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Cavity quantum electrodynamics with a Rydberg-blocked atomic ensemble
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The realization of a Jaynes-Cummings model in the optical domain is proposed for an atomic ensemble. The
scheme exploits the collective coupling of the atoms to a quantized cavity mode and the nonlinearity introduced
by coupling to high-lying Rydberg states. A two-photon transition resonantly couples the single-atom ground
state |g〉 to a Rydberg state |e〉 via a nonresonant intermediate state |i〉, but due to the interaction between Rydberg
atoms only a single atom can be resonantly excited in the ensemble. This restricts the state space of the ensemble
to the collective ground state |G〉 and the collectively excited state |E〉 with a single Rydberg excitation distributed
evenly on all atoms. The collectively enhanced coupling of all atoms to the cavity field with coherent coupling
strengths which are much larger than the decay rates in the system leads to the strong coupling regime of the
resulting effective Jaynes-Cummings model. We use numerical simulations to show that the cavity transmission
can be used to reveal detailed properties of the Jaynes-Cummings ladder of excited states and that the atomic
nonlinearity gives rise to highly nontrivial photon emission from the cavity. Finally, we suggest that the absence
of interactions between remote Rydberg atoms may, due to a combinatorial effect, induce a cavity-assisted
excitation blockade whose range is larger than the typical Rydberg dipole-dipole interaction length.

DOI: 10.1103/PhysRevA.82.053832 PACS number(s): 37.30.+i, 42.50.Pq, 32.80.Qk, 32.80.Ee

I. INTRODUCTION

The Jaynes-Cummings model (JCM) [1] provides the
general framework to describe the interaction of a two-
level system, such as an atom, with a quantum harmonic
oscillator, e.g., a quantized cavity mode in cavity quantum
electrodynamics (CQED). It allows us to explain very specific
behaviors of such systems as, for example, the collapses and
revivals of Rabi oscillations [2,3]. The JCM was also used to
describe various physical situations outside the field of CQED,
such as the coupling of the internal states to the center-of-mass
vibrational levels of a trapped ion subject to a laser beam in
the Lamb-Dicke regime (for a review, see Ref. [4]) or, more
recently, a laser-driven electron floating on liquid helium [5].
Precisely because of this universality, the JCM also appears
now as one of the key ingredients for applications in quantum
information processing.

While many successful CQED experiments have been
carried out with microwave cavities, resonant with transi-
tions between atomic Rydberg excited states [6,7] and with
superconducting “artificial atoms” [8,9], it is harder to reach
the strong coupling regime with single atoms and optical
cavities. This regime is, however, of considerable practical
interest, as it makes it possible for the cavity to work as an
interface among optical photons and atoms, the flying and
stationary qubits, in quantum computing and communication
networks [10]. A viable path to obtain a highly coherent system
in the optical regime is to use a collection of N atoms whose
coupling strength to an optical field mode is magnified by the
factor

√
N relative to the single-atom case [11–21]. For large

N , the collective excitation degree of freedom of an atomic
ensemble is approximately equivalent to a quantum harmonic
oscillator and the system atoms-cavity therefore tends to be
well described by a simple quadratic Hamiltonian in the raising

and lowering operators for the atomic and field excitations.
Concepts to squeeze and entangle the atomic and field degrees
of freedom by this Hamiltonian have been developed but the
systems stay within the restricted family of Gaussian states
[22,23].

In this article, we propose an implementation of the
Jaynes-Cummings model in the optical domain using an
atomic ensemble. The ensemble atoms are placed in an optical
high-finesse cavity and a nonlinearity is introduced by the
interaction between atoms resonantly coupled to a high-lying
Rydberg state. In relatively small ensembles, dipole-dipole
interactions significantly shift the energy of states with two or
more Rydberg excitations [24]. When states with two excited
atoms are shifted far away from the optical resonance we
observe the so-called Rydberg blockade phenomenon [25–31],
where the atomic ensemble effectively behaves as a single
two-level system. The entire atoms-cavity system is therefore
well described by the Jaynes-Cummings model, and the col-
lective enhancement factor

√
N compared to the single atom

case may then lead to the strong coupling regime.
We will give an outline of the idea and analyze a specific

implementation with realistic physical parameters in Sec. II.
In Sec. III the expected signature of the strongly coupled
ensemble on the optical transmission of the cavity is discussed
and investigated numerically by use of Monte Carlo simula-
tions. In particular, we show that both the average signal and
the fluctuations present interesting, and perhaps surprising,
features linked with the eigenstates of the Jaynes-Cummings
model. In Sec. IV, we suggest a new mechanism by which the
cavity can extend the range of the Rydberg blockade beyond
the dipole-dipole interaction length. In Sec. V, we conclude
and discuss briefly the vast range of possible investigations that
can be made with the system and a few possible extensions of
the theoretical model.

1050-2947/2010/82(5)/053832(8) 053832-1 ©2010 The American Physical Society

http://dx.doi.org/10.1103/PhysRevA.82.053832


GUERLIN, BRION, ESSLINGER, AND MØLMER PHYSICAL REVIEW A 82, 053832 (2010)

II. PHYSICAL IMPLEMENTATION

The principle of our proposed experiment is depicted in
Fig. 1. A Bose-Einstein condensate consisting of N >∼ 1000
87Rb atoms is placed in an ultrahigh finesse cavity [17]
and is transversely illuminated by a homogeneous classical
laser field. The 5S1/2 ground atomic state denoted by |g〉
is assumed to be resonantly coupled to a Rydberg level |e〉
through a two-photon process, via the 5P3/2 intermediate
state |i〉. The transition |g〉 → |i〉, of frequency ωg→i , is
nonresonantly coupled with the coupling strength g0 to a
single quantized cavity mode with annihilation operator â and
frequency ωc. The cavity mode is detuned by the amount � =
ωc − ωg→i , while the transition |i〉 → |e〉 of frequency ωi→e is
nonresonantly driven by the laser field with the Rabi frequency
� and frequency ωl detuned by the amount ωl − ωi→e = −�.
Omitting at first the interatomic interactions, one can describe
the physical situation by the following Hamiltonian

H̃ = −h̄�

N∑
j=1

|ij 〉〈ij | +
[
h̄g0â

†
N∑

j=1

|gj 〉〈ij | + H.c.

]

+
[
h̄�

N∑
j=1

|ej 〉〈ij | + H.c.

]
, (1)

written in the interaction picture with respect to H0 =
h̄ωc(â†â + ∑N

j=1 |ij 〉〈ij |) + h̄(ωc + ωl)
∑N

j=1 |ej 〉〈ej |, and in
the rotating wave approximation. Dispersive shifts on both
transitions have been neglected for simplicity. Assuming a
large detuning from the intermediate state, � � �, where
�−1 is the lifetime of |i〉, we can adiabatically eliminate the
unpopulated intermediate state, which leads to the effective
Hamiltonian

H̃eff = h̄
g∗

0�

�
â

N∑
j=1

|ej 〉〈gj | + H.c.

= h̄
√

N
g∗

0�

�
âŜ† + H.c., (2)

where the collective mode atomic excitation is described by
Ŝ† = 1√

N

∑N
j=1 |ej 〉〈gj |.

Equation (1) is written under the assumption that all atoms
have the same coupling coefficients �, g0 to the laser and
cavity field. This describes the situation of a Bose-Einstein
condensate, when neglecting the photon recoil. Alternatively,
one can consider a real space where the coupling strengths
depend on the value of the mode functions at the location of
the individual atoms, and g∗

0� should be replaced by different
coefficients g∗

j �j on each term in the sum in (2). It turns out,
however, that in the limit of many atoms, one can define a
collective operator like Ŝ† which is a weighted sum of the
individual atomic raising operators and which also obeys the
oscillator-like commutator relations to a good approximation.
As long as the atoms do not move appreciably and change
their coupling strengths on the time scale of interest for the
experiment, this weighted collective atomic mode plays the
same role as the ideal symmetric mode and its coupling is
enhanced by the same factor

√
N and an extra mode-dependent

factor of order unity; see, e.g., Ref. [32]. For low Rydberg
excitation numbers, [Ŝ,Ŝ†] � 1, and the Hamiltonian Eq. (2)

approximately describes the linear exchange of excitations
between two degenerate oscillators.

The dipole-dipole interactions we have omitted so far are
strong only between neighboring Rydberg atoms. Their effect
on an atomic sample is to considerably shift the energy of
multiply Rydberg excited states within a sample size at most
of the order of the length lR at which the dipole-dipole
interaction equals the atom-light interaction. Driving the tran-
sition |g〉 → |e〉 as described above, one can thus resonantly
couple the collective ground state |G〉 ≡ |g1, . . . ,gN 〉 to the
collective symmetric state with a single Rydberg excitation
|E〉 ≡ Ŝ†|G〉 only, as higher excited levels are too far detuned.
This constitutes the Rydberg blockade phenomenon [25,26].
Restricting the Hamiltonian Eq. (2) to the physically relevant
atomic subspace {|G〉,|E〉} we get H̃ ′

eff = h̄geff â|E〉〈G| +
H.c., which corresponds to the interaction part of the Jaynes-
Cummings Hamiltonian describing the resonant interaction of
the cavity field with a fictitious two-level “superatom” [33],
with the effective coupling constant geff ≡ √

Ng∗
0�/�. We

finally pass to a new rotating frame defined by the unitary
state transformation exp{−itωc(â†â + |E〉〈E|)} to obtain the
full Jaynes-Cummings Hamiltonian

H̃JC = h̄ωcâ
†â + h̄ωc|E〉〈E| + [h̄geff â|E〉〈G| + H.c.] (3)

with an effectively equal excitation energy of the field and
ensemble atomic states.

The parameters of this Jaynes-Cummings model implemen-
tation can be tuned over a wide range. The collective coupling
on the first transition

√
Ng0 scales indeed as the square root

of the atom number and can thus be varied in the experiment
up to the GHz range [17]. One possible scheme would be to
excite the 70s Rydberg state from a 1000-atom Bose-Einstein
condensate (BEC), with a cavity-intermediate state detuning
of � = 2π × 900 MHz, a single atom resonant coupling on
that transition of g0 = 2π × 10 MHz, and a blue laser Rabi
coupling � = 2π × 30 MHz. Excitation of the intermediate
atomic state |i〉 can be neglected here since the cavity detuning
� is large compared to both the atomic radiative decay rate
� = 2π × 3 MHz from the intermediate state and the one-
photon collective coupling strength

√
Ng0 ∼ 2π × 320 MHz.

The resulting two-photon coupling geff ∼ 2π × 10 MHz is
higher than both decay rates of the cavity κ = 2π × 1.3 MHz
and of the Rydberg state γ = 2π × 0.55 kHz. This system
reaches the strong coupling regime on the ground-to-Rydberg
state two-photon transition. Within the Thomas-Fermi radius
of the BEC rTF ∼ 2 µm corresponding to an isotropic trapping
frequency 2π × 180 Hz, the minimum Rydberg interaction
shift over the atomic sample is �RI ∼ 2π × 200 MHz, which
is much bigger than the two-photon coupling geff . The states
with two or more Rydberg excited atoms are thus spectrally
well separated from the singly excited ones. Accordingly, note
that the size of the sample ∼ 4 µm is indeed below the blockade
radius calculated with these parameters �R ∼ 7 µm.

III. THE DRIVEN JAYNES-CUMMINGS MODEL

In the previous section, we arrived at an effective de-
scription of the ensemble-light interaction in terms of a
two-level superatom whose Hilbert space consists of the
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FIG. 1. (Color online) (Left) A Bose-Einstein condensate inside an ultrahigh finesse optical cavity is coupled in a two-photon scheme to a
Rydberg state, with the first photon being provided by a single quantized cavity mode and the second photon by a classical coupling beam. The
system is interrogated by monitoring the cavity transmission of a weak probe beam on a photon counter. (Middle) The quantized cavity mode
has a frequency ν1 and couples the collective atomic ground state |G〉 to an intermediate level |I 〉 with a detuning �. The collective vacuum
Rabi coupling is given by g0

√
N . A blue photon of frequency ν2 drives the excitation to a Rydberg state |E〉 with a classical Rabi coupling �.

(Right) The interaction between two Rydberg atoms leads to an energy shifted and broadened state |Ẽ〉 containing two excitations. This allows
selectively addressing the single excitation state. The resulting situation can be described by a Jaynes-Cummings Hamiltonian.

collective ground and singly Rydberg excited states of the
ensemble |G〉,|E〉. The associated effective Jaynes-Cummings
Hamiltonian Eq. (3) is block diagonal, coupling only pairs of
states (|G,n〉,|E,n − 1〉) with the same total number n of either
photonic or atomic excitations. The frequencies ωn,± of the
dressed eigenstates |n,±〉, obtained by direct diagonalization
of H̃JC, are given by

ωn,± = nωc ± geff
√

n. (4)

The resulting nonlinearity is depicted in Fig. 2.
This system can be driven by a classical probe field, which

either illuminates the atoms on the g-i transition or feeds the
cavity via one of the cavity mirrors. In the following we shall
consider the latter solution. Due to the cavity and atomic

|n=2, >

|G>

|n=1, > 2geff

4geff

(a) (c)(b)

2  2geff

FIG. 2. (Color online) Dressed ladder states of the atoms-cavity
system: (a) without interatomic interaction, the system would
be formally equivalent to two coupled oscillators and transition
frequencies between the multiplicities are degenerate; (b) when
the interaction between excited atoms is strong enough for the
atomic sample to be fully dipole-blocked, the system is described
by the JCM, and the nonlinearity prevents simultaneous excitation
of several multiplicities; (c) for larger atomic samples or weaker
dipole interaction, several Rydberg “bubbles” can appear, and the
system’s spectrum is described by “combinatorially dressed states,”
still preserving a nonlinearity for small enough bubble numbers.

decay, the combined field-atom system will reach a steady
state after a few relaxation times, i.e., a few microseconds
for the specific system under consideration. If the driving
field is weak, this state only slightly differs from the ground
state |G,n = 0〉 and, depending on the driving frequency, we
may estimate the probability amplitude with which the system
populates the excited eigenstates |n,±〉 of the unperturbed
Jaynes-Cummings model.

A. One-photon resonance

To excite the system, the driving frequency should match
one of the two dressed state components at ωc ± geff , shifted
by the so-called vacuum Rabi splitting. Directly measuring
the absorption or transmission of the cavity as a function of
the driving frequency, thus reveals the collectively enhanced
coupling strength geff . The width of the resonances is mainly
governed by the cavity decay (as noted above the atomic
decay rate γ is negligible compared to the cavity decay
rate κ). With geff ∼ 2π × 10 MHz and κ ∼ 2π × 1 MHz, the
two resonance lines are then clearly split, and it is possible
to selectively excite one of the dressed states |n = 1,±〉 ≡
(|G,1〉 ± |E,0〉)/√2. If the probe field couples to the cavity
mode according to the Hamiltonian

V = α∗eiωt â + αe−iωt â†, (5)

the coupling strength of the ground state to either of the dressed
states is the same, given by β1 = 〈n = 1, ± |V |G,0〉 =
α∗/

√
2. We therefore expect these states to be excited with

a probability p1 ∼ |β1|2/(δ2 + κ2/4), where δ denotes the
probe frequency detuning with respect to the dressed state
eigenfrequency. The dressed state populated is a superposition
of the atomic and field excited state, and the mean photon
number inside the cavity is expected to be 〈n〉 = 1

2p1.
To analyze the problem theoretically, we have carried out

numerical Monte Carlo simulations of the dynamics of the
driven atom + cavity system. The cavity decay occurs by
emission of photons [34], and we simulate the detection of
these emission events by a photon counter in the Monte Carlo
wave function (MCWF) formalism [35,36]. Such simulations
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FIG. 3. (Color online) Detection record for one-photon resonance
(α = 2π × 0.15 MHz).

do not converge to a steady state; they rather present a
stochastic dynamics with click events followed by transient
evolution until the next click event is detected. When averaged
over many independent realizations of this stochastic process,
one recovers the predictions of the master equation. Moreover,
the individual stochastic simulations are also useful, as they
provide typical records of the randomly selected detection
events which is, indeed, information similar to the one obtained
in a real transmission experiment. Experimental trajectories
similar to Monte Carlo simulated trajectories, agreeing in mean
value with the master equation evolution, have for example
been observed, in a different system, in [34,37].

Figure 3 shows the result of a simulation, where we plot the
mean photon number in the cavity 〈n〉 as a function of time. The
graph shows characteristic oscillations at the Rabi frequency
of the transition, interrupted by sudden jumps corresponding
to the detection of a photon. At jumps the intracavity photon
number drops to nearly zero, while the state of the system,
in the dressed state superposition of |G,1〉 and |E,0〉 just
before the measurement, collapses to the ground state |G,0〉.
One also observes an immediate consequence of these jumps:
The system is unable to emit another photon until it has been
re-excited, hence the clicks on the detector are predicted to
arrive at a rate given by the mean excited state population and
to be antibunched on the time scale of 1/β1.

B. Two-photon resonance

Recently [38], Schuster et al. studied the Jaynes-Cummings
model of a single atom in an optical cavity, and they identified
a peak in the transmitted power, when the cavity is driven
at one of the frequencies ωc ± geff/

√
2. Indeed, the driving

field is then resonant—by two-photon absorption—with one of
the dressed states |n = 2,±〉 with respective energies ω2,± =
2ωc ± geff

√
2. This is a difficult experiment, both because this

resonance is only a few decay widths away from the single
photon resonance and because the light atom interaction may
cause heating of the atomic motion in the frequency range
giving the optimal resolution of the resonance.
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〉

FIG. 4. (Color online) Detection record for two-photon resonance
(α = 2π × 1.5 MHz).

With our parameters, the splitting is larger, and due to
the long lifetime of the atomic Rydberg excited states, the
light induced heating will be much reduced. The two-photon
transition between the ground state |G,0〉 and the dressed states
|n = 2,±〉 is detuned from the intermediate states |n = 1,±〉
by the amount ωc ± geff

√
2 − (ωc ± geff/

√
2) = ±geff(1 −

1/
√

2). The two-photon coupling strength is hence estimated to
be β2 ∼ ±(α/

√
2)α(1 + √

2)/[geff(1 − 1/
√

2)] ∼ ±3α2/geff .
Accordingly, the steady-state population of the doubly excited
dressed state is p2 ∼ |β2|2/(δ2 + κ ′ 2), where κ ′ denotes the
coherence decay rate of the photonic components of the
dressed states. Since the dressed state is composed of equal
weight components with a single and two photons, the mean
photon number is expected to be 〈n〉 = 3

2p2 and κ ′ = 3κ/2 in
this case.

Again, we carried out simulations which confirmed the
existence of the expected resonance. This time, however,
the simulation record differs significantly from the results of
the previous section, as shown in Fig. 4. The mean photon
number is low, as is the average transmitted flux, but every time
a photon is detected, we now see a drastic increase in the mean
photon number in the cavity. This has a simple explanation,
since the state prior to the detection event is a superposition
of the ground state of the system and a doubly excited dressed
state. The back action of the detection of a single photon,
the quantum jump, is implemented by the action of the field
annihilation operator â, which replaces the state before the
detection event by

|
〉jump ∝ â{|G,0〉 + √
p2(|G,2〉 ± |E,1〉)}

∝
√

2|G,1〉 ± |E,0〉. (6)

The mean photon number in this state is 2/3, which is much
larger than the potentially nearly infinitesimal time averaged
photon number in the cavity. The figure shows the mean
photon number evaluated with the stochastic wave function
method, and the transient peaks confirm our simple analysis.
The detection record also shows a strong bunching effect: A
majority fraction of the jumps are followed by a second jump
within the cavity lifetime. A dedicated experiment should be
able to verify these nonclassical intensity correlations, and in
a future perspective, one may even imagine the possibility to
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FIG. 5. (Color online) Detection record for three-photon reso-
nance (α = 2π × 1.25 MHz).

apply feedback and modify the driving field immediately after
the first click event and thus prepare a variety of other quantum
states of the system [39].

C. Three-photon resonance

More generally, the spectrum Eq. (4) predicts the existence
of n-photon resonances at the driving frequencies ωn =
(nωc ± geff

√
n)/n = ωc ± geff/

√
n. For the specific exper-

imental setup considered here, these resonances are well
distinguishable, even for n > 2 : for example, the three-
photon resonance is well separated by a few line widths
from the two- and four-photon resonances. Of course, the
three-photon excitation is a higher-order process with in-
termediate nonresonant one- and two-photon virtual excita-
tions of the system, and it competes with the nonresonant
excitation of the system by lower-order processes. All these
processes are included in the full numerical simulations of the
system.

Figure 5 shows a simulated detection record for a driving
field resonant with the triply excited dressed state of the
atoms+cavity system. This time, our simple analysis suggests
that clicks cause a quantum jump of the state from a
superposition of the ground state and (|G,3〉 ± |E,2〉) toward√

3|G,2〉 ± √
2|E,1〉, which has an average photon number of

8/5. Within the cavity lifetime, one should thus expect bursts
of two to three photon detection events.

Such bunching of detection events is clearly seen in Fig. 5.
But when we zoom in on the detection record (see Fig. 6),
we observe somewhat surprising “bursts” of three and four
and even up to seven detection events, which contradict our
simple picture of the dynamics. Looking more closely into the
state conditioned on the subsequent detection events, we have
identified two mechanisms which seem to contribute to the ob-
served effect: (i) Not only does the system populate the ground
and triply excited dressed states but also a small off-resonant
excitation of higher-lying states occurs. The corresponding
population is then amplified by the action of the annihilation
operators and the

√
n factors associated with the detections of

the first, second, and third photons. (ii) The system evolves
between clicks, due to both the driving field and the states of

14.8 15 15.2 15.4 15.6 15.8
0

0.5

1

1.5

time (µs)

〈n
〉

FIG. 6. (Color online) Detection record for three-photon reso-
nance (magnified view). Each click is indicated by a bullet symbol
on the time axis (α = 2π × 2 MHz).

the form
√

3|G,2〉 ± √
2|E,1〉 resulting from the first click not

being eigenstates of the atoms-cavity coupling. Also, the small
probability amplitude in excited states, which is being magni-
fied by a quantum jump, contributes coherently to the buildup
of further excited-state population by the coherent probe field.
We have qualitatively verified the last point by setting the
probe amplitude α to zero after the first click in our simulations
and observed a reduction of the number of transient detection
events.

This multiphoton burst phenomenon constitutes an interest-
ing experimental effect, but we will not investigate it further
at this point.

IV. COMBINATORIAL EXTENSION OF DIPOLE
BLOCKADE MECHANISM

In the previous sections, we suggested to take advantage
of the full Rydberg blockade in a small atomic ensemble
to effectively implement the JCM in the strong coupling
regime and we studied the transmission properties of such
an ensemble-cavity system. In this section, we shall see how
the coupling of the atoms to the cavity can actually be used to
extend the range of the blockade mechanism beyond the limit
fixed by the length �R defined in Sec. II.

In the absence of interatomic interactions, i.e., for en-
sembles with interatomic separations larger than �R , the
atomic ensemble and the cavity mode behave like two
coupled oscillators leading to two atom-field eigenmodes with
frequencies ωc ± geff [Fig. 2(a)]. Driving the cavity with
a classical probe field tuned on one of these frequencies,
one resonantly excites a coherent state of the corresponding
eigenmode equivalent to product of coherent states of the
field and the collective atomic oscillator comprising all the
Rydberg excitation number states. In the opposite limit, i.e.,
for ensembles whose linear dimension is of the order of �R ,
the dipole-dipole interactions between Rydberg atoms are so
strong that they shift the multiply Rydberg excited states
out of resonance: The ensemble is equivalent to a two-level
atom, and the entire system is described by the JCM, Eq. (3)
[Fig. 2(b)].
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Let us now turn to the intermediate regime where the extent
of the ensemble is larger than �R but the Rydberg dipole-dipole
interactions still play an important role in the system. In that
case, the interaction does not shift all the multiply excited states
out of resonance and we may identify an unshifted doubly
excited collective state

|E2〉 ≡ 1√
A

⎛
⎝ ∑

|�rj −�rk |>�R

|ej ,ek〉〈gj ,gk|
⎞
⎠ |G〉 (7)

in which the excited atoms (j,k) are always too far apart from
each other to interact strongly. The normalization constant
A can be evaluated by counting the number of states |ej ,ek〉
which contribute to |E2〉, i.e., the number of pairs of atoms in
the ensemble which are separated by a distance larger than �R .
This state is thus resonantly accessible from the first excited
state |E〉 via the two-photon absorption from the cavity and
the blue laser classical field. The Hamiltonian Eq. (3) must
therefore be complemented by the term

2h̄ωc|E2〉〈E2| + h̄geff〈E2|Ŝ†|E〉|E2〉〈E|â + H.c.

More generally, due to the size of the sample, the resonant
coupling by the cavity mode and laser fields to higher multiply
excited states |E3〉,|E4〉, . . . in which ne = 3,4, . . . Rydberg
atoms are separated by more than �R , may be possible.
We can visualize the system as if the Rydberg blockade
phenomenon decomposes the ensemble into a number of
“bubbles” of radius �R [40]. In each bubble only a single
Rydberg excitation is possible and the number of atoms which
can be simultaneously excited in the ensemble coincides with
the number of bubbles, nb � V

4
3 π�3

R

. For a mesoscopic sample

which can thus accommodate nb Rydberg excitations, the
Hamiltonian Eq. (3) must therefore be complemented by
(nb − 1) terms coupling |E0〉 ≡ |G〉 to |E1〉 ≡ |E〉, |E1〉 to
|E2〉, |E2〉 to |E3〉, . . ., |Enb−1〉 to |Enb

〉.
The Rydberg interaction falls off in a continuous manner,

and hence the bubbles represent a rather crude description of
the multiply excited states, and while |G〉 and |E1〉 constitute
a closed two-state system under the interaction with the cavity
field, states with more than a single excitation may populate
higher-dimensional subspaces than indicated by the states
|Ek>1〉. The purpose of the current analysis, however, is not to
analyze the dynamics of higher excited states but to identify
a mechanism that prevents the system from exploring states
above |E1〉. This mechanism relies on our driving of the cavity
on the resonance frequency of one of the first excited dressed
states (|G,1〉 ± |E1,0〉)/√2. A second photon from the driving
field will be resonantly absorbed if the excited state manifold
of two excitations contains a state at twice the driving field
frequency. This indeed occurs if the atoms do not interact at
all, while any suppression of excitation reduces the coupling
between |E1,1〉 and collectively excited states with two atomic
excitations and hence causes the doubly excited dressed state
energies to lie at very different values. To make a simple
estimate of this mechanism, we apply the bubble picture, but
we recall that our calculation will only be used to quantify to
which extent the excitation terminates at a single excitation.

In this simple analysis, the ensemble-cavity dynamics is
thus governed by the Hamiltonian

H = h̄ωcâ
†â + h̄ωc

(
nb∑

k=1

k|Ek〉〈Ek|
)

+ â

(
nb∑

k=1

gk|Ek〉〈Ek−1|
)

+ H.c. (8)

The coupling strengths gk can be easily evaluated in the
“bubble” picture, since each bubble provides an effective two-
level atom and the states |Ek〉 are the symmetrically excited
states of these effective two-level systems with precisely k

excitations. These states, in turn, are equivalent to effective
angular momentum states |j,m〉 with the quantum numbers
j = nb/2 and m = −nb/2 + k.

The coupling strengths gk are given by the well-known
matrix elements of the angular momentum raising operator
multiplied by the effective two-state coupling of each bubble,
〈k|ĵ †|k − 1〉, and we get

gk =
√

(2j − k + 1)k

√
N

nb

g∗
0�

�

=
√

(nb − k + 1)k

√
N

nb

g∗
0�

�
. (9)

Setting k = 1, we recover the expected collective coupling
geff to the first excited states, while

g2 =
√

1 − 1

nb

√
2
√

N
g∗

0�

�
, (10)

which vanishes for nb = 1 as it should, and which approaches
the expected

√
2geff in the nonblocked oscillator limit of

large nb.
Any finite value, and in practice a not too large value, of

nb thus breaks the coupled oscillator picture, and hence the
excitation spectrum of the coupled system will not constitute
an equidistant ladder of states. In particular, the resonant
excitation of the lower component |1,−〉 is red detuned with
respect to the next excitation step, cf. Fig. 2(c), and the system
thus behaves as if the Rydberg blockade extends over the
entire system across different “bubbles.” Assuming that the
Rydberg interaction energy is positive for all pairs of excited
atoms (a property which is fulfilled for a wide range of Förster
resonant states [41]), the field is also significantly red detuned
from any interacting pair of excited atoms, and hence only
the single excitation dressed state |1,−〉 is resonantly excited
by the laser field. The absence of simultaneous excitation
of several bubbles is not due to their mutual interaction but
due to the coupling strength to higher excited states which
is modified because of the number of pairs that contribute
to this excitation. The blockade behavior is thus due to
a combinatorial effect. Diagonalizing the Hamiltonian (8),
within the space of two excitations, we find the eigenvalues

0, ±
√

2 − 1
nb

h̄
√

2geff , and hence the field resonant with the
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first dressed state |1,−〉 is red detuned from the two-photon

resonance by −2(1 −
√

1 − 1
2nb

geff) ∼ geff

2nb
.

This analysis suggests that we can extend the blockade
over only a few, say fewer than 10, “bubbles.” We intend to
perform more detailed numerical studies of the collectively
excited atoms. The picture with a given fixed set of bubbles
of atoms is not an exact one as any atom has the same
amplitude to be excited and hence form the center of a
bubble of excluded excitations around it, and the full many-
body state is a superposition of correspondingly different
bubble configurations [42–44]. We do expect, however, that
our combinatorial argument is robust to finer details of the
description and that any two-atom collective component will
not be excited at the same frequency as the dressed states with
a single collective excitation.

V. DISCUSSION

We have suggested to use the collective coupling of
∼1000 atoms to a cavity field combined with the Rydberg
blockade effect to restrict the atomic ensemble to an effective
two-level system. Physical parameters realistically reach the
JCM of strong coupling CQED, and we have shown that
exploration of higher excited states of the dressed states ladder
of this model should be possible by optical transmission
experiments.

We have analyzed the system dynamics with Monte Carlo
wave functions, and we note that the transients following
the simulated detection of a transmitted photon represent
the evolution happening in a real experiment conditioned
on photon detection. These transients explore states of the
light field which may be highly nonclassical and which may
be further explored or manipulated by a suitable feedback
operation, e.g., along the lines of [45].

In a longer perspective, many more possibilities can be
investigated. One may take advantage of the atomic sublevel
structure to significantly enrich the phenomenology with
collective qubit encoding [46], multimode atomic storage
states, STIRAP processes [47], and several quantum field
components may couple to Rydberg states with different
pairwise interaction properties [48] to accommodate effective
optical nonlinearities [49].

In this work, we disregarded the role of atomic motion,
but we note that even though the blockade regime precludes
strong interatomic forces as only single atoms are excited, the
position-dependent collective field-atom coupling may induce
mechanical motion entangled with the field and atomic internal
state degrees of freedom.

Another interesting direction of research, involves the
examination of larger systems. In such systems, the Rydberg
blockade is only efficient in blockade spheres around each
atom, and remote atoms may be simultaneously excited. We
have proposed that the combinatorics of the atoms-cavity
coupling may distort the ladder of energies of singly and
multiply occupied Rydberg states and thus maintain the
blockade effect over a larger atomic ensemble. This should
be more quantitatively addressed in future work.
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