 times higher than the zero-temperature
value, n′

0(t,T = 0) ≈ 1. In contrast, this effect is negligible
for room temperatures; in this case, taking, for instance, a
temperature T >∼ 300 K, it is found that the occupation number
is given by n′

0(t,T >∼ 300) >∼ 1, which will remain very close
to the zero-temperature value. Therefore, if we consider the
system at room temperatures, individual atoms are very little
affected by heating and the use of Eq. (9) is justified.

Our system is composed of two noninteracting atoms,
each one carrying its own dressing field. The superposition
principle dictates the existence of correlations between the
parts of the system (the two atoms) even if they do not
interact. By introducing temperature in the environment by
means of the Bose-Einstein distribution, the result is that the
entanglement properties of the bipartite system considered
are not affected by heating up to room temperatures. In
particular, considering two identical atoms, the concurrence,
the entanglement of formation, and the negativity depend
only on the matrix elements in Eq. (12) and, thus, cannot
depend on the temperature. However, the temperature of the
environment cannot be so high that the atoms dissociate or
such that the adopted atomic model becomes invalid. More
precisely, from a physical point of view, our model applies for
room temperatures. As we have shown here, for temperatures
of the order of ∼300 K, or not much higher, the harmonic
approximation we used in [1] remains valid and the time
evolution of the thermal occupation number of the atoms is
very close to the zero-temperature case. This establishes the
range of validity of the present study.
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