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We explore theoretically the phase correlation between multiple generated sidebands in a Raman optical
frequency comb under conditions of spontaneous initiation from quantum zero-point noise. We show that there
is a near-deterministic correlation between sideband phases in each laser shot which may lead to synthesis of
attosecond pulse trains.
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I. INTRODUCTION

Stimulated Raman scattering (SRS) has been widely used
to produce optical frequency comb spectra in recent research
efforts that aim to synthesize femtosecond or attosecond
optical pulses. This requires phase-locked (mutually coherent)
comb lines that span a spectral range of the order of 1000 THz
or larger (e.g., from near UV to near ir). The first experiment to-
ward this goal was done using hydrogen gas in which multiple
stimulated rotational Raman orders were observed and ana-
lyzed under pumping by high-power femtosecond pulses [1].
Shortly afterward, a two-Raman-pump scheme was proposed
where the medium’s Raman coherence is driven slightly off
resonance and results in a Raman comb spectrum with Bessel-
function amplitudes and phases [2]. Experiments following
this scheme successfully produced single-cycle optical pulses
by adjusting the relative phase between each comb component
[3]. Further efforts in controlling the carrier envelope phase
(CEP) of the generated single-cycle pulses [4] as well as to
generate constant CEP pulse trains [5,6] were later realized.

In parallel developments, hollow-core photonic crystal fiber
(HC-PCF) with kagome lattice was developed, showing an
ultrabroad transmission bandwidth spanning multiple octaves
[7]. This fiber is useful in generating Raman combs for several
reasons: A Raman-active medium like hydrogen gas at high
pressure can be sealed inside the core of the fiber and made
to interact strongly with the guided pump laser beam, tightly
confined to an effective core area of about 10 µm. This ensures
the pump intensity as well as the Raman interaction region are
strongly enhanced compared with the conventional free-space
Raman experiments using spherical lenses to focus the pump.
As a result of this, the strongly transient regime of Raman
generation was demonstrated with a pump pulse duration much
larger than the dephasing time of the Raman transition [8]. In
addition, the dispersion of the guided modes is low enough so
that nearly phase-matched four-wave mixing can take place be-
tween the many spectral lines comprising the frequency comb.

More than 40 Raman rotational and vibrational lines in
hydrogen gas have been observed [9] by coupling 12-ns-
duration pump pulses into kagome HC-PCF. The mechanism
creating the comb is as follows: SRS induced by the pump
builds up from spontaneous Raman scattering, producing the
first pair of Stokes and anti-Stokes-shifted fields. When these
fields grow to sufficient intensities, they act as new pumps,
creating the next higher order of sidebands. This process

cascades, producing many sideband pairs with frequencies
shifted from the pump frequency by multiples of the fun-
damental molecular-vibration resonance frequency ωR . The
cascaded Raman process is highly nonlinear, as initially weak,
spontaneously emitted fields grow to become comparable
in strength to the input pump field. Due to the inherent
spontaneous initiation of Raman scattering, the Stokes field
is known to undergo quantum fluctuations from one pump
pulse to another [10]. These fluctuations occur not only in the
energy of the Stokes field, but also its temporal phase [11].

These advances in experiments show the promising fu-
ture of using Raman combs to synthesize ultrashort optical
pulses. But a fundamental issue that has not been explored
theoretically in Raman comb generation is the nature of the
spontaneously occurring phase correlations between the Ra-
man comb components. Are the comb line phases statistically
independent? If they are correlated, do these correlations tend
to enhance or to hinder the formation of ultrashort pulses
through the interference of all the lines? Experiments using
long pump pulses (200 ps to 12 ns) provide strong evidence
of such an automatic phase locking that tends to enhance for-
mation of ultrashort pulses [12,13]. Earlier experiments using
subpicosecond pump pulses also indicated phase correlation
creating ultrashort pulses, but in that case it is not clear if
the molecular coherence was initiated spontaneously or was
seeded through impulsive Raman scattering [14].

In this paper we develop the quantum theory of multiline
Raman combs initiated from spontaneous Raman scattering
and amplified by SRS. The theory confirms this spontaneously
generated phase correlation between the Raman comb com-
ponents in the transient high-gain regime, assuming a single
pump pulse with no pump depletion. Through theoretical
analysis, incorporating quantum fluctuations in a careful
manner, we find simple relationships predicting the nature
of these correlations. We predict that under ideal conditions,
all the comb lines correspond to transform-limited pulses that
automatically become nearly perfectly phase locked among
themselves, leading to the possibility of generating attosecond
pulses. This “self”-phase locking occurs in the absence of
a second pump field or any other mechanism for classical
injection of coherence. In particular, using a rigorous solution
of the quantum Maxwell-Bloch equations for the problem, we
predict that the first-order Stokes and anti-Stokes lines are very
strongly phase anticorrelated throughout the duration of these
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two pulses, even in the situation where large phase-velocity
dispersion is present in the medium. We associate this phase
anticorrelation with the requirement for producing maximum
Raman vibrational (or rotational) coherence in the medium,
which acts as a phase-sensitive amplifier. For the higher-order
Raman components, we use two simplified models to predict
their phase relations, both of which are consistent with a simple
quantitative formula for the phase relations: θn = θp + nφ +
δn, where θp is the phase of the pump pulse, φ is a single
random phase characteristic of the amplified spontaneous ini-
tiation process, n is the order of the Stokes line, and δn is a deter-
ministic phase shift specific to each line. Such phase relations
naturally lead to formation of ultrashort pulses if all determin-
istic phase shifts are adjusted to appropriate values, as in [3].

The result also reveals that if the frequency of each comb
component is controlled to be an exact integer multiple of
the Raman-shift frequency, then a periodic pulse train [6]
with constant CEP will be synthesized by the Raman comb
created from each separate pump pulse. However, because
of the inherent spontaneous initiation of Raman scattering,
the CEP of the synthesized pulse train will vary with each
pump pulse, preventing stable formation of single-cycle pulses
in the train. We propose to simultaneously use the pump
and its second harmonic, which happens to be one of the
anti-Stokes fields in the Raman comb, to interact with the
medium so that the synthesized pulse trains are locked to
one deterministic CEP. Dual pumping of this type has been
explored experimentally [5,6], but with the added complexity
of externally injecting Raman coherence into the system with
additional coherent laser fields.

II. QUANTUM THEORY OF CASCADED RAMAN
SCATTERING IN HIGH-GAIN REGIME

Previous theoretical and experimental work on Raman scat-
tering has shown that if the scattering takes place in the strongly
transient, high-gain regime (where the pump pulse is much
shorter than the effective vibrational dephasing time) and its
Fresnel number is close to unity, then the Stokes field generated
by a single pump pulse is temporally and spatially coherent
within a single shot of the laser [9,10]. We refer to this as “self
coherence.” Shot-to-shot fluctuations of field phase and energy

occur, and are well explained by theory [10,11,15–17]. This
suggests that the generated first-Stokes field is a transform-
limited pulse with a well-defined temporal phase. We extend
these considerations to a wide-band Raman optical comb.

We consider the following experimental setup that is
discussed in [9] as our theoretical model: A single long pump
pulse is coupled into the microstructured hollow-core fiber, and
stimulates the generation of Raman sidebands as it interacts
with hydrogen molecules that have been filled in the fiber core.
By “long” we mean that the pulse has a narrow bandwidth
(much less than the Raman-shift frequency) so it does not
impulsively excite any molecular coherence. The cascading
Raman comb generation process is illustrated in Fig. 1, and
the frequency of each comb component obeys the following
relation as required by energy conservation:

ωn = ω0 + n ωR, (1)

where ω0 is the pump frequency, n denotes the nth sideband
(n > 0 for anti-Stokes, n = 0 for pump, and n < 0 for
Stokes), and ωR is the Raman-shift frequency (either pure
vibrational or pure rotational). In our analysis we assume that
molecules are evenly distributed within the fiber core and that
the fiber confines all relevant Raman frequencies in single
transverse modes in its core area A, as it has been shown
in kagome fiber [9]. This allows us to safely assume that a
one-dimensional theory is sufficient to analyze the properties
of generated Stokes and anti-Stokes fields [16].

The interaction Hamiltonian for the system, including all
electric fields and the molecular vibrational modes can be
written as (see Appendix A)

HI = −AN
∑

n

∫
dz{α1,nP (z,t)E(+)

n (z,t)E(−)
n−1(z,t)ei�βnz

+α∗
1,n+1P

†(z,t)E(+)
n (z,t)E(−)

n+1(z,t)e−i�βn+1z}, (2)

where En is the quantized field operator for the slowly varying
envelope of the nth sideband, P (z,t) is the raising operator
for collective molecular vibration at position z, and α1,n is the
complex coupling efficiency that is related to the Kramers-
Heisenberg cross-section coefficient for the producing nth
sideband. We also have included the differences between the
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FIG. 1. (Color online) Raman comb generation process. Stokes (anti-Stokes) fields are indicated by dashed (dot-dash) arrows. The ground
(first-excited) molecular eigenstates are indicated by |1〉(|3).
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propagation constants of adjacent Raman lines through the
fiber, denoted as �βn = βn − βn−1. We neglect the molecular
rotational excitation, which would be included by a separate,
independent variable analogous to P (z,t). We also assume
each frequency mode is characterized by a single optical
polarization state (linear for vibrational scattering).

The quantized slowly varying electric field operators are
related to the photon creation and annihilation operators
an(z,t) by (in Gaussian units):

E(−)
n (z,t) = i

√
2πh̄ωn

AL
a†

n(z,t), (3)

where L is the fiber length. The collective molecular-vibration
raising operator at location z is defined as

P (z,t) = 1/(NA)
∑
{m}z

σm
31(t), (4)

where σm
31(t) is the raising operator for the mth molecule

located within a volume cell at position z, which excites the
molecule from ground state |1〉 to vibrational state |3〉. N is
the molecular number density. For review of the quantum
SRS theory, see [15].

The Maxwell-Bloch equations of motion for the electric-
field operators En of each individual comb line and the
collective molecular vibration raising operator P can be
derived by using Eq. (2) (see Appendix A):

∂zE
(−)
n (z,τ ) = −iα2,n+1E

(−)
n+1 exp(−i�βn+1z)P †

− iα∗
2,nE

(−)
n−1 exp(i�βnz)P, (5)

∂τP
†(z,t) = i

N∑
n=−N

α1,nE
(+)
n E

(−)
n−1 exp(i�βnz) − �P † + F�,

where α2,n = 2πh̄Nωnα
∗
1,n/c, while F� and � are the

quantum Langevin operator and damping rate associated
with dephasing collisions, and τ = t − z/c is the local
time variable. Equation (5) is consistent with earlier for-
mulations in which phase mismatch or multilines were
omitted [18,19].

Equation (5) is nonlinear while involving all the Raman
sidebands. As a simplifying case, we first consider the situation
where only first-order Stokes E−1 and anti-Stokes E+1 fields
are created, and the pump intensity profile is unchanged
throughout the interaction. This simplified linear model allows
us to find a complete quantum description and gain insight into
the comb generation process. In the high-gain, transient regime
we can neglect the Langevin operator and damping [15]. Then
the coupled equations are

∂zE
(−)
−1 (z,τ ) = −iα2,sE0(τ )P †(z,τ ),

∂zE
(+)
+1 (z,τ ) = iα2,aE

∗
0 (τ )P †(z,τ ) exp(−i�βz),

(6)
∂τP

†(z,τ ) = iα1,sE
(−)
−1 (z,τ )E∗

0 (τ )

+ iα1,aE
(+)
+1 (z,τ )E0(τ ) exp(i�βz),

where �β = β1 + β−1 − 2β0 is the phase mismatch of wave
vectors. These coupled equations were first solved in a full
quantum context by Kilin [20], who verified that a slight phase
mismatch is needed to maximize the generation of Stokes
or anti-Stokes sideband generation, as seen in experiments
[21]. More general solutions than those in [20] are found here
using the methods in [19]. Assuming that the pulses are long
enough that group-velocity effects are not important, the field
operators at the end of the fiber (z = L) and at local time τ =
t − z/vg (where vg is the group velocity of the pump) are found
to be

[
E

(−)
−1 (L,τ )

E
(+)
+1 (L,τ )

]
= E0(τ )

∫ τ

0
dτ ′E0(τ ′)

[
α2,sG11(L; τ,τ ′) α2,sG12(L; τ,τ ′)

−α2,aG21(L; τ,τ ′) −α2,aG22(L; τ,τ ′)

] [
α1,sE

(−)
−1 (0,τ ′)

α1,aE
(+)
+1 (0,τ ′)

]

+E0(τ )
∫ L

0
dz′

[−iα2,sG13(z′; τ,0)

iα2,aG23(z′; τ,0)

]
P †(L − z′,0) +

[
E

(−)
−1 (0,τ )

E
(+)
+1 (0,τ ) ei�βL

]
,

P †(L,τ ) = i

∫ τ

0
dτ ′{α1,sE

∗
0 (τ ′)G13(L; τ,τ ′)E(−)

−1 (0,τ ′) + α1,aE0(τ ′)G13(L; τ,τ ′)E(+)
+1 (0,τ ′)}

+
∫ L

0
dz′ G0(z′; τ,0)P †(L − z′,0). (7)

The Green propagators are given by

G11(z; τ,τ ′) = G12(z; τ,τ ′) − i�β

∫ z

0
dz′G12(z′; τ,τ ′);

G22(z; τ,τ ′) = G12(z; τ,τ ′) + i�β exp(i�βz) ∗ G12(z; τ,τ ′);

G12(z; τ,τ ′) = G21(z; τ,τ ′) = I0(2
√

ξs(τ,τ ′)z) ∗ [J0(2
√

ξa(τ,τ ′)z) exp(i�βz)];

G13(z; τ,τ ′) = I0(2
√

ξs(τ,τ ′)z) ∗ [δ(z) − J1(2
√

ξa(τ,τ ′)z)
√

ξa(τ,τ ′)/z exp(i�βz)];

G23(z; τ,τ ′) = [I1(2
√

ξs(τ,τ ′)z)
√

ξs(τ,τ ′)/z + δ(z)] ∗ [J0(2
√

ξa(τ,τ ′)z) exp(i�βz)];

G0(z; τ,τ ′) = [I1(2
√

ξs(τ,τ ′)z)
√

ξs(τ,τ ′)/z + δ(z)] ∗ [δ(z) − J1(2
√

ξa(τ,τ ′)z)
√

ξa(τ,τ ′)/z exp(i�βz)],
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where “∗” denotes convolution on the variable z, and Jn,In are
nth-order Bessel and modified Bessel functions, respectively.
The time-dependent gain coefficients are

ξs,a(τ,τ ′) = α1,(s,a)α2,(s,a)

∫ τ

τ ′
dt |E0(t)|2. (8)

With the sideband fields initially in the vacuum state and all
molecules in their lowest-energy states |1〉, the initial operators
have the following correlation functions [19]:

〈P †(z,0)P (z′,0)〉 = (1/AN )δ(z − z′),
〈P (z,0)P †(z′,0)〉 = 0,

(9)
〈E(+)

n (0,τ ′)E(−)
n (0,τ )〉 = (2πh̄ωn/Ac) · δ(τ − τ ′),

〈E(−)
n (0,τ ′)E(+)

n (0,τ )〉 = 0,n = ±1.

Equation (7) represents two types of processes: The terms
coupling E

(−)
−1 (E(+)

+1 ) with P represent Stokes (anti-Stokes)
scattering from ground-state (excited-state) molecules. The
off-diagonal terms in the green matrix coupling E

(−)
−1 with E

(+)
+1

represent Stokes or anti-Stokes four-wave mixing, in which
two pump photons are annihilated and an S/AS photon pair
are created. Both of these processes drive the same collective
molecular excitation P . The phases of the initiating vacuum
(zero-point) fields are temporally and spatially fluctuating, as
shown in the delta correlation functions of Eq. (9), which
represents white noise in time and space. We could attribute
this fluctuation to a thermal-like field distribution of the
temporal-spatial modes (TSM) of the spontaneously emitted
Stokes field, or equivalently to the thermal-like distribution
of longitudinal spatial modes of the collective molecular
excitation [17,23]. The laser field further scatters from the
collective molecular excitation creating additional anti-Stokes
light. Subsequently, the initial white noise is heavily filtered
under the high-gain transient conditions, since the gain
process is a resonant one, and the Green propagators grow
exponentially as the pulse propagates through the medium. The
filtering or smoothing process eventually produces a Stokes
and anti-Stokes field that are determined solely by a single
TSM each; in other words, each has the form of a smooth,
transform-limited wave packet with an overall phase and a
peak amplitude that are random from one pump pulse to
another. In this sense, these two fields resemble classical fields,
that is, complex temporal envelopes with well-defined carrier
frequencies, although the intensities and phases of both fields
dramatically fluctuate from one shot to another [10,11,23].
It is further known that if the scattering process goes into
saturation, then the magnitude of the intensity fluctuations
greatly decreases [22], although this is not accounted for in
the linear theory considered here.

III. ANTICORRELATION BETWEEN FIRST-ORDER
STOKES AND ANTI-STOKES

Here we examine the mutual coherence between gener-
ated first-order Stokes (S1) and anti-Stokes (AS1) fields, in
the high-gain transient regime. We calculate the correlation
coefficient defined as

C = |〈E(−)
−1 (L,τ )E(−)

+1 (L,τ )〉|2
〈E(−)

−1 (L,τ )E(+)
−1 (L,τ )〉〈E(−)

+1 (L,τ )E(+)
+1 (L,τ )〉

. (10)

Because both fields in the numerator are negative-frequency
ones, this gives the degree of phase anticorrelation be-
tween generated Stokes and anti-Stokes fields. Writing I±1 =
〈E(−)

±1 E
(+)
±1 〉, the phase correlation coefficient is proportional

to the degree of mutual phase coherence, defined as Cϕ =
|〈e−i(ϕ−1+ϕ+1)〉|, as is seen from

C = |〈|E(−)
−1 ||E(−)

+1 |〉|2
I−1 I+1

|〈e−i(ϕ−1+ϕ+1)〉|2,

if we assume that the fluctuations in intensities |E(−)
±1 |2 of S1

and AS1 are independent of that of their phases. For example,
if the temporal phase of the Stokes pulse is statistically
independent of the anti-Stokes pulse, the C value (and Cϕ)
would be zero. In contrast, if the sum of the phases of
these two pulses stays constant from shot to shot (while they
both fluctuate), which indicates phase anticorrelation, then Cϕ

would equal one, and C would be determined by intensity
fluctuations alone.

By putting expressions from (7) into Eq. (10) and using the
initial conditions (9), we calculate the C values under various
conditions. The full expression is given in Appendix B. In
Fig. 2 we plot C values and Stokes and anti-Stokes intensities as
functions of local time τ under the phase mismatch condition
�βL = 10, where the anti-Stokes intensity is maximized
(see Fig. 3). In all our calculations here we use 12 ns [full
width half maximum (FWHM)] transform-limited Gaussian
pump pulses, and the Stokes and anti-Stokes integrated gain
coefficients (α1,sα2,s

∫ ∞
−∞ dt |E0(t)|2L) are set at the values of

25 and 30, respectively.
We see in Fig. 2 that the value of C nearly equals 1

throughout the duration of the generated Stokes pulses. Also
note that the peak of the Stokes field is delayed by 4 ns
relative to the peak of the pump field, which is consistent with
previously known results [15]. In Fig. 3 we show the calculated
C value at the peak of the Stokes-pulse intensity under various
dispersion conditions, and find that its value stays close to 1.
There we also show the peak Stokes and anti-Stokes-pulse
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local time.
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intensities versus phase mismatch, showing the well-known
minimum that occurs for perfect phase matching [20,21,24].

The result C ≈ 1 implies that the first-order Stokes and
anti-Stokes are correlated in the following way:

E
(+)
+1 ≈ α E

(−)
−1 ,

where α is a complex constant (with magnitude less than
unity). This relation shows that, not only the intensities of
the two sidebands fluctuate in the same manner from pulse
to pulse, but their phases are near perfectly anticorrelated.
This confirms one of our conjectures in [9]. It indicates a
tendency in this system to automatically evolve toward perfect
phase anticorrelation, although our experimental observations
[12,13] show that the anticorrelation is not perfect. A more
rigorous model including all comb lines and pump depletion
is needed for explaining this discrepancy.

The generated sideband fields are also correlated with the
collective molecular excitation created in the medium, as
seen in the solution (7). The quantity 〈P (L,τ )E(−)

−1 (L,τ )〉,
which is a measure of this field-medium correlation, is plotted
in Fig. 4 as a function of the local time τ . It shows a
maximum in time, following the Stokes fields (see Fig. 2).
This correlation between field and molecular coherence has
been studied in experiment for the case that Stokes only was
generated [17]. In the absence of dephasing processes, this
nonzero correlation can be considered as a manifestation of
quantum state entanglement between the medium and the
fields.

IV. MECHANISM FOR PHASE LOCKING

Here we provide a simple, intuitive model that helps explain
the physical mechanism of the automatic phase anticorrelation
between first-order Stokes and anti-Stokes fields predicted
above. It also predicts the phase relations among all comb
lines, a result that is further supported by the independent
calculation in the following section. Equation (5) can be
simplified by assuming perfect phase matching, since the phase
mismatch does not strongly affect the phase anticorrelation,
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FIG. 4. (Color online) Amplitude and phase of quantity
〈P (L,τ )E(−)

−1 (L,τ )〉. Phase value is with respect to the pumps.

as shown in Fig. 3. We treat the fields as classical random
processes, and define real amplitudes and phases by

E(−)
n = |E(−)

n |e−i θn ; P = |P |e−i φ′
. (11)

This gives the evolution of the molecular polarization as

i|P |∂τφ
′ + ∂τ |P | =

N∑
n=−N

|α1,n||E(+)
n ||E(−)

n−1|ei (θn−θn−1−φ′−δ),

(12)

where we expressed the complex coefficient i α1,n in terms of
an amplitude and phase: i α1,n = | α1,n| exp(−i δ). This gives
two real equations:

∂τ |P | =
N∑

n=−N

|α1,n||E(+)
n ||E(−)

n−1| cos(θn − θn−1 − φ′ − δ),

∂τφ
′ = 1

|P |
N∑

n=−N

|α1,n||E(+)
n ||E(−)

n−1| sin(θn − θn−1 − φ′ − δ).

(13)

The first equation in (13) implies that the molecular polariza-
tion grows at a maximal positive rate if θn − θn−1 − φ′ − δ = 0.
In this situation, the second equation implies that the random
phase φ′ of the molecular polarization becomes time indepen-
dent, as the sin function goes to zero. This result is consistent
with the established phenomenon of high-gain temporal
filtering [17]. The idea is that the spontaneously generated
comb lines can arise with any phase values, and the values
that actually occur will be those leading to the highest overall
gain, as indicated by the highest growth rate of |P |. This high-
est gain also leads to time-independent phases with particular
relations among them. This is similar to self-mode locking in
a laser. For compactness, this relation can be written as

θn − θn−1 = φ, (14)

where φ = φ′ + δ absorbs the constant δ into the random
phase φ′. The random variable φ has uniform probability
between 0 and 2π [11]. For the case of a strong pump in
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the n = 0 mode with phase θ0, this relation implies for the
anti-Stokes and Stokes phases, θ1 = θ0 + φ and θ−1 = θ0 − φ.
These further imply perfect anticorrelation: θ1 + θ−1 = 2θ0.

Now we can self-consistently solve for the phases of all
comb lines from Eq. (14), referenced to the pump phase θ0,
giving

θn = θ0 + nφ. (15)

This simple relation, while meant only to indicate the ideal
limit of perfect phase locking (when phase mismatches are
zero), is a useful guide in understanding the global behavior
of the system.

V. SEMICLASSICAL RAMAN MODULATOR MODEL

Because Eq. (5) describing all the Raman sidebands is
difficult to solve, and the calculation in Sec. VI is only qual-
itative, we develop another supporting simplified approach,
which we call the semiclassical Raman modulator model. This
nonperturbative model assumes that the vibrational coherence
(polarization) in the molecules is spontaneously created by the
first Stokes and anti-Stokes mode pair, and the higher-order
sidebands are generated by the action of this coherence back
on the pump. Unlike the analysis in the previous section, here
we use detailed mathematic derivations which allow us to gain
further insight into the phase relations of all Raman sidebands.

The Raman pump field can be written as the sum of two
classical-field components:

E = E(+)e−iω0t + E(−)eiω0t , (16)

where (dropping various constants) the equation of motion for
the positive-frequency part is [25]

(∂z + vg∂t )E
(+) = iP (+) = iα(X)E(+). (17)

In the previous equation we write the semiclassical electronic
polarizability α(X) as a function of internuclear coordinate X.
Next, Taylor expand α(X) around the equilibrium coordinate
origin X0 and neglect the orders higher than the first term:

α(X) ∼= α(X0) +
(

∂α

∂X

)
(X − X0) . (18)

We discard the term α0(X), as it affects only the phase velocity
of the electric field. We also ignore for now any phase-velocity
mismatching in this model. By changing to the local time
variable z′ = t − z/vg , Eq. (17) can be written as

∂zE
(+) = iα′X E(+), (19)

where α′ = ( ∂α
∂X

).
The electric field at the end of the Raman medium (z = L)

can be obtained by integrating the previous equation:

E(+)(L,t) = E(+)(0,t) exp

(
iα′

∫ L

0
dz′X(z′,t)

)
. (20)

The X variable is related to the molecular polarization P created
in the medium by [25]

X(z,t) = P (z,t)e−iωRt + H.c.

= 2|p(z,t)| cos(ωRt + ϕ(z,t)), (21)

where ωR is the molecular resonance frequency, and ϕ(z,t) is
the random phase variable arising from the Raman process.
By putting Eq. (21) into Eq. (20), we get

E(+)(L,t)

= E(+)(0,t) exp

(
iα′

∫ L

0
dz2|p(z,t)| cos(ωRt + ϕ(z,t))

)
= E(+)(0,t) exp[i | a(t)| cos(ωRt + φ′(t))], (22)

where |a(t)| ei φ′(t) ≡ 2α′ ∫ L

0 dz |p(z,t)| ei ϕ(z,t). We use a
mathematical expansion for the phase part of the previous
equation, that is,

exp(i x cos(β)) =
∞∑

n=−∞
inJn(x) exp(i n β),

and we use J−n(x) = (−1)nJn(x) to rewrite Jn(x) =
(−1)nJ|n|(x). Then

E(+)(L,t)

= E(+)(0,t)
∞∑

n=−∞
(−i)nJ|n|(|a(t)|) exp(in(ωRt + φ′(t)))

= E(+)(0,t)
∞∑

n=−∞
J|n|(|a(t)|) exp(in(ωRt + φ′(t) − π/2)).

(23)

If we write φ(t) = φ′(t) − π/2, then

E(+)(L,t) = E(+)(0,t)
∞∑

n=−∞
J|n|(| a(t)|) exp(in φ(t))

× exp(in ωRt). (24)

We can identify the complex amplitudes of the stokes and
anti-Stokes lines as

E(+)
n (L,t) = E(+)(0,t)J|n|(| a(t)|) exp((in φ(t)).

We see that the first-order Stokes (n = 1) and anti-Stokes
(n = −1) fields are predicted to have opposite phases, which
is the same conclusion we derived earlier from the more
rigorous quantum theory for the case of only two sidebands.
Equation (24) is similar to the one derived in Ref. [2], except
that here only a single pump is used and the effects of
quantum fluctuations (ignored in [2]) are paramount. More
interestingly, Eq. (24) predicts that the higher orders of Stokes
and anti-Stokes fields will have their temporal phases related
to the phase of the strong pump (θ0) by

θn = θ0 + nφ(t). (25)

Under high-gain transient conditions, the phase φ(t) will
be essentially constant during a single pulse, as discussed
earlier. Therefore, this prediction is the same as obtained in
Eq. (15) using a distinct and more qualitative argument. It
can be understood, since higher-order sidebands arise from
multiple scattering from the Raman medium. Each time the
field gets scattered, the Raman medium will impose a φ phase
shift onto it.
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VI. PROSPECTS FOR ULTRASHORT
PULSE GENERATION

Combining the ideal relation (25) with the frequency
relations [shown in Eq. (1)], we find that the generated
comb spontaneously satisfies the required relations for Fourier
synthesis to create a periodic wave form. In order to see that,
express the synthesized wave form as

E(+)(t) =
∑

n

|E(+)

n (t)|ei[(ωp+n ωR)t+n φ+θ0]

= eiωpt+iθ0
∑

n

|E(+)

n (t)|ein(ωRt+φ), (26)

where we assumed φ(t) = φ is constant during a given
pulse (although random shot to shot). The intensity will be
determined by the summation term, which is invariant with
period T = 2π/ωR under the assumption that En is a slowly
changing envelope compared to that period.

However, the carrier envelope phase of the synthesized
wave form is changing, as we can see from Eq. (26), in
which the term eiωpt is generally not invariant over period
T. If the pump is tuned and stabilized to a multiple of the
molecular resonance frequency [i.e., ωp = m ωR (m is an
integer)], then one set (train) of periodic pulses with constant
CEP will be created within one pump pulse. On the other hand,
because the quantum phase φ changes from shot to shot, the
pulse trains within successive laser shots will not have the
same wave form and will not comprise isolated short pulses.
Further locking mechanisms, such as coherent injection
of molecular coherence, have been used to overcome this
limitation, and stable ultrashort pulse trains were created, with
the cost of added experimental complexity [6].

We are presently exploring whether simultaneous pumping
of the medium by a fundamental pump and its phase-locked
second harmonic, as in [6], but without external injection of
coherence, can also lead to stable ultrashort pulse trains by a
generalization of the phase locking discussed in the present
paper. If the frequency of the fundamental pump is tuned to
be precisely an integer multiple of the molecular resonance
frequency, the doubled pump will be resonant with one of
the anti-Stokes fields. For example, if we choose hydrogen
molecules as our Raman medium, the vibrational resonance
frequency is around 125 THz [9]. We can tune the pump
to about 375 THz (or 802 nm), which is in the range of
commonly used Ti-sapphire lasers. The frequency-doubled
pump (401 nm) will be resonant with the third anti-Stokes field
and will have a deterministic temporal phase �ϕ relative to
the pump. Both the pump and its frequency-doubled beam will
simultaneously interact with hydrogen molecules to generate
the comb. The question is whether this will deterministically
lock the temporal phase difference among adjacent comb lines,
which is φ in Eq. (25), to the value �ϕ/3, the only value that
allows a self-consistent phase anticorrelation between all comb
lines. The produced periodic single-cycle pulse trains will then
be identical upon subsequent pump pulses.

VII. CONCLUSIONS AND DISCUSSIONS

By developing a quantum theory of spontaneous Raman
comb generation, we predict that the first-order Stokes and

anti-Stokes fields are automatically and strongly phase anti-
correlated. We explained the mechanism of this phase locking
by qualitatively exploring the conditions that maximize the
molecular polarizations (coherence) in the generation process.
This intuitive model is further extended using a semiclassical
phase-modulation model, which is rooted in the quantum
theory, to analyze the higher-order sidebands. Our analysis
shows that the single-pump scheme is perhaps capable of
producing periodic trains of subfemtosecond pulses. This
result confirms the conjecture we previously outlined in [9].

It appears that both the benefit and the drawback of
this scheme lie in the quantum spontaneous initiation of
the Raman process. While the spontaneous nature of the
generation tends to favor the desired phase (anti)correlations,
the overall temporal phase of a generated Raman comb [φ in
Eq. (26)] would fluctuate from one pump pulse to another,
and would result in different CEP of synthesized pulse trains.
In order to overcome this uncertainty, we proposed to use
an auxiliary beam, which is the frequency-doubled pump, to
simultaneously pump the Raman comb generation.

In our simplified analysis for higher-order comb compo-
nents in Sec. VI, there are some limitations that need to
be addressed in future research. First, the dispersion in the
medium for different comb components was ignored. Second,
the time dependence of the random phase variable φ was
not fully considered. Third, a self-consistent solution for X
in Eq. (21) was not used. It is likely that numerical simulations
will be required to fully model these aspects.
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APPENDIX A

Here we derive the equations of motion for the slowly
varying electric-field operators and the collective molecular
raising operator. As stated in the main text, the effective
interaction Hamiltonian is

HI = −
∑

n

∫
(NA)dz{α1,nP (z,t)E(+)

n (z,t)E(−)
n−1(z,t)ei�βnz

+α∗
1,n+1P

†(z,t)E(+)
n (z,t)E(−)

n+1(z,t)e−i�βn+1z}. (A1)

Here the negative-frequency part of the slowly varying field
operator is related to the spatially localized photon creation
operator by

E(−)
n (z,t) = i

√
2πh̄ωn

AL
an(z,t), (A2)

and the molecular raising operator again is defined as

P (z,t) = 1/(NA)
∑
{m}z

σm
31(t), (A3)

where summation is over all molecules located at position
z. The commutation relations between different operators
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are

[E(+)
n (z,t),E(−)

m (z′,t ′)] = δnm

2πh̄ωn

A
δ(z − z′ − c(t − t ′)),

(A4.a)

[P †(z,t),P (z′,t)] = 1

NA
δ(z − z′). (A4.b)

All other commutators are zero. The Heisenberg equation of
motion for the negative-frequency part of the field operator
is obtained by calculating its commutation with the total
Hamiltonian:

∂tE
(−)
n (z,t) = i[H0 + HI ,E

(−)
n (z,t)], (A5)

where H0 is the Hamiltonian of the electric fields in free
space. It can be shown that this free-space Hamiltonian can be
written as [neglecting other terms that commute with operator
E(−)

n (z,t)] [26]:

H0 = ic

4πω0

∫
Adz

∂E(−)
n (z,t)

∂z
E(+)

n (z,t) + H.c.. (A6)

Using this and the commutator (A4.a) in the equation of
motion, we find

∂tE
(−)
n (z,t) = −c ∂zE

(−)
n (z,t) + i[HI ,E

(−)
n (z,t)]. (A7)

The second term in (A7) is obtained by using the commutation
relations:

i[HI ,E
(−)
n (z,t)]

= −i

[∑
n′

∫
(NA)dz′{α1,n′P (z′,t)E(+)

n′ (z′,t)E(−)
n′−1(z′,t)

× ei�β ′
nz

′ + α∗
1,n′+1P

†(z′,t)E(+)
n‘ (z′,t)E(−)

n′+1(z′,t)

× e−i�β
n‘+1z

′ },E(−)
n (z,t)

]

= −i

{
NAα1,nP (z,t)

(
2πh̄ωn

A

)
E

(−)
n−1(z,t)ei�βnz

+ NAα∗
1,n+1P

†(z′,t)
(

2πh̄ωn

A

)
E

(−)
n+1(z,t)e−i�βn+1z

}

= −icα∗
2,nPE

(−)
n−1 exp(i�βnz) − icα2,n+1P

†E(−)
n+1

× exp(−i�βn+1z),

where α2,n = 2πh̄Nωnα
∗
1,n/c.

Then the equation of motion for the slowly varying electric-
field operator is(

∂z + 1

c
∂t

)
E(−)

n (z,t) = −iα2,n+1E
(−)
n+1 exp(−i�βn+1z)P †

− iα∗
2,nE

(−)
n−1 exp(i�βnz)P. (A8)

In same way, the equation of motion for the molecular raising
operator can be found:

∂tP
†(z,t) = i[HI ,P

† (z,t)]

= −i

[∑
n

∫
(NA)dz′{α1,nP (z′,t)E(+)

n (z′,t)

× E
(−)
n−1(z′,t)ei�βnz

′ + α∗
1,n+1P

†(z′,t)E(+)
n (z′,t)

× E
(−)
n+1(z′,t)e−i�βn+1z

′ },P †(z,t)

]

= i
∑

n

α1,nE
(+)
n E

(−)
n−1 exp(i�βnz).

Changing variables to (z,τ ), where τ = t − z/c, this gives

∂zE
(−)
n (z,τ )|τ = −iα2,n+1E

(−)
n+1 exp(−i�βn+1z)P †

− iα∗
2,nE

(−)
n−1 exp(i�βnz)P, (A9.a)

∂τP
†(z,t)|z = i

∑
n

α1,nE
(+)
n E

(−)
n−1 exp(i�βnz), (A9.b)

which is Eq. (5) in the main text.

APPENDIX B

Here we give the detailed expressions for the correlation
coefficient C that is defined in Eq. (10), and for the intensity
of the first-order Stokes and anti-Stokes fields, by using the
solution of Eq. (7) and the initial conditions of Eq. (9). The
Stokes intensity is

Is(L,τ ) = 〈E(−)
−1 (L,τ )E(+)

−1 (L,τ )〉

= |α2,a|2
AN

|E0(τ )|2
∫ L

0
dz′|G13(z′; τ,0)|2

+ 2πh̄ω+1|α2,sα1,a|2
Ac

|E0(τ )|2
∫ τ

0
dτ ′|E0(τ ′)|2

× |G12(L; τ,τ ′)|2. (B1)

The anti-Stokes intensity is

Ia(L,τ ) = 〈E(−)
+1 (L,τ )E(+)

+1 (L,τ )〉

= 2πh̄ω−1|α1,sα2,a|2
Ac

|E0(τ )|2
∫ τ

0
dτ ′|E0(τ ′)|2

× |G21(L; τ,τ ′)|2. (B2)

The product of Eqs. (B1) and (B2) gives the denominator of
correlation coefficient C, and its numerator is

|〈E(−)
−1 (L,τ )E(−)

+1 (L,τ )〉|2

=
∣∣∣∣2πh̄ω+1|α1,s |2α2,sα

∗
2,a

Ac
|E0(τ )|2

∫ τ

0
dτ ′|E0(τ ′)|2

×G11(L; τ,τ ′)G∗
12(L; τ,τ ′)

∣∣∣∣
2

. (B3)

Since the operators E
(−)
−1 (L,τ ) and E

(−)
+1 (L,τ ) commute, the

numerator can also be expressed by changing their order:

|〈E(−)
+1 (L,τ )E(−)

−1 (L,τ )〉|2

=
∣∣∣∣−α2,sα

∗
2,a

AN
|E0(τ )|2

∫ L

0
dz′G13(z′; τ,0)G∗

23(z′; τ,0)

−2πh̄ω−1|α1,a|2α2,sα
∗
2,a

Ac
|E0(τ )|2

∫ τ

0
dτ ′|E0(τ ′)|2

×G12(L; τ,τ ′)G∗
22(L; τ,τ ′)

∣∣∣∣
2

. (B4)

We can then ensure the precision of our calculations by
comparing the values of Eqs. (B3) and (B4).
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