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Cross-talk dynamics of optical solitons in a broadband Kerr nonlinear system with weak cubic loss
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We study the dynamics of fast soliton collisions in a Kerr nonlinear optical waveguide with weak cubic loss.
We obtain analytic expressions for the amplitude and frequency shifts in a single two-soliton collision and show
that the impact of a fast three-soliton collision is given by the sum of the two-soliton interactions. Our analytic
predictions are confirmed by numerical simulations with the perturbed nonlinear Schrödinger (NLS) equation.
Furthermore, we show that the deterministic collision-induced dynamics of soliton amplitudes in a broadband
waveguide system with N frequency channels is described by a Lotka-Volterra model for N competing species.
For a two-channel system we find that stable transmission with equal prescribed amplitudes can be achieved by
a proper choice of linear amplifier gain. The predictions of the Lotka-Volterra model are confirmed by numerical
solution of a perturbed coupled-NLS model.
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I. INTRODUCTION

Broadband optical waveguide communication systems have
been the subject of intensive research in recent years due to the
ever-increasing demand for high transmission capacity [1–3].
Transmission of information in such systems is often based
on the wavelength-division-multiplexing (WDM) method,
where many pulse sequences propagate through the same
optical waveguide. Each pulse sequence is characterized by
the central frequency of its pulses and is hence called a
frequency channel. Since pulses from different frequency
channels propagate along the waveguide with different group
velocities, interchannel pulse collisions are very frequent and
can impose severe limitations on transmission quality. On the
other hand, it might be possible to find ways to beneficially
employ the significant cumulative collision-induced effects in
broadband waveguide systems for control and tuning of optical
pulse properties such as energy, frequency, and phase.

In this work we focus attention on waveguide-based sys-
tems in which the main physical processes are due to second-
order dispersion, Kerr nonlinearity, and weak cubic loss. We
assume that linear loss either is negligible or is compensated
by distributed Raman amplification. The waveguide’s cubic
loss can be a result of two-photon absorption (TPA) or gain
and loss saturation. Pulse propagation in optical waveguides in
the presence of two-photon absorption or cubic loss has been
studied in many previous works [4–14]. The subject received
renewed attention in recent years due to the importance of
TPA in silicon nanowaveguides, which are expected to play
a crucial role in optical processing applications in optoelec-
tronic devices, including pulse switching and compression,
wavelength conversion, regeneration, etc. [15–22]. It is known
that the most important effect of a fast interchannel collision
in the presence of cubic loss is a decrease in the energy
of the colliding pulses [17,20]. This effect, which is known
as TPA-induced cross talk, has been demonstrated in recent
experiments in silicon nanowaveguide WDM systems [23].
In the experiments reported in Ref. [23] it was shown that
TPA-induced cross talk can lead to relatively high values of

the bit error rate for sufficiently high power levels of the optical
pulses even in a two-channel system.

Despite the great interest in TPA and cubic-loss cross
talk in broadband waveguide transmission, a comprehensive
analytic study of the phenomenon is still lacking. In the
current paper we address important aspects of this problem. We
consider conventional solitons of the nonlinear Schrödinger
(NLS) equation as an example for the optical pulses and
employ an adiabatic perturbation procedure that is suitable
for dealing with fast soliton collisions in the presence of
weak perturbations [24–28]. Our perturbative calculations
show that the TPA-induced amplitude shift in a single fast
two-soliton collision is proportional to ε/|β|, where ε is the
cubic-loss coefficient and β is the difference between the
central frequencies of the colliding pulses. Furthermore, we
find that the cross talk is accompanied by a collision-induced
frequency shift that scales as ε/(|β|β). Additionally, for
typical broadband transmission systems, in which |β| � 1,
the amplitude shift in a fast three-soliton collision is given by
a sum over the two-soliton interactions. Our analytic results for
the single two-soliton and three-soliton collision are confirmed
by numerical solution of the perturbed NLS equation with the
cubic-loss term.

Since in broadband WDM transmission systems the fre-
quency difference between the lowest and highest frequency
channels is large, the corresponding group velocity difference
is also large. Thus, each optical pulse might undergo a large
number of interchannel collisions during the transmission. It
is therefore important to obtain an accurate description of
pulse dynamics under many interchannel collisions. In the
current study we tackle this problem by developing a reduced
model for the deterministic evolution of pulse amplitudes
in soliton-based broadband transmission with N frequency
channels. The derivation of the reduced model is based on
the analysis of a single interchannel collision and on the
assumptions that the solitons in each frequency channel are
well separated in time and that radiation emission effects
can be neglected. Under these assumptions we show that
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the cross-talk-induced amplitude dynamics in an N -channel
transmission line is described by a Lotka-Volterra model for N

competing species. Furthermore, for a two-channel system we
show that stable stationary transmission with equal prescribed
amplitudes can be achieved by a proper choice of linear
amplifier gain. In addition, we find the conditions on the time
slot width and the soliton’s equilibrium amplitude value under
which the transmission is indeed stable. The predictions of
the reduced Lotka-Volterra model are confirmed by numerical
solution of a coupled-NLS model, which takes into account
intrapulse and interpulse effects due to Kerr nonlinearity and
cubic loss.

Our reasons for considering optical solitons as an example
for the propagating pulses are the following. First, in many
of the systems under consideration the waveguides are highly
nonlinear, and pulse propagation is accurately described by a
perturbed NLS equation [6,7,9,17,18,20]. Furthermore, NLS-
type solitons were experimentally demonstrated in quite a
few of these systems [12,19,21,29,30]. Second, since the
unperturbed NLS equation is an integrable model [31] and
since optical solitons are stable stationary solutions of this
model, derivation of analytic results for the effects of cubic
loss on interpulse collisions can be done in a rigorous
manner. Third, due to their properties, optical solitons are
considered to be ideal candidates for information transmission
and processing in broadband waveguide systems [1].

The rest of the paper is organized as follows. In Sec. II
we briefly review the perturbation procedure developed in
Refs. [24,25] and employ it to calculate the main effects of
cubic loss on a single fast two- and three-soliton collision.
In Sec. III we present the results of numerical simulations
of a single two- and three-soliton collision as well as of
two successive two-soliton collisions. We also analyze these
results in comparison with the analytic predictions obtained
in Sec. II. The reduced model for the dynamics of soliton
amplitudes in an N -channel transmission line is developed
in Sec. IV A. In Sec. IV B we provide a detailed analysis of
amplitude dynamics in a two-channel system and obtain the
conditions for stable transmission. In addition, we compare
the predictions of the reduced model with results of numerical
simulations with a perturbed coupled-NLS model. Section V
gives our conclusions.

II. EFFECTS OF CUBIC LOSS ON A SINGLE TWO- AND
THREE-SOLITON COLLISION

A. Basic equations

Propagation of pulses of light through an optical waveguide
in the presence of second-order dispersion, Kerr nonlinearity,
and weak cubic loss can be described by the following
perturbed NLS equation [6,7,17]:

i∂zψ + ∂2
t ψ + 2|ψ |2ψ = −iε|ψ |2ψ, (1)

where ψ is proportional to the envelope of the electric field, z

is propagation distance, and t is time in the retarded reference
frame. The term −ε|ψ |2ψ describes the effects of cubic loss,
and ε is the cubic-loss coefficient. The cubic-loss term on the
right-hand side of Eq. (1) is often associated with two-photon
absorption. We assume here that linear loss is compensated

by distributed Raman amplification [32–37]. The fundamental
soliton solution of the unperturbed NLS equation with central
frequency β is

ψβ(t,z)=ηβ

exp(iχβ)

cosh(xβ)
, (2)

where xβ = ηβ(t − yβ − 2βz), χβ = αβ + β(t − yβ) + (η2
β −

β2)z, and ηβ,αβ , and yβ are the soliton amplitude, phase, and
position, respectively.

Let us describe the effects of cubic loss on single-soliton
propagation. Employing the standard adiabatic perturbation
theory for the NLS soliton [38] we obtain the following
equation for the dynamics of its amplitude:

dη(s)(z)

dz
= −4

3
εη(s)3(z), (3)

where the superscript s denotes self-amplitude shift, that is,
an amplitude shift which is due to single-pulse propagation.
Thus, the z dependence of the soliton’s amplitude is given by
the following equation [6,7]:

η(s)(z) = η(0)

[1 + 8εη2(0)z/3]1/2
. (4)

B. Two-soliton collision

Next, we consider the effects of cubic loss on a single two-
soliton collision. For simplicity and without loss of generality,
the central frequencies of the solitons are taken as β = 0 and β.
We refer to these solitons as the reference-channel soliton and
the β-channel soliton, respectively. Since we are interested
in a fast collision in the presence of weak cubic loss we
assume that ε � 1 and 1/|β| � 1. In addition, we assume
that the two solitons are initially well separated from each
other in the temporal domain. Under these assumptions we can
employ the perturbation technique, developed in Refs. [24,25],
and successfully applied for studying soliton collisions in the
presence of third-order dispersion [24,25], quintic nonlinearity
[26], and delayed Raman response [27,28,39–41]. Following
this perturbation technique, we look for a two-pulse solution
of Eq. (1) in the form

ψtwo = ψ0 + ψβ + φ, (5)

where ψ0 and ψβ are single-soliton solutions of Eq. (1) with
0 < ε � 1 in channels 0 and β, respectively. The term φ on
the right-hand side of Eq. (5) represents a small correction to
the single-soliton solutions, which is solely due to collision
effects. In analogy with the ideal collision case we express φ

as

φ = φ0 + φβ + · · · , (6)

where φ0 and φβ describe collision-induced effects in channels
0 and β, and the ellipsis represents higher-order terms in other
channels. Combining Eqs. (5) and (6) we observe that the
envelope of the reference-channel pulse is ψ total

0 = ψ0 + φ0.
We now substitute the relations (5) and (6) together

with ψ0(t,z) = 	0(x0) exp(iχ0), φ0(t,z) = 
0(x0) exp(iχ0),
ψβ(t,z) = 	β(xβ) exp(iχβ), and φβ(t,z) = 
β(xβ) exp(iχβ)
into Eq. (1) and keep terms up to O(ε/β). As we show
in the following, this approximation allows us to calculate
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collision-induced effects up to O(ε/β2). Since φ0 and ψ0

oscillate with the same frequency, and since |β| � 1, the
resulting equation readily decomposes into an equation for
the evolution of 
0 and an equation for the evolution of

β [24,26,27]. We focus attention on 
0 and comment that
the calculation of 
β is similar. The equation for 
0 is

i∂z
0 + [(
∂2
t − η2

0

)

0 + 4|	0|2
0 + 2	2

0
∗
0

]
= −4[|	β |2	0 + |	β |2
0 + 	0(	β
∗

β + 	∗
β
β)]

− 2iε
[|	β |2	0 + |	0|2
0 + 	2

0
∗
0/2 + |	β |2
0

+	0(	β
∗
β + 	∗

β
β)
]
. (7)

The field 
0 is obtained in the form of a perturbation series.
That is, we substitute


0(x0,z) = 

(0)
01 (x0,z) + 


(1)
01 (x0,z) + 


(0)
02 (x0,z)

+

(1)
02 (x0,z) + · · · (8)

into Eq. (7) and expand the result with respect to ε and
1/β. In Eq. (8) the first subscript in 


(0)
01 , for example,

stands for the channel, the second subscript indicates the
combined order with respect to both ε and 1/β, and the
superscript represents the order in ε. The total collision-
induced change in the reference-channel soliton’s envelope
is �
0(x0) = 
0(x0,∞) − 
0(x0,− ∞). The corresponding
changes in soliton parameters are calculated by projecting
�
0(x0) onto one of the four localized eigenmodes of the
linear operator L̂ describing small perturbations about the
fundamental NLS soliton [24,26,27].

Turning to the results of the perturbative calculations, we
note that the only collision-induced effects in orders 1/β

and 1/β2 are a phase shift �α0 = 4ηβ/|β| and a position
shift �y0 = −4ηβ/(β|β|). Both effects already exist in the
unperturbed two-soliton collision [31]. In addition, there are
no terms of order εβ on the right-hand side of Eq. (7), and
as a result, there are no effects in order ε. We therefore start
the discussion of perturbative calculations by considering the
effects of the collision in order ε/β. In this order Eq. (7) is
reduced to

i∂z

(1)
02 = −2iε|	β |2	0. (9)

Integration over z yields

�

(1)
02 (x0) = − 2εη0ηβ

|β| cosh(x0)
. (10)

To obtain the collision-induced amplitude shift we project
(�


(1)
02 (x0),�


(1)∗
02 (x0))T on the eigenfunction f0(x0) =

sech(x0)(1, − 1)T of the operator L̂ and integrate over x0 (see
Ref. [27] for a similar calculation). This calculation yields the
following expression for the amplitude shift �η

(c)
0 induced by

cubic-loss cross talk:

�η
(c)
0 =−4εη0ηβ/|β|. (11)

As we show in the following, the fact that �η
(c)
0 is inversely

proportional to |β| means that in N -channel transmission
systems the cumulative amplitude shift induced by the cross
talk is proportional to Nε. Therefore, in WDM systems
with a large number of channels, cubic-loss cross-talk effects

are dominant compared with the effects of cubic loss on
single-pulse propagation as described by Eq. (4).

We now turn to describe collision-induced effects in order
ε/β2. This calculation is of particular interest since it reveals
that the presence of cubic loss leads to a shift of the central
frequencies of the colliding solitons. We refer to this frequency
shift as the cubic-loss cross-frequency shift. Taking into
account all terms of order ε/β in Eq. (7) we arrive at the
equation

i∂z

(1)
03 = −[(

∂2
t − η2

0

)



(1)
02 + 4|	0|2
(1)

02 + 2	2
0


(1)∗
02

]
− 4|	β |2
(1)

02 − 4	0
(
	β


(1)∗
β2 + 	β


(1)
β2

)
− 2iε

[|	0|2
(0)
01 + 	2

0

(0)∗
01 /2 + |	β |2
(0)

01

+	0
(
	β


(0)∗
β1 + 	β


(0)
β1

)]
. (12)

It is possible to show that the only terms on the right-hand
side of Eq. (12) that contribute to the integral over z are
the dispersion term −∂2

t 

(1)
02 and the cross-phase modulation

term −4	0(	β

(1)∗
β2 + 	β


(1)
β2). Substituting the expressions

for 	0, 	β , 

(0)
01 , 


(0)
β1, 


(1)
02 , and 


(1)
β2, we obtain the following

equation for 

(1)
03 :

i∂z

(1)
03 = 10εη2

0η
2
β

β

tanh(x0)

cosh(x0) cosh2(xβ)
. (13)

We note that the contributions of the dispersion and cross-
phase modulation terms have the same sign. This is different
from the case of the Raman-induced cross-frequency shift,
where dispersion and Kerr nonlinearity give contributions
of opposite signs [27]. Integration over propagation distance
yields

�

(1)
03 (x0) = −10iεη2

0ηβ

|β|β
tanh(x0)

cosh(x0)
. (14)

The collision-induced frequency shift is calculated by project-
ing (�


(1)
03 (x0),�


(1)∗
03 (x0))T on the eigenfunction f1(x0) =

sinh(x0)sech2(x0)(1,1)T of the operator L̂ and integrating over
x0:

�β
(c)
0 = −20εη2

0ηβ

3|β|β . (15)

C. Three-soliton collision

In multichannel waveguide transmission systems, where
the pulses are ordered in periodic sequences, effects of
collisions between three or more pulses all from different
channels might become important. Since Eq. (1) contains
terms that are either linear or cubic in ψ , one can expect that
consideration of three-soliton collisions would be sufficient
for an accurate description of the dynamics induced by
many-soliton collisions. We therefore turn to study this case.

As an example, we consider a fast collision involving
solitons with central frequencies β, 0, and −β. We assume
that ε � 1, 1/|β| � 1, and yβ(0) = −y−β (0) and that the
three solitons are initially well separated in time. We look
for a three-pulse solution of Eq. (1) in the form

ψthree = ψ0 + ψβ + ψ−β + φ0 + φβ + φ−β + · · · , (16)
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where ψ−β is the single pulse solution in the −β channel,
φ−β describes collision-induced effects in the −β chan-
nel, and the ellipsis represents higher-order terms in other
channels. We substitute relation (16) along with ψ0(t,z) =
	0(x0) exp(iχ0), φ0(t,z) = 
0(x0) exp(iχ0), ψβ(t,z) = 	β

(xβ) exp(iχβ), φβ(t,z) = 
β(xβ) exp(iχβ), ψ−β (t,z) = 	−β

(x−β) exp(iχ−β), and φ−β(t,z) = 
−β(x−β) exp(iχ−β) into
Eq. (1) and keep terms up to first order with respect to both
ε and 1/β. This allows us to calculate collision effects up to
second order. Exploiting the fact that |β| � 1 we obtain the
following equation for 
0:

i∂z
0 + [(
∂2
t − η2

0

)

0 + 4|	0|2
0 + 2	2

0
∗
0

]
= − 4(|	β |2 + |	−β |2)(	0 + 
0)

− 4	0[(	β
∗
β + 	∗

β
β) + (	−β
∗
−β + 	∗

−β
−β)]

− 4[	∗
0 (	β	−β + 	β
−β + 
β	−β) + 
∗

0	β	−β]

× exp(−2iχ0 + iχβ + iχ−β) − 2iε(|	β |2 + |	−β |2)	0

− 2iε	∗
0 	β	−β exp(−2iχ0 + iχβ + iχ−β). (17)

We substitute the expansion in Eq. (8) into Eq. (17) and
keep terms up to second order. We observe that the only
collision-induced effects in orders 1/β and 1/β2 are a phase
shift �α0 and a position shift �y0. When |β| � 1 and the
soliton amplitudes are of order 1 these phase and position shifts
are given by �α0 = 4(ηβ + η−β)/|β| and �y0 = −4(ηβ −
η−β)/(β|β|), respectively. Thus, the phase shift and position
shift in the three-soliton collision are given by a sum over
two-soliton interaction effects, in accordance with Ref. [31].
In addition, there are no collision-induced effects in order ε.
The equation describing the dynamics in order ε/β is

i∂z

(1)
02 = −2iε(|	β |2 + |	−β |2)	0

− 2iε	∗
0 	β	−β exp(−2iχ0 + iχβ + iχ−β). (18)

The first two terms on the right-hand side of Eq. (18) are clearly
associated with two-soliton interaction. Therefore, the only
contribution to �


(1)
02 from three-soliton interaction can come

from the third term. Denoting this contribution by �

(1)3b
02 and

integrating over z, we obtain

�

(1)3b
02 (x0) = −2ε	0I

(1)3b
02 (t) exp[iχ3b(0)], (19)

where

I
(1)3b
02 (t) =

∫ ∞

−∞
dz	β(t,z)	−β(t,z)

× exp
[
i
(
2β2 + η2

β + η2
−β − 2η2

0

)
z
]
, (20)

and χ3b(0) = αβ(0) + α−β(0) − 2α0(0) − β[yβ(0) − y−β (0)].
For a typical broadband transmission system, |β| � 1, while
η0, ηβ , and η−β are of order 1. In this case, the oscillation period
of the exponential function appearing in the integral on the
right-hand side of Eq. (20) can be estimated by zosc = π/|β|2.
The collision length can be estimated by zcol = 1/|β|. Thus,
the oscillations of the integrand in Eq. (20) will make �


(1)3b
02

small if zosc � zcol, or equivalently, if |β| � π . In order to
verify this argument we calculate I

(1)3b
02 (t) numerically with

η0 = ηβ = η−β = 1 for β = 10, β = 5, and β = 1. The results
are shown in Fig. 1.

−5 0 5
−1

0

1

2

3

4x 10
−7

t

I 02(1
)3

b

(a)

−5 0 5
−5

0

5

10

15x 10
−4

t
I 02(1

)3
b

(b)

−5 0 5
−0.6

−0.4

−0.2

0

0.2
(c)

t

I 02(1
)3

b

FIG. 1. The integral I
(1)3b

02 vs time t for η0 = ηβ = η−β = 1 and
β = 10 (a), β = 5 (b), and β = 1 (c).

Based on this discussion we conclude that when |β| � 1
and η0, ηβ , and η−β are of order 1, the amplitude shift �η

(c)
0

in a three-soliton collision is given by a sum of the amplitude
shifts due to two-soliton interaction:

�η
(c)
0 =−4εη0(ηβ + η−β)/|β|. (21)

A similar calculation shows that the same conclusion is
valid for the collision-induced amplitude shifts �η

(c)
β and

�η
(c)
−β .

III. NUMERICAL SIMULATIONS

The analytic predictions for the soliton amplitude and
cross-frequency shifts in Eqs. (11), (15), and (21) are based
on the assumption that radiation emission effects can be
neglected. We remark that emission of continuous waves due
to single-soliton propagation affects the soliton parameters in
order ε2 (see Refs. [42,43], for example). Therefore, Eq. (11)
for the collision-induced amplitude shift is expected to hold
when ε2 � ε/|β| � 1 or, equivalently, when ε � 1/|β| � 1.
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In addition, Eq. (15) for the soliton cross-frequency shift
is expected to hold when ε2 � ε/|β|2 � 1 or, equivalently,
when ε � 1/|β|2 � 1.

In order to validate the analytic predictions in the previous
section we perform numerical simulations with Eq. (1). The
equation is integrated by employing a split-step method that
is of fourth order with respect to the step size in z [44]. The
step sizes in t and z are taken as �t = 0.005 and �z = 0.004,
respectively. The size of the computational domain is −1000 �
t � 1000, and the number of Fourier modes is 1.28 × 106

so that the spacing between adjacent points of the frequency
grid is �ω = 0.001. The small frequency spacing and large
number of Fourier modes allow us to accurately measure
frequency shifts of order 10−3, which is the value of the cross-
frequency shift that is expected from Eq. (15) for ε = 0.04 and
|β| > 10.

In simulating a single two-soliton collision we take the
initial condition as the sum of two fundamental solitons of the
form (2) with frequencies β = 0 and β. The values of |β| are in
the range 1 � |β| � 25. The initial positions of the solitons are
y0(0) = 0, yβ(0) = −15 for β > 0, and yβ(0) = 15 for β < 0;
i.e., the two solitons are initially well separated in the time
domain. The initial amplitudes and phases of the two solitons
are η0(0) = ηβ(0) = 1 and α0(0) = αβ(0) = 0, respectively.
The simulations are carried out up to a final distance zf , such
that 1 � zf � 8 and |yβ(zf ) − y0(zf )| � 1. Thus, the two
solitons are well separated in the time domain at zf .

The β dependence of the collision-induced amplitude
shift �η

(c)
0 obtained by numerical simulations with ε = 0.02

and ε = 0.05 is shown in Fig. 2 along with the analytic
prediction of Eq. (11). The numerical results are in very
good agreement with the analytic prediction for frequency
difference values |β| � 5. For smaller values of |β|, for which
the assumptions of the perturbation theory are not satisfied, the
numerically obtained values of |�η

(c)
0 | can deviate from the

values predicted by Eq. (11). When 1 < β < 5 the numerical
results for |�η

(c)
0 | are significantly smaller compared with the

analytic prediction for both ε = 0.02 and ε = 0.05, while for
−5 < β < −1 and ε = 0.05 the numerical results for |�η

(c)
0 |

are larger than the analytic prediction. Surprisingly, when
ε = 0.02 we observe good agreement between simulations
and theory even for −5 < β < −1.

Figure 3 shows the β dependence of the collision-induced
frequency shift experienced by the reference-channel soliton
�β

(c)
0 for ε = 0.04. We observe good agreement between the

result obtained by numerical simulations with Eq. (1) and the
analytic prediction of Eq. (15). Thus, we conclude that a fast
two-soliton collision in the presence of cubic loss induces an
O(ε/β2) frequency shift.

As explained in Sec. I, in broadband communication
systems many pulse sequences, each characterized by the
central frequency of its pulses, propagate through the same
waveguide. In this case a pulse in a given sequence typically
undergoes many consecutive collisions with pulses from other
sequences. It is therefore interesting to investigate whether
or not the impact of successive two-pulse collisions can be
described by summing over the individual collisions. As an
example, we consider the effects of two consecutive collisions
of a reference-channel soliton with two β-channel solitons.

−30 −20 −10 0 10 20 30
−0.05

−0.04

−0.03

−0.02

−0.01

0

∆η
0(c

)

β

(a)

−30 −20 −10 0 10 20 30
−0.2

−0.15

−0.1

−0.05

0

∆η
0(c

)

β

(b)

FIG. 2. Collision-induced amplitude shift of the reference-
channel soliton �η

(c)
0 as a function of the frequency difference β

for ε = 0.02 (a) and ε = 0.05 (b). The circles represent the result of
numerical simulations with Eq. (1), and the solid line stands for the
analytic prediction of Eq. (11).

The initial parameters of the reference-channel soliton are
η0(0) = 1, y0(0) = 0, and α0(0) = 0, while those of the two
β-channel solitons are ηβ1(0) = ηβ2(0) = 1, yβ1(0) = −10,
yβ2(0) = −20, and αβ1(0) = αβ2(0) = 0. Thus, the three
solitons are initially well separated in the time domain. In
addition, the total amplitude shift of the reference-channel
soliton induced by the two collisions is calculated at a
distance zf at which the solitons are again well separated.
The actual values of zf are 1 � zf � 12, depending on the
value of β. The numerically obtained dependence of the

−20 −10 0 10 20
−0.02

−0.01

0

0.01

0.02

∆β
0(c

)

β

FIG. 3. Collision-induced frequency shift of the reference-
channel soliton �β

(c)
0 as a function of the frequency difference β for

ε = 0.04. The circles represent the result of numerical simulations
with Eq. (1), and the solid line corresponds to the analytic prediction
of Eq. (15).
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−0.12
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−0.08

−0.06

−0.04

−0.02

0

β

∆η
0(c

)

FIG. 4. The total amplitude shift of the reference-channel soliton
�η

(c)
0 in two successive collisions with two well-separated β-channel

solitons vs frequency difference β for ε = 0.02. The circles represent
the result of numerical simulations with Eq. (1), and the triangles
stand for the analytic prediction of Eq. (22).

total amplitude shift �η
(c)
0 on the frequency difference β for

ε = 0.02 is shown in Fig. 4. Also shown is the analytic result
obtained by employing Eq. (11) and summing over the two
collisions:

�η
(c)
0 =−4ε[η0(z1)ηβ1(z1) + η0(z2)ηβ2(z2)]/|β|, (22)

where z1 and z2 are the collision distances for the first and
second collisions, respectively. That is, z1 and z2 are the
distances at which the envelope of the reference-channel
soliton completely overlaps with the envelope of the first
and second β-channel soliton. The good agreement between
numerical simulations and the result obtained by employing
Eq. (22) shows that when the two β-channel solitons are
well separated the effects of two consecutive collisions are
indeed given by a sum of the effects of the individual
collisions.

Next we consider the impact of a three-soliton collision
involving solitons from the 0, β, and −β channels. The initial
parameters of the solitons are η0(0) = ηβ(0) = η−β(0) = 1,
y0(0) = 0, yβ(0) = −15, y−β (0) = 15, and α0(0) = αβ(0) =
α−β(0) = 0. As discussed in Sec. II C, when |β| � 1 and
η0, ηβ , and η−β are of order 1, the amplitude shift of the
reference-channel soliton in the three-soliton collision should
be well approximated by Eq. (21). That is, the amplitude
shift is given by a sum over the two-body interactions. The
β dependence of the amplitude shifts of the reference-channel
and β-channel solitons �η

(c)
0 and �η

(c)
β obtained in numerical

simulations with ε = 0.02 is shown in Fig. 5 along with
the theoretical prediction obtained by employing Eq. (21).
The agreement between theory and simulations is very good
for |β| � 5. Surprisingly, good agreement is also observed
for −5 < β < −1, where the perturbation description is
not expected to be valid. For 1 < β < 5 the numerically
obtained values of the amplitude shifts are significantly
larger than the analytic prediction of Eq. (21). Based on
these observations we conclude that when |β| � 1 and η0,
ηβ , and η−β are of order 1, the three-soliton interaction
can be approximated by summing over the two-soliton
interactions.

−30 −20 −10 0 10 20 30
−0.12

−0.1

−0.08

−0.06

−0.04

−0.02

∆η
0(c

)

β

(a)

−30 −20 −10 0 10 20 30
−0.08

−0.06

−0.04

−0.02

0

∆η
β(c

)

β

(b)

FIG. 5. Amplitude shifts of the 0-channel and β-channel solitons
�η

(c)
0 and �η

(c)
β in a three-soliton collision as functions of the

frequency difference β for ε = 0.02. The circles correspond to the
result of numerical simulations with Eq. (1), and the solid line
represents the analytic prediction based on Eq. (21). (a) �η

(c)
0 vs

frequency difference. (b) �η
(c)
β vs frequency difference.

IV. DETERMINISTIC CROSS-TALK DYNAMICS IN
BROADBAND TRANSMISSION SYSTEMS

A. Derivation of the model

We consider a soliton-based multichannel transmission
system with N frequency channels and frequency difference
�β between adjacent channels and develop a reduced model
for deterministic amplitude dynamics due to cubic loss. The
derivation of the model is similar to the one carried out in
Refs. [45,46] for amplitude dynamics induced by Raman cross
talk. However, the resulting model and observed dynamics are
quite different from those considered in Refs. [45,46]. The
model is based on the following assumptions: (1) Information
is encoded in the phase so that the soliton sequences in all
channels are deterministic; i.e., all time slots are occupied and
each soliton is located at the center of a time slot of width T ,
where T � 1. The initial amplitudes of all solitons in a given
channel are equal, but initial amplitudes of solitons in different
channels are not necessarily equal. This setup corresponds,
for example, to return-to-zero differential-phase-shift-keyed
transmission. (2) The sequences are either (a) infinitely long
or (b) subject to periodic temporal boundary conditions. Notice
that setup (a) is an approximation for long-haul transmission
systems, while setup (b) is an approximation for closed
waveguide-loop experiments. (3) We take into account linear
and cubic loss, cross talk induced by cubic loss, and distributed
linear amplifier gain. Thus, the net linear gain or loss in
each channel is determined by the difference between linear
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TABLE I. Equilibrium states of Eq. (27) and their properties.

Point Existence Stable Unstable

(η,η) η > 0 η > 3/T 0 < η � 3/T

(0,0) η > 0 η > 0
(C1/2(η),0) η > 0 0 < η < 3(

√
5 − 1)/T η � 3(

√
5 − 1)/T

(0,C1/2(η)) η > 0 0 < η < 3(
√

5 − 1)/T η � 3(
√

5 − 1)/T

(C2(η),C3(η)) 3/T < η < 3(
√

5 − 1)/T 3/T < η < 3(
√

5 − 1)/T

(C3(η),C2(η)) 3/T < η < 3(
√

5 − 1)/T 3/T < η < 3(
√

5 − 1)/T

amplifier gain and linear waveguide loss. (4) Since T � 1 the
pulses in each frequency channel are well separated in time.
As a result, intrachannel interaction is exponentially small and
is neglected. (5) Radiation emission effects are neglected, in
accordance with the analysis of the single collision problem in
Secs. II and III.

Since the pulse sequences are periodic, and since the initial
amplitudes are equal for all pulses in the same sequence, the
parameters of all pulses in a given sequence undergo the same
deterministic dynamic evolution. Let us obtain the evolution
equation for the amplitude of the j th-channel solitons, for
example. For this purpose we note that the distance traveled
by these solitons while passing two successive solitons in the
j − 1 or j + 1 channels is �z(1)

c = T/(2�β). We denote by zl

the location of the lth collision of a given j th-channel soliton
with solitons in the j + 1 or j − 1 channel and note that zl =
zl−1 + �z(1)

c . Using Eq. (11) and summing over all collisions
occurring within the interval (zl−1,zl−1 + �z(1)

c ], we obtain the
equation

ηj

(
zl−1 + �z(1)

c

) = ηj (zl−1) + gjηj (zl−1)�z(1)
c

− 4ε

3
η3

j (zl−1)�z(1)
c

− 4ε

�β

N∑
k=1

(1 − δjk)ηj (zl−1)ηk(zl−1),

(23)

where gj is the constant net linear gain or loss for the
j th channel and δjk is the Kronecker delta function. The
same equations with different j values, where j = 1, . . . ,N ,
describe the dynamics of the soliton amplitudes in all fre-
quency channels. Going to the continuum limit we obtain

dηj

dz
= ηj

[
gj − 4ε

3
η2

j − 8ε

T

N∑
k=1

(1 − δjk)ηk

]
. (24)

We recall that in optical fiber communication systems it is often
desired to achieve a steady state in which the pulse amplitudes
in all channels are equal and constant [1]. We therefore look for
a stationary state of the system (24) in the form η

(eq)
j = η > 0

for j = 1, . . . ,N , where η is the desired equilibrium value
of soliton amplitudes. This yields the following expression
for gj :

gj = 4ε

3
η2 + 8ε

T
(N − 1)η. (25)

Therefore, the gain required to maintain a steady state with
equal nonzero amplitudes is the same for all frequency

channels. Substituting Eq. (25) into Eq. (24), we arrive at
the final form of the model:

dηj

dz
= 4εηj

[
1

3

(
η2 − η2

j

) + 2

T

N∑
k=1

(1 − δjk)(η − ηk)

]
.

(26)

The system (26) gives a complete description of the dynamics
of soliton amplitudes in an N -channel transmission line. In
population dynamics terminology it can be described as a
Lotka-Volterra system for N competing species.

B. Amplitude dynamics in a two-channel system

As an example, let us consider in detail the dynamics
of soliton amplitudes in a two-channel transmission system.
In this case g1 = g2 = 4εη(η/3 + 2/T ), and Eq. (26) takes
the form

dη1

dz
= 4εη1

[(
η2 − η2

1

)
/3 + 2(η − η2)/T

]
,

(27)
dη2

dz
= 4εη2

[(
η2 − η2

2

)
/3 + 2(η − η1)/T

]
.

Equation (27) can have six equilibrium states with nonzero
amplitude values in one or both channels. These equi-
librium states are located at (η,η), (0,0), (C1/2(η),0),
(0,C1/2(η)), (C2(η),C3(η)), and (C3(η),C2(η)), where C(η) =
η2 + 6η/T , C2(η) = 3/T + (C(η) − 27/T 2)1/2, and C3(η) =
3/T − (C(η) − 27/T 2)1/2. Table I summarizes the main prop-
erties of these equilibrium states. The first four equilibrium
states exist for any η > 0, and the fifth and sixth equilibrium
states exist provided that 3/T < η < 3(

√
5 − 1)/T . Further-

more, linear stability analysis shows that (η,η) is a stable
node (a sink) for η > 3/T , while for 0 < η < 3/T it is a
saddle (unstable). In contrast, the equilibrium state at (0,0)
is an unstable node (a source) for any η > 0. The states
(C1/2(η),0) and (0,C1/2(η)) are saddles (unstable) when η >

3(
√

5 − 1)/T and stable nodes (sinks) when 0 < η < 3(
√

5 −
1)/T [47]. Finally, the equilibrium points (C2(η),C3(η)) and
(C3(η),C2(η)) are saddles (unstable) in the entire region of
their existence. Based on this discussion we conclude that for
a fixed value of T the system undergoes two bifurcations,
one at η = 3/T and another at η = 3(

√
5 − 1)/T . From a

practical point of view, these observations mean that in order to
maintain stable transmission with the same nonzero amplitude
value η in both channels, the time slot width T has to be
larger than 3/η. Furthermore, for parameter values η = 1 and
T = 10, which are typical for certain soliton-based WDM
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transmission systems [48], 3/T < 3(
√

5 − 1)/T < η. Thus,
for these parameter values only the first four equilibrium
states exist, and (1,1) is the only stable equilibrium state; i.e.,
stationary stable transmission with equal prescribed amplitude
values is guaranteed by the above choice of the net linear gain
coefficients.

The analytic predictions described in the previous para-
graph were verified by numerical solution of Eq. (27).
However, this does not tell us whether the assumptions
that were used to derive the model are indeed satis-
fied. A more complete test for the validity of Eq. (27)
should consist of numerical simulations with the full NLS
model (1) or with an equivalent coupled-NLS model. Since
the dynamics under consideration involves a large number
of very frequent collisions, amplitude measurements are
difficult to perform with the NLS model (1). Thus, we
choose to work with the following equivalent coupled-NLS
model:

i∂zψ1 + ∂2
t ψ1 + 2|ψ1|2ψ1 + 4|ψ2|2ψ1

= ig1ψ1/2 − iε|ψ1|2ψ1 − 2iε|ψ2|2ψ1,
(28)

i∂zψ2 + ∂2
t ψ2 + 2|ψ2|2ψ2 + 4|ψ1|2ψ2

= ig2ψ2/2 − iε|ψ2|2ψ2 − 2iε|ψ1|2ψ2.

In Eqs. (28), ψ1 and ψ2 are the envelopes of the electric field
in channels 1 and 2, respectively, and g1 = g2 = 4εη(η/3 +
2/T ). The terms 4|ψ2|2ψ1 and 4|ψ1|2ψ2 describe cross-
phase modulation, ig1ψ1/2 and ig2ψ2/2 correspond to linear
gain, −iε|ψ1|2ψ1 and −iε|ψ2|2ψ2 correspond to intrachannel
effects due to cubic loss, while −2iε|ψ2|2ψ1 and −2iε|ψ1|2ψ2

describe interchannel effects due to cubic loss. The frequencies
of the two channels in the numerical simulations are β1 = 0
and β2 = 40, the cubic-loss coefficient is ε = 0.01, and the
desired equilibrium value of the soliton amplitude is η = 1.
The initial condition for the simulations is in the form of two
periodic soliton sequences with amplitudes η1(0) and η2(0)
and zero phase:

ψ1(t,0) =
J∑

j=−J

η1(0)

cosh[η1(0)(t − jT )]
,

(29)

ψ2(t,0) =
J∑

j=−J

η2(0) exp[iβ2(t − jT + T/2)]

cosh[η2(0)(t − jT + T/2)]
,

where T = 10 and J = 3 are used. Notice that in order to
avoid dealing with incomplete collisions, soliton positions in
channel 2 are initially shifted by −T/2 relative to soliton
positions in channel 1.

Equations (28) are solved numerically using a split-step
scheme similar to the one described in Sec. III. The use
of periodic boundary conditions means that the numerical
simulations mimic pulse dynamics in a closed waveguide loop.
The size of the computational domain is −35 � t � 35, and
the step sizes in t and z are �t = 0.015 and �z = 0.001,
respectively. In order to test our predictions on transmission
stability, the numerical simulations are carried out up to a
final propagation distance zf = 180. At this distance radiation
emission effects are still small and all solitons retain their
shape, as illustrated by Fig. 6, which shows the final pulse

(a)

(b)

FIG. 6. The final pulse patterns in channels 1 and 2 |ψ1(t,zf )|
(solid line) and |ψ2(t,zf )| (dashed line) as obtained by numerical
integration of Eq. (28) with compensation of collision-induced loss
(a) and without compensation of collision-induced loss (b). The
parameter values are ε = 0.01, β1 = 0, β2 = 40, T = 10, η = 1, and
zf = 180. The initial condition is η1(0) = 0.90 and η2(0) = 0.95.

patterns |ψ1(t,zf )| and |ψ2(t,zf )| for input amplitude values
η1(0) = 0.90 and η2(0) = 0.95. The z dependence of the
soliton amplitudes obtained by simulations with Eq. (28) is
shown in Fig. 7 along with the result obtained by numerical
solution of the Lotka-Volterra model [Eq. (27)]. Also shown
is the result of numerical simulations with Eq. (28) without
compensation of collision-induced loss, i.e., when the linear
gain coefficients are g1 = g2 = 4εη2/3. We consider three
different initial conditions, η1(0) = η2(0) = 1 [Fig. 7(a)],
η1(0) = 1.03 and η2(0) = 0.97 [Fig. 7(b)], and η1(0) = 0.90
and η2(0) = 0.95 [Fig. 7(c)]. In all three cases we observe
good agreement between the result of the reduced model and
the result obtained by numerical solution of Eq. (28) with
compensation of collision-induced loss. In particular, for the
initial condition η1(0) = η2(0) = 1, amplitude values obtained
with Eq. (28) stay very close to 1, in accordance with the fact
that (1,1) is an equilibrium state of Eq. (27). Similarly, for
the other two initial conditions, η1(z) and η2(z) values tend
toward 1 with increasing distance, in agreement with the linear
stability of (1,1). Note that when collision-induced loss is not
compensated, amplitude values decrease by about 25% at zf ,
which illustrates that collision-induced loss is quite important
already in two-channel transmission. It is also seen from Fig. 7
that even when collision-induced loss is not compensated, the
amplitude values tend to an equilibrium state at (0.744,0.744).
This result agrees with the result obtained by analyzing the

053830-8



CROSS-TALK DYNAMICS OF OPTICAL SOLITONS IN A . . . PHYSICAL REVIEW A 82, 053830 (2010)

(a)

(b)

(c)

FIG. 7. The z dependence of soliton amplitudes in channels 1 and
2 for ε = 0.01, β1 = 0, β2 = 40, T = 10, and η = 1. The initial am-
plitudes are η1(0) = η2(0) = 1 in (a), η1(0) = 1.03 and η2(0) = 0.97
in (b), and η1(0) = 0.90 and η2(0) = 0.95 in (c). The solid and
dashed lines stand for η1(z) and η2(z) values obtained by numerical
solution of the coupled-NLS model (28) with compensation of
collision-induced loss. The dashed-dotted and short-dashed curves
represent η1(z) and η2(z) values obtained by numerical solution of
Eq. (28) without compensation of collision-induced loss. The dotted
and short-dotted curves correspond to the result obtained with the
reduced model (27).

corresponding Lotka-Volterra model with g1 = g2 = 4εη2/3.
Indeed, the analysis shows that the latter Lotka-Volterra
model has a stable equilibrium state at (C4(η),C4(η)), where
C4(η) = −3/T + (η2 + 9/T 2)1/2. For the parameters used in
the simulations C4(η) = 0.744, in accordance with the curves
presented in Fig. 7.

V. CONCLUSIONS

We investigated the dynamics of fast soliton collisions
in a Kerr nonlinear waveguide with weak cubic loss ε.
The cubic loss can result from two-photon absorption or
from gain saturation. By employing a perturbation procedure
with two small parameters ε and 1/|β|, where β is the
frequency difference, we obtained analytic expressions for
the amplitude and frequency shifts induced by a single
two-soliton collision. We showed that the collision-induced
amplitude shift (cubic-loss cross talk) is proportional to ε/|β|,
while the cross-frequency shift scales like ε/(|β|β). These
predictions were confirmed by numerical solution of the
perturbed NLS equation with the cubic-loss term. Our analytic
calculations and numerical simulations also showed that the
total amplitude shift in two successive collisions is given by
a sum of the amplitude shifts in each collision. Furthermore,
for typical transmission systems, in which |β| � 1 and the
amplitudes are of order 1, the amplitude shift in a fast
three-soliton collision is given by a sum over the two-soliton
interactions.

Based on these results we developed a reduced model for the
evolution of soliton amplitudes in a broadband transmission
line with N frequency channels. Assuming that the solitons in
each frequency channel are well separated in time and neglect-
ing radiation emission, we showed that amplitude dynamics is
described by a Lotka-Volterra model for N competing species.
For a two-channel system we showed that stable stationary
transmission with equal nonzero amplitudes can be achieved
by a proper choice of linear amplifier gain. Furthermore,
transmission stability is fully characterized by the time slot
width T and the equilibrium value of the soliton amplitude
η. When η > 3/T the transmission is stable, whereas when
η � 3/T it is unstable. The results of the reduced Lotka-
Volterra model were confirmed by numerical simulations with
a coupled-NLS model, which takes into account intrapulse and
interpulse effects due to Kerr nonlinearity and cubic loss. We
conclude by remarking that the closed waveguide-loop setup
analyzed in Sec. IV might serve for stable energy equalization
in broadband WDM transmission.
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