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Deterministic creation of stationary entangled states by dissipation
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We propose a practical physical system for creation of stationary entanglement by dissipation without
employing environmental engineering techniques. The system proposed is composed of two perfectly
distinguishable atoms, through their significantly different transition frequencies, with only one atom addressed
by an external laser field. We show that the arrangement would easily be realized in practice by trapping the
atoms at a distance equal to the quarter-wavelength of a standing-wave laser field and locating one of the atoms
at a node and the other at the successive antinode of the wave. The undesirable dipole-dipole interaction between
the atoms, which could be large at this small distance, is adjusted to zero by a specific initial preparation of the
atoms or by a specific polarization of the atomic dipole moments. Following this arrangement, we show that the
dissipative relaxation can create a stationary entanglement on demand by tuning the Rabi frequency of the laser
field to the difference between the atomic transition frequencies. The laser field dresses the atom and we identify
that the entangled state occurs when the frequency of one of the Rabi sidebands of the driven atom tunes to the
frequency of the undriven atom. It is also found that this system behaves as a cascade open system where the
fluorescence from the dressed atom drives the other atom with no feedback.
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Engineering a long-lived entanglement between atoms or
ions located at small distances and interacting with a vacuum
reservoir is a challenging problem in quantum information
science [1–5]. The problem has already been the subject
of several papers but attention was concentrated mainly on
the effect of the direct interatomic dipole-dipole coupling
and on the role of dark states for that entanglement [6–20].
Although closely spaced atoms can occupy an area of small
size, which has the advantage of controlling and manipulating
the dissipative relaxation in the system, it is difficult in
practice to keep the closely spaced atoms at fixed positions.
At small distances the dipole-dipole interaction is strong,
causing the atoms to move or rapidly oscillate around their
equilibrium positions [21]. Therefore, many schemes have
been proposed for entangling atoms or atomic ensembles
separated by a large distance, much larger than an optical
wavelength [22–28]. In this case, the direct dipole-dipole
interaction between the atoms can be ignored, but at the
cost of entanglement stability due to difficulties in controlling
the dissipative relaxation of atoms spread over large regions.
The relaxation is a source of decoherence that leads to
irreversible loss of information encoded in the internal states
of the atoms and thus is regarded as the main obstacle in the
generation of persistent entanglement. In contrast, the idea of
“quantum-state engineering” by dissipation has been invented,
whereby the dissipative relaxation can be used to drive atoms
to a long-lived entangled state [29–34].

In the following we consider a simple physical system
where stationary entanglement can be created by a dissipative
exchange of photons between two separate systems coupled to
a decohering environment. The proposed system is composed
of two nonidentical atoms which decay in a vacuum reservoir
with no coherent couplings and no hidden initially populated
entangled states present. The atoms are placed at a small but
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finite distance r12 and are driven by a standing-wave laser field
propagating in the direction parallel to the interatomic axis
and are also coupled to the rest of the multimode radiation
field, which is in an ordinary vacuum state. Each atom is
modeled as a two-level system (qubit) with the ground state
|gi〉 and the excited state |ei〉 (i = 1,2) separated by a transition
frequency ωi . We assume that in the absence of the laser field
the atoms are perfectly distinguishable and that the frequency
difference �0 = ω1 − ω2 is quite large to prevent photons
emitted by each atom from inducing changes in the other
atom. In addition, we assume that the atomic dipole moments
�µi are not necessarily equal but are parallel to each other, and
we arrange the external driving of the system such that only
one atom is coupled to the laser field. This coupling could be
achieved in practice by placing one of the atoms at a node
and the other at the successive antinode of the standing wave.
With this arrangement, we shall assume that only atom 2 is
addressed by the laser field.

The dynamics of the system is described by the density
operator ρ, which in the interaction picture satisfies the master
equation

ρ̇ = − i

h̄
[H0 + Hd,ρ] + L(ρ), (1)

where

H0 = h̄(�0 + �L)Sz
1 + h̄�LSz

2 + 1
2h̄�0(S+

2 + S−
2 ) (2)

is the Hamiltonian of the atoms, the interaction of the atom 2
with the laser field,

Hd = h̄�12(S+
1 S−

2 + H.c.), (3)

is the coherent dipole-dipole interaction between the atoms
with �12 = ReU12, and the Liouvillian L(ρ) describing the
dissipative relaxation of the system is of the form [35,36]

L(ρ) = −
2∑

i,j=1

γij ([S+
i ,S−

j ρ] + [ρS+
i ,S−

j ]) (4)
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with γ12 = γ21 = −ImU12, where

U12 = −3

2
√

γ1γ2

{
(1 − cos2 η)

1

kr12

+ (
1 − 3 cos2 η

) [
i

(kr12)2
− 1

(kr12)3

]}
eikr12 . (5)

Here, S+
i (S−

i ) is the raising (lowering) operator of the ith
atom and Sz

i describes its energy, �0 is the resonant Rabi
frequency of the laser field at the position of the driven atom,
�L = ω2 − ωL is the detuning of the transition frequency
of the driven atom from the laser field frequency ωL, and
2γii ≡ 2γi is the relaxation rate of the ith atom.

The parameters �12 and γ12, symmetrical with respect to
the exchange of atoms (1 ↔ 2) even if the atoms are not
identical, describe themutual interaction of the atoms through
the coupling to the common reservoir. They depend on the
distance r12 between the atoms and the orientation η of
the atomic dipole moments with respect to the interatomic
axis. The parameters are of importance only in systems of
atoms separated by small or intermediate distances relative
to the radiation wavelength, kr12 � 1, and vanish at kr12 � 1.
However, they can also vanish, but not simultaneously, at some
finite distances. We shall use this fact to eliminate the dipole-
dipole interaction �12, leaving only the dissipative interaction
γ12. It is easily verified that �12 vanishes at the distance
r12 = λ/4 and for a fixed η = 0.304π . In practical terms,
this could correspond to atoms trapped at fixed positions, the
Raman-Nath approximation, and the atomic dipole moments
polarized at a fixed direction. This is compatible with many
experiments on cooling of trapped atoms, where the storage
time of the trapped atoms is long, so that they are essentially
motionless and lie at known and controllable distances from
one another [1–5,21]. An alternative way is to identically
prepare the atoms with no information about the orientation of
their dipole moments. In this case, U12 should be averaged over
all orientations of the dipole moments, so that cos2 η = 1/3
and then �12 = 0 at r12 = λ/4. The fact that �12 can be
zero at r12 = λ/4 would allow for an experimentally difficult
manipulation of atoms trapped at small distances.

We first perform numerical analysis of entangled properties
of the system by solving the master equation (1) for the steady
state, ρ̇ = 0, using the quantum optics toolbox for MATLAB

[37]. We quantify entanglement in terms of the concurrence
that relates entangled properties to the coherence properties of
the atoms [38].

Figure 1 shows numerical results for the concurrence
plotted as a function of the Rabi frequency �0 for the
case of resonant driving, �L = 0, and different �0 and
also different ratios of the atomic relaxation rates. We see
that the concurrence is insensitive to �0 until �0 = �0. At
this specific value of the Rabi frequency, the concurrence
exhibits a sharp peak whose amplitude is independent of �0.
Consequently, the amount to which the atoms are entangled
by dissipation is independent of the frequency difference �0.
Another interesting, and perhaps surprising feature seen in
Fig. 1 is the dependence of the amplitude of the concurrence on
the ratio γ2/γ1: The seemingly symmetric system with respect
to the rate of exchanging an excitation (i.e., γ12 = γ21) exhibits
an asymmetry in the dependence of the concurrence on γ2/γ1.
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FIG. 1. The steady-state concurrence vs the normalized Rabi
frequency for �L = 0 (� = �0) and different �0 and γ2/γ1: �0 =
15γ1,γ2/γ1 = 1 (solid line), �0 = 15γ1,γ2/γ1 = 5 (dashed line),
�0 = 25γ1,γ2/γ1 = 1 (long dashed line), and �0 = 25γ1,γ2/γ1 = 5
(dash-doted line).

The atoms are more entangled when the spontaneous emission
rate of the driven atom is larger than that of the other atom.

We also see the concurrence plateau for �0 < �0 whose
magnitude is independent of �0 but decreasing with increasing
�0. The presence of the plateau for small �0 indicates that at
these frequency differences the atoms are indistinguishable.
This reflects the fact that photons emitted spontaneously
by each atom induce in the other atom oscillations that are
partially coherent with their own spontaneous oscillations and
can thus lead to an entanglement. Thus, in order to entangle
the atoms on demand, the frequency difference �0 should be
quite large to prevent the atoms from exchanging photons of
an arbitrary frequency. In other words, the process of turning
on or turning off entanglement on demand can be better
controlled at large �0.

It is worth noting that similar behavior of the concurrence
is found for detuned driving, �L �= 0, such that the resonant
peak appears at � = �, where � = (�2

0 + �2
L)1/2 is the Rabi

frequency in the detuned field and � = �0 + �L.
The numerical results have shown that the atoms decay

to a stationary entangled state only when the Rabi frequency
is tuned to the frequency difference between the atomic
transition frequencies (i.e., when � = �). We now calculate
analytically the density matrix of the system and the
concurrence to explain the physical origin of this feature and
to explore the importance of dissipation in the creation of the
entanglement. In these calculations, we first diagonalize the
Hamiltonian H0 of the system and find that it has eigenstates

|1〉 = |e1〉|+〉, |2〉 = |e1〉|−〉,
(6)

|3〉 = |g1〉|+〉, |4〉 = |g1〉|−〉,
with the corresponding energies

E1 = 1
2h̄(� + �), E2 = 1

2h̄(� − �),
(7)

E3 = − 1
2h̄(� − �), E4 = − 1

2h̄(� + �),

where

|+〉 = cos θ |e2〉 + sin θ |g2〉, |−〉 = sin θ |e2〉 − cos θ |g2〉
(8)
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are the dressed states of the driven atom and the angle
θ is determined by cos2 θ = 1

2 + �L/2�. Note that the
energy states are in the form of product states, indicating
that the subsystems are separable. Thus, the subsystems
remain separable until spontaneous emission is included.
Furthermore, the states are nondegenerate unless � = � and
then the states |2〉 and |3〉 become degenerate. In physical
terms, the condition � = � corresponds to resonance of the
Rabi sideband ωL + � of the dressed-atom with the transition
frequency of the undriven atom.

We now include spontaneous emission and rewrite the
master equation in terms of dressed-atom operators R− =
|−〉〈+|, R+ = |+〉〈−|, and Rz = 1

2 (|+〉〈+| − |−〉〈−|) and
make the unitary transformation on the density matrix of the
system,

ρ̃ = exp(iH̃ t/h̄)ρ exp(−iH̃ t/h̄), (9)

where H̃ = h̄�Sz
1 + h̄�Rz.

The master equation for the transformed density operator is
found to contain terms oscillating at frequencies � and � ± �.
When � �= � and the frequency difference is much larger
than the atomic decay rates, � � γ1,γ2, these terms oscillate
rapidly in time and, in the limit of t → ∞, make negligible
contribution to the master equation. After discarding them,
which is a form of the secular approximation, we readily find
that the master equation reduces to

˙̃ρ = L1ρ̃ = γ1(2S−
1 ρ̃S+

1 − S+
1 S−

1 ρ̃ − ρ̃S+
1 S−

1 ), (10)

which contains only the term representing the damping of
the undriven atom. No terms representing the other atom are
involved, which explains why entanglement is not found in the
system when � �= �.

The situation changes when � = �. In this case, the terms
oscillating at � + � become nonoscillatory and the others
become rapidly oscillating at frequencies � and 2�. When
we discard these rapidly oscillating terms, we find the master
equation has the form

˙̃ρ = L(ρ̃) = L1ρ̃ + Ld ρ̃ + Lcρ̃, (11)

where Ld is an operator representing the damping of the
dressed-atom system,

Ld ρ̃ = γ0([Rz,ρ̃Rz] + [Rzρ̃,Rz]) + γ+([R−,ρ̃R+]

+ [R−ρ̃,R+]) + γ−([R+,ρ̃R−] + [R+ρ̃,R−]), (12)

with γ0 = (γ2/4) sin2(2θ ),γ+ = γ2 cos4 θ,γ− = γ2 sin4 θ , and
Lc is the operator representing the dissipative coupling
between the undriven atom and the dressed-atom system,

Lcρ̃ = γ̄12([ρ̃S+
1 ,R−] + [S+

1 ,R−ρ̃] + H.c.), (13)

with γ̄12 = γ12 cos2 θ .
Here, the master equation contains the dissipative terms of

both subsystems. However, no coherent terms are involved,
indicating the absence of coherent dynamics in the system.
Nevertheless, the system can be driven to a stationary
entangled state by the presence of the dissipative coupling
between the subsystems.

In order to examine the final state of the subsystems, we
solve the equation L(ρ̃) = 0 to find the steady-state density
matrix of the system. It is easily verified that the density

matrix, written in the basis of the product states (6), has an
X-state form [39]

ρ =

⎛
⎜⎜⎜⎝

ρ11 0 0 0

0 ρ22 ρ23 0

0 ρ32 ρ33 0

0 0 0 ρ44

⎞
⎟⎟⎟⎠ , (14)

where the nonzero density matrix elements are

ρ11 = γ 2
−γ̄ 2

12

/
D, ρ22 = γ−(γ1 + γ+)γ̄ 2

12

/
D,

ρ44 = 1 − γ−
[
γ γ1(γ − γ0) + 3γ−γ̄ 2

12

]/
D, (15)

ρ23 = ρ32 = γ1γ−(γ − γ0)γ̄12
/
D,

with

D = (γ − γ0)2
[
γ1(γ+ + γ−) − γ̄ 2

12

]
+ (γ+ + γ−)

[
γ0γ1(γ − γ0) + 4γ−γ̄ 2

12

]
, (16)

and γ = γ1 + γ0 + γ+ + γ− is the total damping rate.
The arrangement that the laser field only couples to one

of the two atoms resembles very much an open cascade
system [40,41]. That is, the output (fluorescence) of the
laser-driven atom drives the other atom with no feeding back
onto the first atom. In this case, the spontaneous emission
coupling term has the form

Lcρ̃ = γ̄12([S+
1 ,R−ρ̃] + [ρ̃R+,S−

1 ]), (17)

and then it is straightforward to show that the steady-state
density matrix elements are very similar in form to the ones
found for the mutually driving systems. They differ only in
that the denominator D is replaced by

D′ = (γ+ + γ−)
[
γ γ1(γ − γ0) + 2γ−γ̄ 2

12

]
. (18)

The X-state form of the density matrix allows us to obtain a
simple formula for the concurrence quantifying the amount of
entanglement between the undriven atom and the dressed-atom
system at the level crossing point of � = �. The concurrence
is shown in Fig. 2 for continuously varying γ2/γ1 and �L. The
left frame illustrates the concurrence for the case when both
subsystems, the undriven atom and the dressed-atom system,
react to the mutually emitted photons, whereas the right frame
illustrates the concurrence for the case of an open cascade
system, where the undriven atom reacts to the photons emitted
by the dressed-atom system, while there is no interaction in the
reverse direction. From the data, we note that the concurrence
reaches a maximum height for a large positive laser detuning,
�L > 0, and γ2 > γ1. In terms of the population of the dressed
states of the driven atom, the condition �L > 0 corresponds
to no inversion on the dressed-atom transition, the higher
frequency Rabi sideband, which for � = � is resonant to
the transition frequency of the undriven atom. The atoms
remain separable for practically all γ1 > γ2. Thus, the driven
atom must decay faster than the undriven one to entangle the
atoms by dissipation. Needless to say, the fluorescence from
the driven atom acts as a pump for entanglement between
the atoms even if both systems react to the mutually emitted
photons.

The shape of the concurrence for the cascade open system,
illustrated in the right frame of Fig. 2, continues the trend of the
case of the mutually driving systems, shown in the left frame.
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FIG. 2. Steady-state concurrence as a function
of α = (γ1 − γ2)/(γ1 + γ2) and cos2 θ for mutu-
ally driving subsystems (left frame) and for the
case of a cascade open system (right frame).

However, it should be pointed out that the analogy between
the two cases is not absolute because there is always a nonzero
probability that the driven atom will absorb a photon emitted by
the undriven atom. Despite this, Fig. 2 shows that the concur-
rence is formally almost the same for both cases and therefore
the system can be regarded as an open cascade system.

A nonzero value of the concurrence reveals the existence
of entangled states in the system. These can be easily found
by diagonalizing the density matrix (14), which results in
superposition (entangled) states

|s〉 = cos φ|2〉 + sin φ|3〉, |a〉 = sin φ|2〉 − cos φ|3〉, (19)

where the angle φ is determined by cos2 φ = 1
2 + δ/(2G), with

δ = ρ22 − ρ33 and G =
√

δ2 + 4|ρ23|2. Clearly, the stationary
state of the system is a mixed state involving two entangled
states. The mechanism for the creation of the entangled states
is the coherence ρ23 generated by the interaction of the atoms
with a dissipative reservoir.

In summary, we have proposed a scheme for the creation
of entanglement by the dissipative process of spontaneous
emission. The scheme involves two nonidentical two-level
atoms separated at a small distance and interacting with a com-
mon reservoir. Arranging the system such that the undesirable
dipole-dipole interaction between the atoms is suppressed and
only one atom is addressed by an external laser field, we have
found that the atoms can be entangled on demand by tuning the
Rabi frequency of the laser field to the difference between the
atomic transition frequencies. At this frequency, two energy
levels of the system become degenerate, resulting in a large
coherence that causes the system to evolve into a stationary
entangled state. We have also found that the entanglement
occurs only when the damping rate of the driven atom is larger
than that of the other atom. We have demonstrated that this
system predominately behaves as a cascade open system where
the fluorescence from the dressed atom drives the other atom
with no interaction in the reverse direction.
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