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Quantum information transfer with superconducting flux qubits coupled to a resonator
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We propose a way for implementing quantum information transfer with two superconducting flux qubits by
coupling them to a resonator. This proposal does not require adjustment of the level spacings or uniformity in the
device parameters. Moreover, neither adiabatic passage nor a second-order detuning is needed by this proposal,
thus the operation can be performed much faster when compared with the previous proposals.
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Introduction. Cavity QED with superconducting qubits
have been considered as one of the most promising candi-
dates for quantum information processing. Superconducting
qubits have the features such as design flexibility, large-
scale integration, and compatibility to conventional electronics
[1–3]. A cavity or resonator acts as a “quantum bus” which
can mediate long-distance, fast interaction between distant
superconducting qubits [4].

In recent years, there is much interest in quantum infor-
mation transfer (QIT). Experimentally, QIT has been demon-
strated with superconducting phase qubits and transmon qubits
in cavity QED [5,6]. However, to the best of our knowledge,
no experimental demonstration of QIT with superconducting
flux qubits in cavity QED has been reported.

Several theoretical methods have been proposed for imple-
menting QIT with flux qubits (e.g., SQUID qubits) or charge-
flux qubits based on cavity QED technique [7–12]. However,
these methods have some disadvantages. For instance: (i)
The method presented in Ref. [8] requires adjustment of the
level spacings of the devices during the operation; (ii) the
methods proposed in Ref. [7,9–11] require slowly changing
the Rabi frequencies to satisfy the adiabatic passage; and (iii)
the approach introduced in Ref. [12] requires a second-order
detuning to achieve an off-resonant Raman coupling between
two relevant levels. Note that the adjustment of the level
spacings during the operation is undesirable and also may
cause extra decoherence. In addition, when the adiabatic
passage or a second-order detuning is applied, the operation
slows down (the operation time required for the information
transfer is on the order of 1 µs to a few microseconds [7,12]).

In this Brief Report, we present a way for implementing QIT
with two flux qubits coupled to a superconducting resonator.
This proposal has the following advantages: (a) the qubits
are not required to have identical level spacings, therefore
superconducting devices, which often have considerable pa-
rameter nonuniformity, can be used; (b) the method does
not require adjustment of the level spacings of each qubit
during the operation, thus decoherence caused by tuning the
level spacings is avoided; and (c) neither adiabatic passage
nor a second-order detuning is needed, thus the speed of the
operation is increased (as shown below, the operation time for
the information transfer is on the order of 10 ns).

Basic theory. The flux qubits throughout this Brief Report
have a �-type three-level configuration (Fig. 1). The transition
between the two lowest levels is forbidden due to the optical
selection rules [13] or weak via increasing the potential barrier
between the two lowest levels [14–16]. For flux qubits, the two

logic states of a qubit are represented by the two lowest levels
|0〉 and |1〉.

(A) Qubit-resonator-pulse resonant Raman coupling. Con-
sider a flux qubit coupled to a single-mode resonator and
driven by a classical microwave pulse (Fig. 1). Suppose that
the resonator mode is coupled to the |0〉 ↔ |2〉 transition
but decoupled (highly detuned) from the transition between
any other two levels. In addition, assume that the classical
microwave pulse is coupled to the |1〉 ↔ |2〉 transition but
decoupled from the transition between any other two levels.
The Hamiltonian of the system can thus be written as

H =
∑

l

Elσll + ωca
†a + h̄g(a†σ−

02 + H.c.)

+ h̄�(eiωµwtσ−
12 + H.c.), (1)

where a† and a are the photon creation and annihilation
operators of the resonator mode with frequency ωc; g is
the coupling constant between the resonator mode and the
|0〉 ↔ |2〉 transition of the qubit; � is the Rabi frequency of
the pulse and ωµw is the frequency of the pulse; σ−

02 = |0〉〈2|,
σ−

12 = |1〉〈2|, and σll = |l〉〈l| (l = 0,1,2).
Suppose that the resonator mode is off-resonant with the

|0〉 ↔ |2〉 transition, i.e., �c = ω02 − ωc � g, and the pulse
is off-resonant with the |1〉 ↔ |2〉 transition, i.e., �µw = ω12 −
ωµw � � (Fig. 1), where ω02 (ω12) is the |0〉 ↔ |2〉 (|1〉 ↔
|2〉) transition frequency. Under this condition, the level |2〉
can be adiabatically eliminated [17]. Thus, for �c = �µw, the
effective Hamiltonian in the interaction picture is [12,18]

Heff = −h̄

[
�2

�µw

σ11 + g2

�c

a†aσ00 + �g

�c

(a†σ−
01 + H.c.)

]
,

(2)

where σ−
01 = |0〉〈1|. The last two terms in Eq. (2) describe the

resonant Raman coupling between the two lowest levels |0〉
and |1〉.

For the case of � = g, the initial states |0〉|1〉c and |1〉|0〉c
of the system, under the Hamiltonian (2), evolve as follows

|0〉|1〉c → eig2t/�c [cos(g2t/�c)|0〉|1〉c
− i sin(g2t/�c)|1〉|0〉c],

(3)
|1〉|0〉c → eig2t/�c [−i sin(g2t/�c)|0〉|1〉c

+ cos(g2t/�c)|1〉|0〉c],
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FIG. 1. (Color online) Qubit-resonator-pulse resonant Raman
coupling. The tunneling between the two lowest levels is forbidden
or weak such that quantum information for each qubit, encoded in
the two lowest levels, can be stored for a long time.

where |0〉c and |1〉c are the vacuum state and the single-photon
state of the resonator mode, respectively. The state |0〉|0〉c
remains unchanged under the Hamiltonian (2).

The coupling strength g may vary with different qubits due
to nonuniform device parameters and/or nonexact placement
of qubits in the resonator. Therefore, in the information transfer
operation below, we will replace g with ga and gb for qubits a

and b, respectively. Accordingly, we will replace �c with �a
c

and �b
c, �µw with �a

µw and �b
µw, and � with �a and �b for

qubits a and b, respectively.
(B) Qubit-pulse resonant interaction. Consider a three-level

flux qubit driven by a classical microwave pulse. Suppose that
the pulse is resonant with the transition |i〉 ↔ |j 〉 of the qubit.
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FIG. 2. (Color online) (a) An rf SQUID consisting of one
Josephson junction enclosed by a superconducting loop. (b) A
superconducting device with three Josephson junctions enclosed by
a loop. The level spacings of a flux qubit shown in Fig. 1 can be
adjusted by changing external magnetic flux �x applied to the loop.
Here, EJ is the Josephson junction energy and 0 < α < 1. (c) Sketch
of the setup for two superconducting flux qubits (red circles) and
a (gray) standing-wave quasi-one-dimensional coplanar waveguide
resonator. The two dashed blue curved lines represent the standing
wave magnetic field, which is in the z direction. Each qubit could
be an rf SQUID shown in (a) or a superconducting device with three
Josephson junctions shown in (b). The qubits are placed at antinodes
of the resonator mode to achieve maximal qubit-resonator coupling
constants. The superconducting loop of each qubit is located in the
plane of the resonator between the two lateral ground planes (i.e.,
the x-y plane). λ is the wavelength of the resonator mode and L is
the length of the resonator.

Here, |i〉 is the lower energy level. The interaction Hamiltonian
in the interaction picture is given by

HI = h̄(�̃eiφ|i〉〈j | + H.c.), (4)

where �̃ and φ are the Rabi frequency and the initial phase of
the pulse, respectively. Based on this Hamiltonian, it is easy to
show that a pulse of duration t results in

|i〉 → cos �̃t |i〉 − ie−iφ sin �̃t |j 〉,
(5)

|j 〉 → cos �̃t |j 〉 − ieiφ sin �̃t |i〉.
The transition frequency ωij between the two levels |i〉 and

|j 〉 may be different for qubits a and b due to their nonidentical
level spacings. Thus, in the following, we will replace ωij by
ωa

ij and ωb
ij for qubits a and b, respectively.
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FIG. 3. (Color online) Illustration of qubits interacting with
the resonator mode and/or the microwave pulses for each step of
operations during the information transfer operation. Figures from top
to bottom correspond to the operations of steps (i)∼(iv), respectively.
The figures on the left side correspond to qubit a while the figures on
the right side correspond to qubit b. In addition, in each figure, the
green lines represent the level population of qubits before each step
of operation. Note that the nonidentical level spacings for the two
qubits are caused by the nonuniform device parameters of the two
qubits.
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Quantum information transfer. Let us now consider two flux
qubits a and b coupled to a resonator [Fig. 2(c)]. Each qubit
has a �-type three-level configuration as depicted in Fig. 1.
Suppose that qubit a is the original carrier of quantum infor-
mation, which is in an arbitrary state α|0〉 + β|1〉. The QIT
from qubit a to qubit b initially in the state |1〉 is described by

(α|0〉a + β|1〉a)|1〉b → |1〉a(α|0〉b + β|1〉b). (6)

To realize the transformation (6), suppose that the resonator
mode is off-resonant with the |0〉 ↔ |2〉 transition of each
qubit (with a detuning �a

c = ωa
02 − ωc for qubit a while �b

c =
ωb

02 − ωc for qubit b) but highly detuned (decoupled) from the
transition between any other two levels of each qubit. Note
that this condition can be readily achieved by prior adjustment
of the level spacings of the qubits before the operation (e.g.,
via varying the external flux applied to the superconducting
loop [14–16,19,20]). The resonator mode is initially in the
vacuum state |0〉c.

We find that the transformation (6) can be implemented
through the following operations:

Step (i): Apply a microwave pulse (with a frequency ωa
µw) to

qubit a [Fig. 3(a)]. The pulse is off-resonant with the |1〉 ↔ |2〉
transition of qubit a, with a detuning �a

µw = ωa
12 − ωa

µw. To
establish the resonant Raman coupling between the two levels
|0〉 and |1〉, set �a

µw = �a
c . The Rabi frequency �a of the pulse

is set by �a = ga , which can be achieved by adjusting the pulse
intensity. It can be seen from Eq. (3) that after a pulse duration
t1 = π�a

c/(2g2
a), the state |1〉a|0〉c for qubit a and the resonator

mode is transformed to the state |0〉a|1〉c. On the other hand,
the state |0〉a|0〉c remains unchanged during the pulse.

To have a qubit coupled with the resonator mode, the qubit
must be in either of the levels |0〉 or the level |2〉. Note that
qubit b was initially prepared in the state |1〉 and kept in the
same state |1〉 during this step. Therefore, qubit b is decoupled
from the resonator mode during this step.

Step (ii): Apply a microwave pulse (with a frequency
ωa

µw = ωa
02 and a phase φ = −π/2) to qubit a [Fig. 3(b)]

and a microwave pulse (with a frequency ωb
µw = ωb

12 and a
phase φ = −π/2) to qubit b [Fig. 3(b′)]. The Rabi frequency
for each pulse is �̃. Thus, it can be seen from Eq. (5) that
after the pulse duration t2 = π/(2�̃), the state |0〉 of qubit a

is transformed to the state |2〉 while the state |1〉 of qubit b is
transformed to the state |2〉.

Step (iii): Apply a microwave pulse (with a frequency
ωa

µw = ωa
12 and a phase φ = π/2) to qubit a [Fig. 3(c)] and

a microwave pulse (with a frequency ωb
µw = ωb

02 and a phase
φ = π/2) to qubit b [Fig. 3(c′)]. The Rabi frequency for each
pulse is �̃. It can be found from Eq. (5) that after the pulse
duration t3 = π/(2�̃), the state |2〉 of qubit a is transformed
to the state |1〉 while the state |2〉 of qubit b is transformed to
the state |0〉.

Step (iv): Apply a microwave pulse (with a frequency ωb
µw)

to qubit b [Fig. 3(d′)]. The pulse is off-resonant with the |1〉 ↔
|2〉 transition of qubit b, with a detuning �b

µw = ωb
12 − ωb

µw =
�b

c [Fig. 3(d′)]. The Rabi frequency �b of the pulse is set by
�b = gb. It can be seen from Eq. (3) that after a pulse duration
t4 = π�b

c/(2g2
b), the state |0〉b|1〉c for qubit b and the resonator

mode is transformed to the state |1〉b|0〉c. On the other hand,
the state |0〉b|0〉c remains unchanged during the pulse.

The states of the whole system after each step of the above
operations are summarized in the following table:

|01〉|0〉c Step(i)−→ |01〉|0〉c Step(ii)−→ |22〉|0〉c Step(iii)−→ |10〉|0〉c Step(iv)−→ |10〉|0〉c
|11〉|0〉c |01〉|1〉c |22〉|1〉c |10〉|1〉c |11〉|0〉c, (7)

where |ij 〉 is abbreviation of the state |i〉a|j 〉b of qubits (a,b)
with i,j ∈ {0,1,2}. It can be found from Eq. (7) that after the
above process, the transformation (6) was achieved with two
qubits while the resonator mode returns to its original vacuum
state.

From the description above, it can be seen that the method
presented here does not require (a) adjustment of the level
spacings of each qubit during the operation, (b) slow variation
of the Rabi frequency, (c) a finite second-order detuning
δa = �a

c − �a
µw or δb = �b

c − �b
µw, or (d) the identical level

spacings for the two qubits.
Discussion. The occupation probability p2,a of the level |2〉

for qubit a during step (i) and the occupation probability p2,b

of the level |2〉 for qubit b during step (iv) are given by [20]

p2,a 	 2

4 + (
�a

µw

/
�a

)2 + 2

4 + (
�a

c

/
ga

)2 ,

(8)

p2,b 	 2

4 + (
�b

µw

/
�b

)2 + 2

4 + (
�b

c

/
gb

)2 ,

where both p2,a and p2,b need to be negligibly small in
order to reduce the operation error. For the choice of
�a

µw = �a
c = 10ga,�

b
µw = �b

c = 10gb, �a = ga, and �b =
gb, we have p2,a, p2,b ∼ 0.04, which can be further reduced
by increasing the ratio of �a

c/ga, �a
c/gb, �a/�a, and �b/�b.

The level |2〉 of each qubit is only occupied in steps (ii)
and (iii). Because resonant pulses are applied in these steps,
the pulse durations t2 for step (ii) and t3 for step (iii) can be
reduced by increasing the pulse Rabi frequencies, such that
t2 
 T2 and t3 
 T2 (where T2 is the spontaneous time of the
level |2〉 of the qubits). In this way, spontaneous emission from
the level |2〉 can be suppressed.

During steps (ii) and (iii), the off-resonant interaction be-
tween the resonator mode and the |0〉 ↔ |2〉 transition of qubit
a induces a phase shift to the state |0〉 or |2〉 of qubit a when
the resonator mode is in the single-photon state |1〉c. For step
(ii), it is exp(it2g2

a/�
a
c ) for the state |0〉 while exp(−it2g

2
a/�

a
c )

for the state |2〉. For step (iii), it is exp(it3g2
a/�

a
c ) for the state

|0〉 while exp(−it3g
2
a/�

a
c ) for the state |2〉. These phase shifts,

which are not considered in Eq. (7), will affect the information
transfer performance. However, note that t2, t3 ∝ 1/�̃. Thus,
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these unwanted phase shifts can be made negligibly small, by
increasing the pulse Rabi frequencies such that �̃ � g2

a/�
a
c .

In addition, it is noted that phase shifts on the states |0〉 and
|2〉 of qubit b during steps (ii) and (iii), which are caused by
the off-resonant interaction between the resonator mode and
the |0〉 ↔ |2〉 transition of qubit b, can be neglected when
�̃ � g2

b/�
b
c . To see more clearly, we will give an analysis

on the effect of the unwanted qubit-resonator off-resonant
interaction on the fidelity of the QIT.

In the ideal case, it can be seen from Eq. (7) that after the
operations described above, the state of the two qubits and
the resonator mode is |ψid (τ )〉 = |1〉a(α|0〉b + β|1〉b) ⊗ |0〉c.
Here, τ is the total operation time. On the other hand, when
the off-resonant interaction between the resonator mode and
the |0〉 ↔ |2〉 transition of each qubit is included during steps
(ii) and (iii), one can easily work out the expression for the
final state |ψ(τ )〉 of the whole system after performing the
operations above. To simplify our presentation, we will not
give a complete expression for |ψ(τ )〉 due to its complexity. A
simple calculation shows that the fidelity for the QIT is

F = |〈ψid (τ )|ψ(τ )〉|2 = (|α|2 + pq|β|2), (9)

where p = (�̃/ηa) sin[πηa/(2�̃)], q = (�̃/ηb) sin[πηb/

(2�̃)]. The parameters ηa and ηb are given by
ηa =

√
�̃2 + s2

a/4 and ηb =
√

�̃2 + s2
b/4, with sa = 2g2

a/�
a
c

and sb = 2g2
b/�

b
c .

Defining α = cos ϑ
2 and β = eiϕ sin ϑ

2 , where ϑ ∈ [0,π ]
and ϕ ∈ [0,2π ]. Thus, the average fidelity over all possible
initial states of the message qubit a is given by

F =
∫ 2π

0
dϕ

∫ π

0
F sin ϑdϑ/4π

= 1

3
(1 + p2q2 + p4q4). (10)

It can be verified that when the unwanted qubit-resonator off-
resonant interaction in steps (ii) and (iii) is not considered
(i.e., the case for g2

a/�
a
c ,g

2
b/�

b
c = 0 or sa,sb = 0), we have

p = q = 1, leading to F = 1 and F = 1. We have plotted the
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FIG. 4. (Color online) Average fidelity F as a function of the
Rabi frequency �̃ (in unit of s).

average fidelity F as a function of �̃/s for the choice of sa =
sb = s (Fig. 4). One can see from Fig. 4 that the average fidelity
F increases as the pulse Rabi frequency �̃ becomes larger, and
the F is ∼1 when �̃ = 10s. This result demonstrates that the
effect of the qubit-resonator off-resonant interaction in steps
(ii) and (iii) on the fidelity of the operation is negligible when
the pulse Rabi frequencies are sufficiently large.

Finally, let us give a rough estimate on the operation time.
The total operation time for the information transfer is

τ = π�a
c

/(
2g2

a

) + π�b
c

/(
2g2

b

) + π/�̃. (11)

Without loss of generality, consider ga ∼ gb ∼ 3.0 ×
109 s−1, which is available at present [21]. By choos-
ing �a

c = 10ga,�
b
c = 10gb, and �̃ ∼ 10ga, we have

τ ∼ 11 ns.
Conclusion. We have proposed a way for realizing the

quantum information transfer with superconducting flux qubits
coupled to a resonator. As shown above, this proposal avoids
most of the problems existing in the previous proposals. The
method presented here is quite general, which can be applied
to the other physical systems such as atoms and quantum dots
with the �-type three-level structure within cavity QED.
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