
PHYSICAL REVIEW A 82, 053840 (2010)

Photonic-crystal surface modes found from impedances

Felix J. Lawrence,1,* Lindsay C. Botten,2 Kokou B. Dossou,2 R. C. McPhedran,1 and C. Martijn de Sterke1

1Centre for Ultrahigh-bandwidth Devices for Optical Systems (CUDOS), Institute for Photonics and Optical Sciences (IPOS) and
School of Physics, University of Sydney, New South Wales 2006, Australia

2CUDOS and Department of Mathematical Sciences, University of Technology, Sydney, New South Wales 2007, Australia
(Received 26 June 2010; published 30 November 2010)

We present a method for finding surface modes at interfaces between two-dimensional photonic crystals
(PCs), in which the surface modes are represented as superpositions of the PCs’ propagating and evanescent
Bloch modes. We derive an existence condition for surface modes at an air-PC interface in terms of numerically
calculated PC impedance matrices, and use the condition to find surface modes in the partial band gap of a PC.
We also derive a condition for modes of a three-layer structure with two interfaces, and find both coupled surface
modes and waveguide modes. We show that some waveguide modes cross the band edge and become coupled
surface modes.
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I. INTRODUCTION

Electromagnetic surface modes have long been studied for
their rich and interesting physics [1]. They are confined to an
interface, in the sense that the field decays exponentially away
from the interface in both directions. The most widely studied
example is the surface plasmon or surface plasmon polariton,
which arises at the interface between a metal and a dielectric,
but these have very short propagation lengths due to loss in the
metal. They have been experimentally demonstrated [2], and
may even be seen with the naked eye if elastically scattered on
the surface of a diffraction grating [3].

Surface states may also arise at the boundaries of two-
dimensional photonic crystals (PCs), which are defined as
having a periodic variation in refractive index [4]. In this paper
“surface mode” refers to this variety of PC surface state, while
“surface plasmon” refers exclusively to a state at the interface
between a metal and a dielectric. For a surface mode at an
interface between air and a PC, the field decays into the PC
because of the PC’s band gap, and it decays on the air side of
the interface due to an effect related to total internal reflection.
Since the entire structure may be made from lossless materials,
surface modes can have much longer propagation lengths than
surface plasmons.

PC surface modes have been experimentally demonstrated
[5–8], and have been found by two general numerical
approaches. The most common technique is to use a supercell
[4] and directly compute the modes. With the supercell
approach, the PC cannot be infinitely thick and so, in principle,
there is always some coupling between surface modes on the
front and back of the PC. The other widely used technique
involves separately finding the modes of the two materials
and calculating the surface modes from these by matching
them at the interface [9–11]. This allows surface modes to
be calculated for interfaces between semi-infinite structures.
We take the latter approach, expressing it in terms of PC
impedances [12], and generalize it to work also with structures
that have a material of finite thickness sandwiched between two
semi-infinite media.

*felix@physics.usyd.edu.au

Surface plasmons may be found from the poles of the
transmission coefficient or of the reflection coefficient

r12 = Z2/Z1 − 1

Z2/Z1 + 1
, (1)

where Z = E‖/H‖ is the wave impedance, with E‖ and
H‖ the field components parallel to the interface. So the
condition for a surface mode to exist is that the denominator of
Eq. (1) vanishes. For transverse magnetic (TM) polarization
(H = H‖τ̂ with τ̂ parallel to the interface), for which surface
plasmons may exist at an air-metal interface Zi = −k⊥i/ωεi

and so by this condition surface plasmons exist when

k⊥1

ε1
= −k⊥2

ε2
, (2)

where k⊥ is the component of the wave vector perpendicular
to the interface.

In this paper we generalize the procedure for finding surface
plasmons to apply to dielectric PCs and their impedances. The
procedure involves finding poles of the PC analog of Eq. (1),
which uses semi-analytically defined PC impedances that are
generally matrices [13]. This allows us to find a condition for
the existence of a PC surface mode. Section II defines our
nomenclature and introduces the quantities needed to describe
PCs, before the surface mode existence condition is derived in
Sec. III. This is then applied to give the dispersion relation of
a PC surface mode. In Sec. IV we derive a condition and give
examples for the case with three media and two interfaces (e.g.,
a strip of PC surrounded by air on either side). We conclude in
Sec. V by commenting on the usefulness of our method. The
Appendix presents a convergence analysis in a typical case,
illustrating the accuracy and reliability of our technique.

II. BACKGROUND THEORY AND NOMENCLATURE

We write the field in each PC in its basis of Bloch modes
(including propagating and evanescent modes); this is the
natural basis in which to consider transmission and reflection
since each Bloch mode travels independently through its PC
without scattering into other modes. Our method for finding
Bloch modes is based on the semi-analytical least-squares-
based method of Botten et al. [14] and is briefly outlined
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in the following. In its present form, the method applies to
two-dimensional (2D) square or triangular lattice PCs with unit
cells that are up-down symmetric, which precludes the study
of PCs with arbitrarily truncated unit cells. For generality we
treat all media as PCs (see Fig. 1): for homogeneous dielectrics
such as air, a periodicity is imposed and the material’s Bloch
modes are simply plane waves.

Our axes are chosen such that all PC interfaces are parallel
to the x-z plane, and each PC’s refractive index varies
periodically in the x-y plane. We assume that both the PC
structure and the electromagnetic (EM) field are invariant in the
z direction; this is thus a 2D problem. In any single simulation
we consider one polarization, one frequency, and one Bloch
vector component kx , the component parallel to the interface.
Since the EM field components parallel to a dielectric interface
are continuous across it, fixing kx across all media ensures
that we have a closed set of Bloch modes under reflection
and transmission at all PC interfaces. A surface mode with
propagation constant kx may therefore be represented in each
medium as a superposition of these Bloch modes.

We find the Bloch modes of each PC by diagonalizing
the plane-wave transfer matrix [14], which, in turn, is
found using the multipole method [15]. The transfer matrix
may alternatively be found with the finite element method
(FEM) [16]. The dimension of the plane-wave transfer matrix
is made sufficiently large that it includes all relevant plane
waves, which are the grating diffraction orders excited by the
rows of holes comprising the PC. In this paper’s examples, five
plane-wave orders were considered in each direction in each
medium; this means that the calculations typically include
all relevant plane waves that decay in amplitude across a
PC’s unit cell by a factor of 106 or less. In the Appendix
we give criteria illustrating how the required number of plane
waves is determined and show that for our calculations five
plane-wave orders are sufficient to determine surface modes
accurately.

We partition the Bloch modes of each PC into modes that
propagate or decay in the forward (+y) direction and those
that propagate or decay in the backward (−y) direction. The
field in a PC i is represented by a vector of forward Bloch
mode amplitudes c+

i and a vector of backward Bloch mode
amplitudes c−

i (Fig. 1).
At an interface between two PCs, each incident Bloch mode

may be reflected and transmitted into many modes. Reflection
and transmission coefficients must therefore become nondi-
agonal reflection and transmission matrices. In our previous
work [12] we showed that these may be written in terms of

c−1

c+
1 c+

2

PC 1 PC 2

c−2
y

x

FIG. 1. Schematic of a two PC interface, with incoming and
outgoing Bloch vectors.

the impedance-like matrices Z1 and Z2 of PC 1 and PC 2 [cf.
Eq. (1)]

T12 = (
AT

12A12 + I
)−1

2AT
12, (3a)

R12 = (
A12AT

12 + I
)−1(

A12AT
12 − I

)
, (3b)

T21 = (
A12AT

12 + I
)−1

2A12, (3c)

R21 = (
AT

12A12 + I
)−1(

I − AT
12A12

)
, (3d)

where A12 = Z−1
1 Z2. These equations are exact at full rank,

when all relevant plane waves and Bloch modes are considered,
and are otherwise least-squares-style approximations. In the
Appendix we show that, for the cases in this paper, five Bloch
modes and five plane waves are sufficient to obtain highly
accurate results.

The impedance-like matrix Z is the crucial quantity that
we use throughout the remainder of this paper to describe how
light behaves in the PC. It is defined in terms of the PC’s
numerically found Bloch modes, but once the Bloch modes
are known, Eq. (3) holds rigorously at full rank and becomes
a least-squares approximation when the set of plane waves or
Bloch modes is truncated [12].

III. SINGLE INTERFACE SURFACE MODES

We derive a necessary and sufficient condition for the
existence of a PC surface mode in a similar way to how
the surface plasmon condition Eq. (2) may be derived: we
look for poles of the reflection matrices. We work in the PCs’
Bloch bases, with notation as in Fig. 1. Poles of matrices
imply infinite eigenvalues; to avoid the ensuing numerical
instabilities, we instead calculate the inverse of these matrices
and look for zero eigenvalues. The condition for a surface
mode, in this form, is then the pair of homogenous equations

R−1
12 c−

1 = c+
1 = 0, (4a)

R−1
21 c+

2 = c−
2 = 0. (4b)

Equation (4) constitutes a necessary condition because a
surface mode has zero incoming field (i.e., c+

1 = 0 and c−
2 = 0)

and nonzero outgoing field (i.e., c−
1 �= 0 and c+

2 �= 0), so R−1
12

and R−1
21 must be singular. Possible issues of degeneracy are

resolved by studying the null space, for which the singular
value decomposition is a useful tool. They also constitute a
sufficient condition because the null vectors of R−1

12 and R−1
21

are valid outgoing fields without incoming fields, which is the
definition of a surface mode.

To find the source of the singularity, consider the expres-
sions for R12 and R21 in Eqs. (3b) and (3d). The impedance
ratio A12AT

12 does not have an infinite eigenvalue since that
would imply that one of the Bloch modes could not be
normalized and had zero or an infinite field associated with
it. Therefore to satisfy Eqs. (4a) and (4b), (A12AT

12 + I) and
(AT

12A12 + I) must have a zero eigenvalue. Looking again at
Eq. (3), this implies that surface modes are tied to poles of the
reflection and transmission matrices in both directions. This is
consistent with the condition used by Enoch et al. [10], that of a
pole in the scattering matrix determinant; and the condition of
Che and Li [11], that det(S11) = 0, where S11 is the submatrix
of the scattering matrix that maps c+

2 to c+
1 .
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FIG. 2. (Color online) Projected band structure of surface modes
at an air-PC interface. Only the region below the light line is
considered.

So to find the surface modes of a structure, we scan
frequency and vary kx in search of cases where (A12AT

12 + I)
has a zero eigenvalue. Thus by searching frequency-kx space
we construct the projected band structure of the interface. The
eigenvector associated with each zero eigenvalue is c−

1 for
the surface mode, as may be seen from Eq. (4a). And from
Eq. (4b) we see that the amplitudes of PC 2’s Bloch modes,
c+

2 , is the eigenvector corresponding to the zero eigenvalue of
(AT

12A12 + I). Knowing the Bloch mode amplitudes c−
1 and c+

2
lets us find and plot the surface mode’s field.

We now apply this method to find the surface modes at
the interface between air and a semi-infinite PC. The PC has
a triangular lattice of air holes of radius 0.25d, with lattice
constant d, in a dielectric background with n = 2.86. We
look for surface modes in the E = Ezẑ polarization; surface
plasmons do not exist in this polarization since this would
require a medium with negative permeability.

Surface modes only occur where there are no propagating
modes in either material; since one of the media is air, we only
look for surface modes below the light line [4]. We scan over
frequency and kx for eigenvalues of (AT

12A12 + I) that have
magnitudes below our accuracy goal of 10−12 and find two
surface modes in a partial band gap. The resulting projected
band structure is plotted in Fig. 2.

The real and imaginary parts of the smallest eigenvalue ψ of
(AT

12A12 + I) are plotted in Fig. 3 for d/λ = 0.3. The surface
mode is found where the real part crosses the x axis; within the
band gap Im(ψ) is essentially zero. This eigenvalue appears
to have no physical significance other than indicating whether
(AT

12A12 + I) is singular. This result was obtained considering
five Bloch modes and five plane waves; a convergence analysis
presented in the Appendix shows that this approximation is
highly accurate.

The field in the PC (shown in Fig. 4) is essentially a
superposition of the two most slowly decaying Bloch modes;
for d/λ = 0.3, the moduli of the Bloch amplitudes c+

2 are
0.43, 0.90, 4.4 × 10−3, 7.7 × 10−3, and 1.4 × 10−4, where
the corresponding Bloch factors (eigenvalues of the transfer
matrix) have moduli 0.65, 0.64, 1.0 × 10−3, 7.9 × 10−4, and
2.7 × 10−6, respectively. Close to the interface, the second
Bloch mode dominates, but deep in the PC the first Bloch mode
becomes responsible for most of the field because it decays

FIG. 3. (Color online) Real and imaginary parts of the smallest
eigenvalue of (AT

12A12 + I), for d/λ = 0.3. Surface modes occur
when this eigenvalue is exactly zero. The discontinuities in slope
occur where two or more eigenvalues have equal moduli.

slightly more slowly. Similarly, on the air side of the interface
most of the field is due to the two most slowly decaying plane
waves; the transition region where the two plane waves are of
comparable amplitude and so interference is clearly visible in
Fig. 4(b). The slowest decaying plane wave has a decay length
(to a factor 1/e amplitude) of 0.23

√
3/2d.

Since the field on both sides of the interface is a super-
position of two modes with different decay factors, the field
does not exponentially decay away from the interface, and

(a)

(b)

FIG. 4. (Color online) Modulus of the E field for the surface mode
at d/λ = 0.3 and kx = 0.959π/d; air is on the left of the vertical line,
PC is on the right. Two horizontal cuts through (a) are shown in (b);
the x = 0 cut is along the lower edge of (a), and the x = 0.5d cut
bisects one of the three PC holes nearest the interface. The x = 0 cut
shows two exponential decay regimes in air, which is evidence that
one evanescent plane wave dominates near the interface and another
dominates away from it.
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so the surface mode may not faithfully be approximated by a
surface plasmon. In other words, this PC’s behavior may not be
reproduced by any uniform medium; no effective permittivity
or permeability that may be ascribed to the PC could predict
this surface mode.

IV. DOUBLE INTERFACE SURFACE MODES

Another much-studied configuration in the surface plasmon
literature is that of thin metallic slabs in air (or another
dielectric). Such structures can support surface plasmons on
both faces of the metallic slab, which couple [17]. These
surface states are long-range or short-range surface plasmons,
depending on their symmetry. In this section we explore
nonmetallic PC analogs to long- and short-range surface
plasmons; we consider structures with three media and two
interfaces, either of which may or may not be capable of
supporting a surface mode.

Such structures have previously been studied by Enoch et al.
[10], who investigated a dielectric-PC-dielectric structure anal-
ogous to the dielectric-metal-dielectric structures on which
long- and short-range surface plasmons have been observed.
Their PC region is fixed at 18 periods thick, so the coupling
between interfaces is minimal. Choi et al. [18] investigated a
PC-air-PC structure. In our examples we consider an air-PC-air
structure, but the theory developed is general and also applies
to other structures, including PC waveguides.

The three media, which for generality we consider to
be PCs, are arranged as in Fig. 5. �+ = diag(µs

f,i) and
�− = diag(µ−s

b,i ), where µf,i and µb,i are, respectively,
PC 2’s forward and backward Bloch factors (eigenvalues) and
s is PC 2’s width.

To find the condition for a surface mode, we set the
incoming field vectors c+

1 and c−
3 to zero and derive

c+
2 = R21�−c′−

2 , (5a)

c′−
2 = R23�+c+

2 , (5b)

which leads to

(R21�−R23�+ − I)c+
2 = 0. (6)

This expression is closely related to the familiar waveguide
phase condition; it is satisfied by conventional waveguide
modes. However, it is also satisfied by surface modes, which
decay inside PC 2 away from the interfaces. For surface
modes, the entries of the diagonal matrices �+ and �− all
have magnitude less than unity; this is balanced by reflection
matrices that increase field amplitude upon reflection.

c−1

c+
1 c+

2 c+
3

c−3c −
2Λ−c −

2

Λ+c+
2

PC 1 PC 2 PC 3

FIG. 5. Schematic of a three PC (double interface) structure, with
Bloch vectors c.

In deriving Eq. (6), we neglected terms due to the incoming
field vectors c+

1 and c−
3 , which both vanish for a surface

mode. The more general form of Eq. (5a) is c+
2 = R21�−c′−

2 +
T12c+

1 . In Sec. III, we found surface modes occurring at poles
of the reflection and transmission matrices (i.e., modes where
T12c+

1 was nonzero even when c+
1 = 0). We now consider

whether the possibility of a pole in the transmission matrix
can invalidate Eq. (5a).

(a)

(b)

(c)

FIG. 6. (Color online) Projected band structure of surface modes
(dark blue and midtone red) of an air-PC-air structure with (a) three,
(b) five, and (c) six periods of PC. The projected band structure of
the surface modes at the corresponding air-PC interface is shown for
reference in light blue.
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(a) (b)

(c) (d)

FIG. 7. (Color online) Field strength |E| for an even mode of an air-PC-air structure with five periods of PC [see Fig. 6(b)]: (a) and (b) at
d/λ = 0.318, kx = 0.715π/d , in the PC’s band; (c) and (d) at d/λ = 0.299, kx = 0.927π/d , in the PC band gap.

As we saw in Sec. III, poles occur when c−
1 lies in the null

space of (A12AT
12 + I). Considering the field at the PC 1-PC 2

interface, we may write
(
A12AT

12 + I
)
c−

1 = (
A12AT

12 − I
)
c+

1 + 2A12�−c′−
2 , (7)

and see that if c−
1 is in the null space of (A12AT

12 + I), the
necessary condition for a pole, then (A12AT

12 + I)c−
1 = 0.

Furthermore c+
1 = 0 for a surface mode, resulting in

2A12�−c′−
2 = 0. This implies that no field from the PC 2-PC 3

interface reaches the PC 1-PC 2 interface, which is not
physical. Therefore there can be no double interface surface
modes when there are poles in the transmission matrices and
Eq. (6) is both a sufficient and necessary condition for a double
interface surface mode.

Of particular interest is the symmetric case, where PC 1
and PC 3 are the same material. Then R21 = R23 and we can
factorize Eq. (6). We use the relation �− = eiπkxsd�+, where
s is the number of rows of holes in PC 2, to write

(R21�+eiπkxsd/2 − I)(R21�+eiπkxsd/2 + I)c+
2 = 0. (8)

Comparing this to Eq. (5), two solutions are apparent: an
even solution, where c′−

2 = e−iπkxsd/2c+
2 and an odd solution

for which c′−
2 = −e−iπkxsd/2c+

2 . Note that this phase shift of
±e−iπkxsd/2 is measured between points separated by s lattice
vectors, so for triangular lattices these points have different x

values since that lattice vector is not parallel to the y axis.
We now apply this method to find the modes of a structure

in which PC 1 and PC 3 are vacuum and PC 2 is the PC studied
in Sec. III. We search for eigenvectors of R21�+eiπkxsd/2 that
have an eigenvalue ψ within an accuracy range 10−6 of ±1,
for E = Ezẑ polarized light. The modes found when PC 2 is
three, five, and six rows of holes thick are shown in Fig. 6.

The striking difference between the single interface surface
modes of Sec. III and the double interface modes in Fig. 6
is that the double interface modes cross the PC’s band edge,
as reported for the thick PC limit by Enoch et al. [10]. As
previously discussed, single interface surface modes cannot
exist in band, as energy is inevitably radiated away [4]. When
a second interface is present, in-band waveguide solutions
arise for Eq. (6), in addition to band-gap surface mode
solutions.

The character of a mode changes across the band edge:
in the band gap, the field envelope must decay toward the
center of the PC slab since all its constituent Bloch modes are
evanescent. In band, this restriction does not apply. Figure 7
shows two cuts through the field of an even mode of the air-5
period PC-air structure of Fig. 6(b). The difference between the
in-band waveguide mode [Figs. 7(a) and 7(b)] and the band-
gap surface mode [Figs. 7(c) and 7(d)] is readily apparent;
the surface mode’s field unambiguously decays toward the
center of the PC region, whereas the waveguide mode has
a large field along the middle of the PC. There is a smooth
transition between these two kinds of mode: near the band
edge, the waveguide mode adopts the shape of the surface
mode. The moduli of the elements of c+

2 for each mode vary
continuously, even across the band edge, and likewise there
is no sudden change in the field profile as the band edge is
crossed.

The introduction of a second interface splits the single
interface surface mode into an even mode and an odd mode.
As the thickness of PC 2 is increased, we see from Fig. 6
that these modes’ dispersion relations converge, approaching
that of the single interface surface mode. This behavior
makes physical sense, as the interfaces become increasingly
decoupled as PC 2’s thickness increases. Furthermore as
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FIG. 8. (Color online) Real and imaginary parts of the smallest
eigenvalue ψ of R21�+eiπkx sd/2 ± I at d/λ = 0.305 for the air-PC-air
structure used in Fig. 6(b). The condition for a surface mode or
waveguide mode is ψ = 0. Discontinuities occur where two or more
eigenvalues have equal moduli.

PC 2’s thickness increases, the magnitude of the entries of
�+ decrease exponentially. Since R−1

21 c+
2 = ±eiπkxsd/2�+c+

2 ,
as PC 2’s thickness becomes infinite, �+ → 0. Therefore R−1

21
must become singular, which is precisely the condition for a
single interface surface mode.

Unlike the PC-air-PC structure studied by Choi et al. [18],
Fig. 6 shows that, in our case, the lower-frequency mode does
not always have even parity. For our configuration, when the
PC is an even number of periods thick the lowest-frequency
surface mode is odd, and vice versa; we have checked this
for PCs from four to eight periods thick. This behavior
is equivalent to that previously observed in coupled PC
waveguides [19]. For thinner structures, in which the interfaces
are strongly coupled, the lower air-PC mode does not split into
two surface modes.

Numerically finding solutions to Eq. (8) is sometimes more
difficult than the single-mode case, because the eigenvalue ψ

that must be minimized can vary strongly with frequency and
kx . For example, ψ(kx) is shown in Fig. 8 at d/λ = 0.305
for the 5 period thick PC of Fig. 6(b). This function has
several discontinuities and is less well behaved than the
equivalent function for the single interface, shown in Fig. 3.
The discontinuities occur where the two smallest eigenvalues
have equal magnitude. Discontinuities close to a zero can
cause a root-finder to miss valid solutions; this manifests
as a gap in the dispersion relation and can be avoided by
instead searching for a zero determinant. This measure was
necessary to obtain certain points on the even mode dispersion
relations in Fig. 6(c). Furthermore in Fig. 8 there are cusps near
kx = 0.76π/d and kx = 0.82π/d, where the number of prop-
agating Bloch modes changes. These anomalies are extremely
localized—for the kx � 0.76π/d anomaly, |ψ | < 10−5 over
a domain of size �kx < 10−10π/d—so the anomalies are
of no practical importance and are therefore ignored in
Fig. 6.

The numerical issues in finding modes arise because to
find a kx for a given frequency (or vice versa) that supports
a mode, a numerical search must be performed to find a kx

such that |ψ | = 0. To find a projected band structure like those
in Fig. 6, we must scan over frequency and kx , a 2D search.
Our approach is to do a coarse search over the entire parameter

space, then to use a root finder to check local minima for zeros.
The information calculated for each PC (i.e., its impedance
and Bloch factor) in the coarse search is independent of the
overall PC 1-PC 2-PC 3 structure. This means that the hard
work in generating Figs. 6(a), 6(b), and 6(c) only needs to
be done once: with the PCs’ impedances known, the coarse
search becomes simply a matter of manipulating known 3 × 3
or 5 × 5 matrices.

Supercell methods [4] require only a one-dimensional (1D)
search because for each frequency, all appropriate kx may be
found directly from a single FEM (or other) computation.
The main downside to supercell methods is that coupling
occurs between supercells; the supercell must be made large
to minimize this, which adds computation time. The minimal
supercell size depends on the decay rates in the outermost
media, which depend on kx and may not be known in advance.
Our impedance method does not suffer from this problem:
the outer media are truly semi-infinite and the computational
domain is small since we compute each PC’s Bloch modes
using a single unit cell. Our Bloch mode method also provides
additional insight into the field structure that supercell methods
do not provide.

V. DISCUSSION AND CONCLUSION

In Sec. IV we generalize the principles from Sec. III to
investigate modes that propagate along a three-layer structure.
The results given in Sec. IV are for an air-PC-air structure,
which was chosen so that in the partial band gap the
surface modes are analogous to long-range surface plasmons.
However, the derived equations are quite general: Eq. (6) may
be used to find the modes of any three-layer structure and
Eq. (8) may be applied to any structure of the form PC 1-PC 2-
PC 1, which includes many PC waveguides. Unlike supercell
methods, our approach allows the field of a waveguide mode
to be expressed as a superposition of Bloch modes in each
of the structure’s constituent PCs. This allows a deeper
understanding of the waveguide mode and how it decays in
the confining media.

The method developed in Sec. IV may be extended to treat
structures with more than three media; this simply requires
further use of the transfer matrix method used in deriving
Eqs. (5) and (6). Such an approach could be used to find the
modes of coupled PC waveguides, or of more complicated
PC waveguide structures where the rows of holes nearest the
central guiding region have been modified.

In conclusion, we have developed a method of finding sur-
face modes on two- and three-layer structures. The condition
for surface modes on a single interface is that the Bloch mode
reflection matrix has an infinite eigenvalue, which is analogous
to the condition for a surface plasmon on an air-metal interface,
and we provide an equivalent condition in terms of PC
impedances. Our PC impedance condition is more numerically
suitable than the reflection matrix formulation, since we isolate
the matrix responsible for the zero eigenvalues that correspond
to physically significant solutions. The analysis of an example
shows that a single surface mode may involve two Bloch modes
with different decay rates, on both sides of the interface.

The condition for surface and waveguide modes on a
three-layer structure [Eq. (6)] is similar to that for a dielectric
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TABLE I. kx for a surface mode is repeatedly calculated, varying
the number of Bloch modes (vertical axis) and plane waves (horizontal
axis) used in the calculation. The table shows the difference of these
calculated kx from 0.957 765 360 815 104π/d , the kx for the surface
mode calculated with 11 forward and 11 backward Bloch modes and
plane waves.

Number of plane waves

3 5 7 9 11

2 3.2 × 10−5 1.1 × 10−4 8.0 × 10−5 1.1 × 10−4 8.0 × 10−5

3 6.1 × 10−5 1.4 × 10−4 1.3 × 10−5 1.4 × 10−4 1.3 × 10−5

4 1.1 × 10−7 3.6 × 10−8 1.8 × 10−7 3.4 × 10−8

5 4.4 × 10−8 1.8 × 10−7 2.4 × 10−7 1.8 × 10−7

6 8.7 × 10−10 2.8 × 10−10 7.6 × 10−10

7 4.8 × 10−10 9.5 × 10−10 1.3 × 10−9

8 4.2 × 10−12 4.8 × 10−12

9 4.8 × 10−12 3.0 × 10−12

10 1.0 × 10−14

waveguide. We find that some of the waveguide modes of an
air-PC-air structure cross the band edge and continue into the
partial band gap, becoming surface modes with mode profiles
that decay toward the center of the PC region.
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APPENDIX: COMPLETENESS AND CONVERGENCE

In Sec. II we noted that for the calculations in this paper
we represent the field by five forward and five backward
propagating and decaying plane-wave diffraction orders. We
now explore the validity of this truncation by presenting a
convergence analysis for one data point of our results.

As our method is based on that of Botten et al. [14], there are
two fundamental approximations made in representing field
in the PC: the countably infinite set of plane-wave grating
diffraction orders is truncated to a finite size, and the set of
Bloch modes found by diagonalizing the plane-wave transfer
matrix is also truncated. The total set of Bloch modes is
complete [20], so without such truncations arbitrary fields
in the PC could be exactly represented as superpositions of
Bloch modes. We have shown in previous work [13] that
there is a minimum number of Bloch modes necessary to
provide realistic results for PC reflection coefficients, and that
beyond this, convergence with increasing mode number is
very rapid. This feature carries over to the study of surface

TABLE II. kx for a surface mode is repeatedly calculated, varying
the number of Bloch modes and plane waves, as in Table I. The
eigenvalue of (AT

12A12 + I), which should be zero for a surface mode,
is then calculated for each kx using 11 Bloch modes and 11 plane
waves.

Number of plane waves

3 5 7 9 11

2 2.4 × 10−4 8.2 × 10−4 6.0 × 10−4 8.2 × 10−4 6.0 × 10−4

3 4.6 × 10−4 1.1 × 10−3 9.8 × 10−5 1.1 × 10−3 9.8 × 10−5

4 8.1 × 10−7 2.7 × 10−7 1.3 × 10−6 2.6 × 10−7

5 3.3 × 10−7 1.4 × 10−6 1.8 × 10−6 1.4 × 10−6

6 6.6 × 10−9 2.1 × 10−9 5.8 × 10−9

7 3.6 × 10−9 7.2 × 10−9 1.0 × 10−8

8 3.2 × 10−11 3.7 × 10−11

9 3.7 × 10−11 2.2 × 10−11

10 8.1 × 10−14

11 9.8 × 10−15

modes, given their close connection to reflection matrices.
In this Appendix we further investigate the effect of these
truncations on our results for the kx of a surface mode on
an air-PC interface found at a particular frequency. There are
further numerical inaccuracies arising from the calculation of
plane-wave scattering, but these are comprehensively treated
elsewhere [21].

As mentioned in Sec. III, we consider the interface between
air and a triangular lattice PC with air holes of radius 0.25d,
where d is the lattice constant, and the background refractive
index is n = 2.86. The air-PC interface is in the y-z plane.
Light is polarized with E = Ezẑ and has the frequency
d/λ = 0.3.

We repeatedly apply a root finder to determine the kx for a
surface mode, varying the number of plane-wave orders and
the number of Bloch modes. Table I shows how the calculated
kx varies with these parameters. The results converge quickly
as the size of the Bloch basis increases. There is negligible
difference (4.4 × 10−8) between the five plane wave and Bloch
mode calculation (the approximation used throughout this
paper) and the 11 plane wave and Bloch mode calculation.
Since the Bloch modes are orthogonal and represented in terms
of plane-wave orders, every calculation has more plane-wave
orders than Bloch modes. When using a single Bloch mode,
the surface mode is not found.

In Sec. III it was established that surface modes occur
when (AT

12A12 + I) has a zero eigenvalue. Table II gives the
magnitude of the smallest eigenvalue associated with each
kx in Table I, as calculated with 11 Bloch modes and plane
waves. It shows good convergence thereby demonstrating that
our work has a solid foundation.
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