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Interpreting quantum states of electromagnetic field in time-dependent linear media

Jeong Ryeol Choi*

Department of Radiologic Technology, Daegu Health College, Taejeon 1-dong, Buk-gu, Daegu 702-722, Republic of Korea
(Received 28 August 2010; published 24 November 2010)

Recently, Pedrosa and Rosas [Phys. Rev. Lett. 103, 010402 (2009)] investigated the quantum states of an
electromagnetic field in time-dependent linear media using a Hermitian linear invariant. The wave function
obtained by them is represented in terms of an arbitrary weight function g(λl). Since the type of wave function
varies depending on the choice of g(λl) in their problem, it may be a difficult task to construct a coherent state
that resembles the classical state from their theory. We suggest, on the basis of a non-Hermitian linear invariant,
another quantum state that is a kind of coherent state. The expectation value of canonical variables in this alternate
state follows an exact classical trajectory. For a simple case in which the time dependence of the parameters
ε(t), µ(t), and σ (t) disappears, we showed that the quantum energy expectation value in the alternate quantum
state recovers exactly to the classical energy in the limit h̄ → 0. This alternate state leads to the correspondence
between the quantum and the classical behaviors of physical observables in a high-energy limit.
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I. INTRODUCTION

Planck’s pioneering work [1] in the field of quantum
physics highlighted the importance of the physical nature of
the radiation field in a cavity. Quantum electrodynamics in
vacuum and in dielectric media have long been studied, and
various theories of fundamental quantum effects in this area
have been developed thus far. It appears natural to extend
the initial quantization scheme for the cavity field into a
more general problem, such as that of fields in conducting
media, nonlinear media, and time-dependent linear media.
Choi [2] quantized the electromagnetic field in conducting
linear media using the Lewis-Riesenfeld dynamical invariant
method [3,4]. This led to renewed interest in the study of
the quantum properties of light that undergoes dissipation
principally due to the conductivity of media. The quantization
of electromagnetic fields in time-dependent linear media may
also be an interesting problem in quantum optics. Media are
classified as time-dependent media if their parameters, such as
electric permittivity, magnetic permeability, and conductivity,
vary with time. Among various fields in electrodynamics,
examples of the possible application of the electromagnetic
wave propagation in time-dependent media include the mod-
ulation of microwave power [5], wave propagation in ionized
plasmas [6], and magnetoelastic delay lines [7]. Cirone et al.
investigated the problem of photon creation produced by a
time-dependent dielectric [8,9]. Choi and Yeon [10] later
quantized electromagnetic fields in time-dependent linear
media.

Pedrosa and Rosas [11] recently used a linear Hermitian
invariant to obtain the quantum state of an electromagnetic
field with a choice of the Coulomb gauge. (Hereafter, we call
Ref. [11] paper I for convenience.) They demonstrated that
the time dependence of the electric permittivity leads to the
attenuation of the electromagnetic fields. However, it is hard to
discuss quantum and classical correspondence on the basis of
their quantum solution since the wave function they obtained
varies depending on the choice of an arbitrary weight function.
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In this paper, we introduce a different class of the quantum state
for an electromagnetic field in time-dependent linear media
on the basis of another type of linear invariant. This linear
invariant is non-Hermitian, whereas that used in paper I is
Hermitian. This is the main difference between our procedure
and that described in paper I with regard to the development
of the relevant quantum theory. We compare the results of our
quantization scheme with those obtained in paper I and discuss
the usefulness of quantizing the electromagnetic field on the
basis of the non-Hermitian linear invariant. We show that the
quantum behavior of the system analyzed using our quantum
solution follows a classical trajectory and that the quantum
energy expectation value in this state exactly coincides with
the classical energy in the limit h̄ → 0, where h̄ is Planck’s
constant.

II. ELECTROMAGNETIC FIELDS IN TIME-DEPENDENT
LINEAR MEDIA

The relations between the fields and the current in time-
dependent linear media are given as D = ε(t)E, B = µ(t)H,
and J = σ (t)E, where ε(t) is the electric permittivity, µ(t)
the magnetic permeability, and σ (t) the conductivity. In this
case, the speed of light is explicitly time-dependent and is
given as c(t) = [ε(t)µ(t)]−1/2. For the sake of simplicity, we
assume that the media have no net charge density. In the
Coulomb gauge, we then need to expand the electric and
the magnetic fields in terms of only the vector potential
because the scalar potential disappears in this situation. From
Maxwell’s fundamental equations, one can verify that the
vector potential satisfies the equation [11,12]

∇2A − [σ (t) + ε̇(t)]µ(t)
∂A
∂t

− µ(t)ε(t)
∂2A
∂t2

= 0. (1)

To decouple the position and the time variables in the vector
potential, we substitute A(r,t) = ∑

l ul(r)ql(t) into Eq. (1) to
obtain

∇2ul(r) + k2
l ul(r) = 0, (2)

q̈l(t) + σ (t) + ε̇(t)

ε(t)
q̇l(t) + ω2

l (t)ql(t) = 0. (3)
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Here, ωl(t) is the natural frequency of the fields, and
kl(= |kl|) = ωl(0)/c(0), the wave number. If we consider
that kl is constant, the frequency is given by ωl(t) =
[c(t)/c(0)]ωl(0). Generally, different polarization modes of
ul(r), distinguished by the subscript l, are determined by
the geometry and boundary conditions. For example, the
mode function for the electromagnetic field propagating
under a periodic boundary condition is given by ulν(r) =
(1/

√
V )ε̂lνe

±ikl ·r, where V is the volume of a sector and ε̂lν

the unit vector that indicates the polarization direction of the
field.

The corresponding time evolution of the fields is described
by a time-dependent Hamiltonian of the form

Ĥl(q̂l ,p̂l,t) = e−�(t) p̂2
l

2ε0
+ 1

2
e�(t)ε0ω

2
l (t)q̂2

l , (4)

where p̂l = −ih̄∂/∂ql , ε0 = ε(0) and

�(t) =
∫ t

0
dt ′[σ (t ′) + ε̇(t ′)]/ε(t ′). (5)

Using Hamilton’s equations, it is not difficult to verify that
this Hamiltonian gives the exact classical equation of motion
given in Eq. (3).

If the Hamiltonian is explicitly time-dependent as in this
case, the energy operator is somewhat different from the
Hamiltonian [13,14]. From the fundamentals of electrody-
namics, we see that the classical energy is given by Ul =
1
2εq̇2

l + 1
2εω2

l q
2
l . Considering the relation q̇l = e−�pl/ε0, the

energy operator is obtained in the form

Ûl(q̂l ,p̂l,t) = e−2�(t)ε(t)
p̂2

l

2ε2
0

+ 1

2
ε(t)ω2

l (t)q̂2
l . (6)

To quantize the electromagnetic field, we need to solve the
Schrödinger equation ih̄∂ψλl

/∂t = Ĥlψλl
, where the subscript

λl denotes an eigenvalue that is described later.
Because the Hamiltonian given in Eq. (4) is time-dependent,

the invariant formulation of the quantum electrodynamics may
be useful for the further development of the theory. If a
system admits a dynamical invariant Î (q̂,p̂,t), the Schrödinger
solution is represented in terms of its eigenstate φλ(q,t) and
a time-dependent phase θλ(t). Thus, the quantum state can be
written in the form

ψλl
(ql,t) = eiθλl

(t)φλl
(ql,t). (7)

We can determine φλl
(ql,t) by solving the eigenvalue equation

of the invariant:

Îl(q̂l ,p̂l,t)φλl
(ql,t) = λlφλl

(ql,t), (8)

whereas θλl
(t) is obtained from

h̄
dθλl

(t)

dt
= 〈φλl

|
(

ih̄
∂

∂t
− Ĥl

)
|φλl

〉. (9)

Now let us cast a linear invariant of the system in the form

Îl = b1(t)p̂l + b2(t)q̂l , (10)

where b1(t) and b2(t) are time functions that are determined
later. Applying basic algebraic techniques after substituting
Eq. (10) into the Liouville–von Neumann equation,

dÎl/dt = ∂Îl/∂t + [Îl ,Ĥl]/(ih̄) = 0 (11)

yields

ḃ1(t) = −e−�(t)

ε0
b2(t), ḃ2(t) = e�(t)ε0ω

2
l (t)b1(t). (12)

By combining these two equations, we see that b1(t) is obtained
from the differential equation

b̈1(t) + �̇(t)ḃ1(t) + ω2
l (t)b1(t) = 0. (13)

Once b1(t) is determined by solving this equation, one can
also obtain b2(t) from the first term in Eq. (12). Using these
procedures, it is possible to construct the complete form of the
linear invariant for the system.

In the next section, we investigate the quantum states
derived in paper I using a linear invariant. We then suggest an
alternate linear invariant that gives a different class of quantum
states that appear to be useful in investigating quantum and
classical correspondence in time-dependent linear media.

III. QUANTIZATION OF ELECTROMAGNETIC FIELDS

A. Overview of previous method

In paper I, b1(t) = βl(t) is used, where βl(t) is a time
function that is real and obeys the classical equation of motion

β̈l(t) + σ + ε̇

ε
β̇l(t) + ω2

l (t)βl(t) = 0. (14)

Because this is a second-order differential equation, there
generally exist two independent solutions, βl,1(t) and βl,2(t);
i.e., we can write

βl(t) = c1βl,1(t) + c2βl,2(t). (15)

Then, the corresponding linear invariant is given by

Îl = βl(t)p̂l − ε0e
�(t)β̇l(t)q̂l . (16)

By evaluating Eqs. (8) and (9) using this invariant, we derive

φλl
(ql,t)=

√
1

2πh̄βl(t)
exp

[
i

h̄βl(t)

(
ε0β̇l(t)e�(t)

2
q2

l + λlql

)]
,

(17)

θλl
(t) = λ2

l

2h̄ε0

∫ t

0

e−�(t ′)dt ′

β2
l (t ′)

. (18)

Equation (7) along with the above two equations is the
corresponding quantum state obtained by Pedrosa and Rosas.
One can easily verify that the expectation value of q̂l in this
state diverges as follows:

〈q̂l〉 =
∫ ∞

−∞
ψ∗

λl
(ql,t)q̂lψλl

(ql,t)dql

= 1

2πh̄βl(t)

∫ ∞

−∞
qldql −→ ∞. (19)

The reason for this divergence is that the solution Eq. (17) is
given in terms of plane wave. Further, the authors of paper I
suggested a more general state by superposing ψλl

(ql,t) such
that

ψ(ql,t) =
∫ ∞

−∞
g(λl)ψλl

(ql,t)dλl, (20)
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where g(λl) is a weight function. In principle, a coherent
state whose behavior resembles a classical one might be
constructed as a wave packet with a suitable weight function
in Eq. (20). However, it may be not an easy task. In the next
subsection, we suggest another type of quantum state that
does not give the divergence of 〈q̂l〉 even when we do not
prescribe the superposition rule considering g(λl).

B. Alternate method

Remember that βl (or βl,1 and βl,2) introduced in the
previous subsection is real. Instead of this, we use a complex
function of time, expressed in terms of βl,1 and βl,2, as a
solution of Eq. (13) in order to obtain a more plausible quantum
state. That is,

b1,new(t) = βl,0(t)√
2h̄Wl

eiηl (t), (21)

where Wl is a Wronskian that has the form Wl =
ε0e

�(βl,1β̇l,2 − β̇l,1βl,2), ηl(t) is a phase given by

ηl(t) = (Wl/ε0)
∫ t

0
dt ′

[
β2

l,0(t ′)e�(t ′)]−1
, (22)

and βl,0(t) is the real classical solution of a modified type of
the Milne equation [15] that is given by

β̈l,0(t) + σ + ε̇

ε
β̇l,0(t) + ω2

l (t)βl,0(t) − W 2
l

(ε0e�(t))2β3
l,0

= 0.

(23)

One can find that dWl/dt = 0 from the direct differentiation
of Wl . This implies that Wl is a time-constant. In fact, the
relation between βl,0(t) and the two time functions βl,1(t) and
βl,2(t) introduced in the previous subsection is [16] βl,0(t) =√
β2

l,1(t) + β2
l,2(t). Another time function b2,new(t) is now easily

derived by substituting the time derivative of Eq. (21) into the
first term of Eq. (12). Thus, we eventually obtain an alternate
linear invariant such that

Îl(q̂l ,p̂l,t) = âle
iηl (t), (24)

where

âl = 1√
2h̄Wl

[βl,0(t)p̂l − iZl(t)q̂l],

(25)

Zl(t) = Wl

βl,0(t)
− iε0e

�(t)β̇l,0(t).

The Hermitian adjoint of Eq. (24), Î†
l (q̂l ,p̂l,t), which is

represented in terms of â
†
l , is also an invariant. It may be easy

to find that âl and â
†
l satisfy the boson commutation relation

[âl ,â
†
l ] = 1. Hence, we can regard âl and â

†
l as the annihilation

and the creation operators, respectively.
Because the direct time derivative of âl in Eq. (25) results in

dâl/dt = −iWlâl/(β2
l,0ε0e

�), the time evolution of âl is given
by

âl(t) = âl(0)e−iηl (t). (26)

From the inverse representation of âl and â
†
l together, we have

q̂l = i

√
h̄β2

l,0

2Wl

(âl − â
†
l ), (27)

p̂l =
√

h̄

2Wl

[Z∗
l (t)âl + Zl(t)â

†
l ]. (28)

To avoid confusion with the previous case, let us express the
Schrödinger solution in the form ��l

(ql,t) = ei��l
(t)��l

(ql,t)
instead of Eq. (7), where �l is the eigenvalue of the alternate
invariant given in Eq. (24). By solving the eigenvalue equation
of Îl straightforwardly using Eq. (24), we obtain the eigenvalue
as �l = αle

iηl (t), where αl is the eigenvalue of âl , and the
eigenstate is given such that

��l
(ql,t) =

(
Wl

β2
l,0h̄π

)1/4

exp

[
1

βl,0h̄

(√
2h̄Wlαlql − Zl(t)

2
q2

l

)

− 1

2
|αl|2 − 1

2
α2

l

]
. (29)

Further, from Eq. (9), we have �l(t) = −ηl(t)/2. Because
Eq. (29) is also an eigenstate of âl ,1 the quantum state derived
here is a class of a coherent state whose wave packet is
Gaussian. The expectation values of canonical variables in
this state are finite and are in good agreement with their
corresponding classical results.

To see how well the quantum behavior of the system
agrees with that of the classical state, at this stage it may
be instructive to apply our theory to a simple case in which all
three parameters are constant; i.e., ε(t) = ε0, µ(t) = µ0, and
σ (t) = σ0. Although the time dependence of the parameters
disappears in this limit, we can confirm from Eq. (4) that the
Hamiltonian remains time-dependent because of the existence
of nonzero conductivity. Thus, the problem associated with
this system still preserves nontrivialness from the viewpoint
of quantum mechanics while we know its classical behaviors
completely. In this case, ωl also becomes constant, and
ηl(t) = ω̃l t , where ω̃l is a modified frequency of the form
ω̃l =

√
ω2

l − σ 2
0 /(4ε2

0 ). Then, the solution of Eq. (23) is given by

βl,0(t) =
√

Wl/(ε0ω̃l)e
−σ0t/(2ε0). (30)

Considering Eq. (26) and the fact that αl is the eigenvalue of
âl (âl|��l

〉 = αl|��l
〉), we see that

αl(t) = αl(0)e−iω̃l t . (31)

The initial value αl(0) can also be derived from an elementary
method (e.g., see Ref. [17]). By representing the classical
solution of the canonical variable ql in the form

ql,cl = ql,0e
−σ0t/(2ε0) cos(ω̃l t + ϕl), (32)

where ql,0 and ϕl are arbitrary real constants, we are able to
obtain

αl(0) = −i
√

ε0ω̃l/(2h̄)ql,0e
−iϕl . (33)

1��l
is a common eigenstate of Îl and âl .
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Then, it is easy to verify that the expectation values of
the quantum canonical variables, Eqs. (27) and (28), in
the alternate state are given by2 〈��l

|q̂l|��l
〉 = ql,cl and

〈��l
|p̂l|��l

〉 = ε0e
�(t)q̇l,cl, respectively; these are exactly

identical to their classical trajectories. Moreover, using
Eqs. (6), (27), (28), and (31), the expectation value of the
energy operator in the alternate quantum state is evaluated to be〈
��l

∣∣Ûl

∣∣��l

〉
= e−σ0t/ε0

(
Al

{
1+ σ0

2ωlε0
cos[2(ω̃l t + ϕl)− δl]

}
+ ω2

l

2ω̃l

h̄

)
,

(34)

where Al = 1
2ε0ω

2
l q

2
l,0 and δl = tan−1(2ε0ω̃l/σ0). It is notice-

able that only the last term is represented in terms of the
constant h̄, which is indispensable in the development of
quantum theory. This implies that the quantum effect is given
by the last term, whereas the first two terms appear equally in
the classical energy. From the exponential factor e−σ0t/ε0 of this
equation, we can confirm that the quantum energy dissipates
with time in a manner similar to the classical energy. Thus, the
electromagnetic field in a medium with nonzero conductivity
generally undergoes dissipation with time regardless of the
quantum or classical viewpoints. The first two terms in the
above equation involve the classical initial amplitude ql,0,
whereas the last term does not. We can hence neglect the
last term when the energy of the system is sufficiently high,
yielding the correspondence between the quantum and the clas-
sical aspects. Indeed, in the limit h̄ → 0, the quantum energy
〈��l

|Ûl|��l
〉 reduces exactly to the corresponding classical

energy, which is well-known from literature on classical
mechanics (e.g., see Ref. [18]). When the conductivity of the
medium disappears, the last term in Eq. (34) reduces to 1

2h̄ωl ,
the zero-point energy of an electromagnetic field in free space.

IV. CONCLUSION

An alternate quantum state is proposed for the electromag-
netic field in time-dependent linear media, and we compared

2The expectation value with respect to |��l
〉 is the same as that

with respect to |��l
〉.

its characteristics with those of a state previously reported
in paper I. The linear invariant we used to derive the new
quantum state is non-Hermitian, whereas that used in paper I
is Hermitian.

The expectation value of q̂l in the quantum state ψλl
(ql,t) in

paper I does not follow the classical trajectory, but it diverges.
A more general quantum state ψ(ql,t) is introduced in paper I,
which is a superposition of the states ψλl

(ql,t) with the
consideration of the weight function g(λl) [see Eq. (20)]. It
may be possible to construct a coherent state from ψ(ql,t)
with a suitable choice of the function g(λl). However, it is
expected that this might be not an easy task. For this reason,
we proposed an alternate wave function ��l

(ql,t) that is
derived from another type of linear invariant. The quantum
expectation values of canonical variables q̂l and p̂l in the
alternate quantum state exactly follow classical trajectories.
Moreover, we showed that the quantum energy obtained from
a rigorous evaluation in the state ��l

(ql,t) reduces to the exact
classical energy when h̄ → 0. The expectation values of other
quantum observables in this state may also correspond to their
classical counterparts in the classical limit.

Actually, the quantization of the electromagnetic field
in connection with the alternate quantum state leads to a
correspondence between the quantum and the classical aspects
in a high-energy limit (|αl| 	 1), which is an important
concept in theoretical physics. It should be noted that when
we interpret these quantum properties of the system on the
basis of the alternate invariant, it is not necessary to employ
a superposition rule for ��l

(ql,t) with consideration of the
weight function g(�l), unlike what is described in paper I.

Besides, the Gawssian wave packets that have been obtained
in similar problems, presented, for example, in Ref. [19], are
also essential to analyze several quantum behaviors and do not
reproduce the classical trajectory. Quantum states other than
those that reproduce the classical trajectory are important and
widely studied in quantum physics.
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