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Shaping solitons by lattice defects
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We demonstrate the existence of shape-preserving self-localized nonlinear modes in a two-dimensional
photonic lattice with a flat-topped defect that covers several lattice sites. The balance of diffraction, defocusing
nonlinearity, and optical potential induced by lattices with various forms of defects results in novel families of
solitons featuring salient properties. We show that the soliton shape can be controlled by varying the shape of
lattice defects. The existence domains of fundamental and vortex solitons in the semi-infinite gap expand with
the defect amplitude. Vortex solitons in the semi-infinite gap with rectangular intensity distributions will break
into dipole solitons when the propagation constant exceeds a critical value. In the semi-infinite and first-finite
gaps, we find that lattices with rectangular defects can support stable vortex solitons which exhibit noncanonical
phase structure.

DOI: 10.1103/PhysRevA.82.053829 PACS number(s): 42.65.Tg, 42.65.Jx, 42.65.Wi

I. INTRODUCTION

Optical wave propagation in periodic photonic structures
displays unique phenomena that are absent in homogeneous
media. Lattice solitons have drawn a great deal of attention in
both fundamental physics and applications [1–3]. Thus far,
diverse types of self-localized beams in optically induced
lattices, such as fundamental [4], multipole [5,6], vortex
[4,7–11], and necklace-like [12] solitons as well as gap soliton
trains [13], have been predicted theoretically and observed
experimentally in focusing and defocusing media. Periodic
forcing can control and manage the localized states in two-
dimensional dissipative systems [14].

Defects and defect states exist in a variety of linear and
nonlinear systems, including solid state physics, photonic
crystals, and Bose-Einstein condensates. If a periodic lattice
has a local defect, this defect can affect the propagation of
a probe beam in a fundamental way. Linear defect modes
in one-dimensional (1D) [15,16] and two-dimensional (2D)
[17,18] photonic lattices were investigated. Shallow defect
states also exist near the edge of a band gap [19]. On the other
hand, nonlinear localized modes bifurcating from linear defect
modes in both attractive and repulsive defects were proven
to be stable in certain parameter regimes [20]. Stable defect
vector gap solitons [21] and surface-defect gap solitons [22]
in 1D photonic lattices are also possible.

Very recently, properties of discrete solitons in optically
induced photorefractive lattices with single-site and line
defects were studied in [23]. Two-dimensional solitons located
in defect channels at the surface of a hexagonal waveguide
array were also observed [24]. The existence and stability of
single-site defect solitons in 2D optical lattices imprinted in
a photorefractive crystal were investigated [25]. Solitons in
vacancy defects, edge dislocations, and quasicrystal structure
were predicted by Ablowitz et al. [26]. A lower index core and
a cylindrical core covering several lattice sites or rings were
proposed to support 1D defect (kink) or 2D centrosymmetric
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solitons [27]. Nonlinear signal switching between two low-
index defect channels is also possible [28].

Despite the above progress, defect solitons and their
stability in a defect that covers several lattice sites are still
poorly understood. Although nonlinear modes in multiple-site
defects in both focusing and defocusing lattices were briefly
addressed in [29], the shaping effects of defects on the solitons
and the existence of vortex solitons have not yet been explored.
Here, we study the properties of solitons supported by a 2D
harmonic lattice with a flat-topped defect that covers several
lattice sites in defocusing Kerr media. The main purpose of
this article is twofold. First, we demonstrate that soliton shape
can be controlled by the shape of lattice defects. Second, we
find that defective lattices can support stable nonlinear modes
(e.g., vortex solitons) in the semi-infinite gap in the defocusing
media, which may not even exist in defect-free lattices.

II. MODEL

We consider beam propagation in a defocusing Kerr
medium with an imprinted defective optical lattice governed
by the nonlinear Schrödinger equation for normalized complex
amplitude q:

i
∂q

∂z
+ 1

2
�q − |q|2q + pR(x,y)q = 0. (1)

Here, � = ∂2/∂x2 + ∂2/∂y2, the transverse x,y and lon-
gitudinal z coordinates are scaled to the beam width and
diffraction length, respectively, and p is the depth of the
harmonic lattice. The function R(x,y) characterizes the refrac-
tive index profile: R(x,y) = cos2(�x) + cos2(�y) for |x| >

nxπ/(2�),|y| > nyπ/(2�), and R(x,y) = γ (γ > 0) other-
wise, where � is the frequency, nx,y is the number of lattice
periods covered by the flat-topped defect, and γ is the defect
depth. When the defect is lower than the surrounding lattice
sites (γ < 2p), light tends to escape from the defect to nearby
lattices sites. According to Ref. [20], we call such defects
“repulsive defects.” Conversely, an “attractive defect” forms
when γ > 2p. Such refractive index landscapes might be
optically induced by properly imaging an amplitude mask with
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FIG. 1. (Color online) (a) Band-gap structure of a harmonic lattice. Inset: Example of a defective lattice. Profiles of fundamental and
higher order nonlinear modes at b = 7.5,nx,y = 4 (b), b = 7.5,nx = 6,ny = 2 (c) in the semi-infinite gap and b = 4.0,nx = 6,ny = 2 (d) in
the first-finite gap. (e) Energy flow versus b for nx,y = 4 (upper) and nx = 6,ny = 2 (lower). Dashed curves denote the unstable solitons.
(f) Existence regions (shaded) on the (p,b) plane for nx = 4,ny = 2, green lines (online) show the gap edges. All quantities are plotted in
arbitrary dimensionless units.

a partially spatially incoherent optical beam [18]. Another
technique is to introduce partial incoherence into the lattice
beam by letting the lattice beam go through a rotating diffuser.
This partial incoherence reduces the nonlinear interference
between lattice sites, which stabilizes the lattice and the
defect [30]. Equation (1) conserves the energy flow: U =∫ ∞
−∞

∫ ∞
−∞ |q(x,y)|2dxdy.

We search for nonlinear localized modes in the form q =
[wr (x,y) + iwi(x,y)] exp(ibz), where wr and wi represent the
real and imaginary parts of the light field, respectively, and b

is the propagation constant. The topological winding number
(or topological charge) of the vortex soliton is obtained as
the circulation of the phase gradient arctan(wi/wr ) around
a phase singularity located in the vicinity of the vortex
core. The stationary solutions were solved numerically by a
relaxation method. To study the linear stability, we consider
the evolution of small-amplitude perturbations of the localized
state presenting the solution in the form q = (wr + iwi + ur +
iui) exp(ibz) and assume ur,i ∼ exp(λz). Thus, the evolution
of the perturbation is determined by

λui = 1
2�ur − (

3w2
r + w2

i

)
ur − 2wrwiui − bur + pRur,

(2)

−λur = 1
2�ui − (

w2
r + 3w2

i

)
ui − 2wrwiur − bui + pRui.

(3)

We can obtain the linear eigenvalue problem for ur,i , which is
used to determine the possible eigenvalues λ. To elucidate the
influence of lattice defects on the solitons, we set, unless stated
otherwise, � = 2,p = 6, γ = 2p (for flat-topped defects),
γ = 2.5p (for attractive defects), γ = 1.5p (for repulsive
defects), and vary the parameters nx,ny , and b.

III. SOLITONS IN LATTICES WITH
FLAT-TOPPED DEFECTS

It is instructive to consider the Floquet-Bloch spectrum
of the nondefective lattice. The band-gap structure of the
linear version of Eq. (1) with R(x,y) = cos2(�x) + cos2(�y)
is shown in Fig. 1(a). The finite gaps expand with the lattice
depth. For the purpose of illustration, we only discuss the pro-
perties of defect solitons in the semi-infinite and first-finite
gap. The inset plot in Fig. 1(a) shows an example of a defective
lattice with a flat-topped defect covering several lattice sites
with different transverse sizes. Special attention should be paid
to the shapes of the solitons shown in Figs. 1(b) to 1(d). The
solitons in the semi-infinite gap with nx,y = 4 exhibit square
amplitude distributions with lower lobes surrounding them
[Fig. 1(b)].

When the defect shape is rectangular, the solitons exhibit
similar intensity distributions [Fig. 1c] according to the shapes
of defects which are very different from conventional solitons
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FIG. 2. (Color online) (a), (b) Amplitude and noncanonical phase structure of vortex soliton at b = 8.0 in the semi-infinite gap.
(c) Amplitude of vortex soliton at b = 4.0,nx,y = 4 in the first-finite gap. (d) Energy flow versus b. Dashed curves in the first-finite gap
denote the unstable vortex solitons. In the semi-infinite gap, power of both dipole (red) and vortex (blue) solitons are displayed and the square
stands for the bifurcation point below which vortex and dipole solitons can be found simultaneously. (e) Energy flow and maximum amplitude
of wi near the break point. (f) Profile of vortex-dipole soliton at b = 9.977. Except for (c), nx = 6,ny = 2. All quantities are plotted in arbitrary
dimensionless units.

whose shapes have some types of symmetries. This offers an
effective way to control the soliton shape by varying the defect
shape. In contrast to the case of completely periodic lattices [4],
solitons in defective lattices expand to the outer lattice sites
only when the propagation constant approaches the upper band
edges. Comparing soliton profiles in the semi-infinite gap with
those in the first-finite gap, one immediately finds that solitons
residing in the semi-infinite gap belong to the fundamental
families since there are no nodes in their amplitudes, but higher
order ones in the first-finite gap.

The energy flow of solitons in both semi-infinite and first-
finite gaps decreases with the propagation constant [Fig. 1(e)].
It is enhanced greatly compared with nondefective lattices
because of a higher refractive-index core. In the semi-infinite
gap, energy flow vanishes when the propagation constant
exceeds a critical cutoff value. Solitons in the first-finite gap
cease to exist when the propagation constant approaches the
lower edge of the first band. The upper propagation-constant
cutoffs of solitons in the semi-infinite gap grow linearly with
the lattice depth while the existence domains expand just like
the gap structure of the lattice. The existence domains of funda-
mental and higher order solitons are presented in Fig. 1(f).

In order to determine the linear stability properties of
defective lattice solitons, we numerically solved in an

exhaustive manner the eigenvalue problems for various fam-
ilies of solitons based on Eq. (2). For fundamental solitons
in the semi-infinite gap, we did not find any eigenvalues
with nonzero real parts. Thus, solitons are stable in their
entire existence domain. This result is in good agreement with
the prediction from the Vakhitov-Kolokolov (VK) criterion
(dU/db < 0 for defocusing nonlinearity). However, the higher
order solitons suffer from weak instability when the propa-
gation constant approaches the upper edge of the first-finite
gap. There also exists a very narrow instability region near
the lower edge of the first-finite gap [see the dashed curve in
Fig. 1(e)].

We stress that, contrary to the fact that vortex solitons in
defocusing nonlinear media with imprinted periodic lattices
can only be found in finite gaps, we found vortex-soliton
solutions in the semi-infinite gap [Figs. 2(a) and 2(b)]. Typical
examples of vortex solutions with unit charge supported by
defective lattices in the semi-infinite and first-finite gaps are
displayed in Fig. 2. Unlike in canonical radially symmetric
vortices featuring constant phase gradients dθ/dφ (here θ is
the vortex phase and φ is the azimuthal angle), for our vortices
dθ/dφ is azimuthally dependent [Figs. 2(b) and 7(e)]. The
phase increases most rapidly around φ = π/2 and 3π/2, while
dθ/dφ is minimal in the vicinity of the intensity maxima. It
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FIG. 3. Stable propagation of vortex solitons (a), (c) and dipole
soliton (b) in the semi-infinite gap (a), (b) and first-finite gap (c) at
nx = 6,ny = 2. (a) b = 7.5. (b) b = 10.0. (c) b = 4.0. Top rows:
z = 0. Middle rows: z = 512. Bottom rows: phase structures at z =
512. White noise was added into the initial inputs.

is similar to the noncanonical phase structure of the surface
vortex soliton reported in [31].

Similar to fundamental solitons, the profiles of vortex
solitons are very steep and the energy flow is a decreasing
function of the propagation constant. A stability analysis
based on Eq. (2) indicates that vortex and dipole solitons in
the semi-infinite gap are completely stable in their existence
domains. Vortex solitons in the first-finite gap are stable in
a relatively wide parameter window when the propagation
constant resides on the solid lines [Fig. 2(d)]. Surprisingly,
vortex solutions stop existing at b = 9.977, above which only

dipole solutions can be found. This result can be attributed
to the bifurcation that occurs at this point. The power of
two branches of solitons (dipole and vortex) converges to a
collective curve when the propagation constant approaches the
critical value. The bifurcation does not occur for fundamental
solitons in rectangular defects and vortex solitons in square
defects. To clarify the disappearance of vortex solitons and
the emergence of dipole solitons more clearly, we plot in
Fig. 2(e) the maximum amplitude of the imaginary parts of
soliton solutions max(|wi |) and their “power” near the break
point of the propagation constant. One can see that the
imaginary part of the stationary solution disappears when the
propagation constant exceeds the critical value. The profile of
a vortex-dipole soliton at b = 9.977 is displayed in Fig. 2(f).
Note that a similar bifurcation also occurs for elliptic vortices
trapped in composite Mathieu lattices [32] and self-attractive
Bose-Einstein condensates [33].

To verify the linear stability results, we checked the
robustness of nonlinear states by using the split-step Fourier
method and by adding random noise on both the amplitude and
phase. Figure 3 presents some examples of stable propagation
of dipole and vortex solitons residing in both the semi-infinite
gap and first-finite gap supported by flat-topped defects. The
strong noise added to the initial input beams soon radiates
away and the phase structures of vortex solitons go back
to those of unperturbed solitons after a short propagation
distance.
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FIG. 4. (Color online) Defect fundamental solitons in the semi-infinite gap and higher order solitons in the first-finite gap for the attractive
defect with nx,y = 4 and nx = 4, ny = 2 [dashed in (a)]. (a) Power diagram. (b)–(e) profiles of four defect solitons at b = 8, 4, 13.5, and 4
[marked by circles in (a)], respectively. (e) Stable propagation of soliton at b = 4.4 in the defect with nx,y = 4. Cut of intensity distribution at
y = 0 is shown. All quantities are plotted in arbitrary dimensionless units.
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FIG. 5. (Color online) Defect vortex solitons in the attractive defect with nx,y = 4 and nx = 4, ny = 2 [dashed in (a)]. (a) Power diagram.
Black point divides the stable vortex and dipole solitons. (b)–(e) Profiles of four defect solitons at b = 8, 8, 13, and 4 [marked by circles in
(a)], respectively. (e) Instability growth rate of defect vortex solitons. All quantities are plotted in arbitrary dimensionless units.

IV. SOLITONS IN LATTICES WITH ATTRACTIVE
AND REPULSIVE DEFECTS

We now consider the properties of solitons supported by
attractive defective lattices. The energy flow of solitons in both
gaps still decreases with the growth of propagation constant
due to the defocusing nonlinearity [Fig. 4(a). However, the
existence domains of solitons in the semi-infinite gap are
broader than those of flat-topped-defect solitons [Fig. 1(e)].
The energy flows are larger than those of flat-topped-defect
solitons. The results should be attributed to the higher
refractive-index core.

Representative examples of soliton profiles are depicted in
Fig. 4. In the semi-infinite gap, the maximum amplitude slowly
grows with decreasing propagation constant and the small
lobes do not expand in an obvious manner to outside lattice
sites. When the propagation constant approaches the cutoff
value, the soliton no longer maintains its square or rectangular
distribution [Fig. 4(d)]. The higher order soliton solutions in
the first-finite gap gradually delocalize when the propagation
constant decreases. However, the process of delocalization is
apparently slower than in the 1D case [20] due to the strong
trapping ability of the large-scale lattice defect. The stable
regions are slightly broader than that of flat-topped defects
due to the higher index core. Figure 4(f) displays an example
of the stable propagation of a higher order soliton at b = 4.4
in the first-finite gap while the corresponding soliton in the
flat-topped defect is unstable.

In the semi-infinite gap, vortex solitons were also found in
attractive defects. For nx,y = 4, the vortex has a square struc-
ture with a dark intensity core. The amplitude distributions
of vortex solitons maintain their shapes and the amplitude
maxima decrease slowly with growing propagation constant.
The phase carries a linear screw-type dislocation around the
dark core, just like for bulk media or nondefective harmonic
lattices.

However, for vortex solitons in defects with different
transverse sizes (e.g., nx = 4,ny = 2), the phase variation
around the dislocation does not increase uniformly [see also
Fig. 2(b)]. Moreover, two amplitude minima exist in the vor-
tices in the narrower defect direction [Fig. 5(c)]. The minima
decrease gradually with propagation constant and the vortices
break into dipoles when the propagation constant exceeds a
critical value (bcr = 12.732). Accordingly, the phase changes
from a nonuniform stair-like structure to a step-jump structure.
We proved that the dipoles are actual dipole solitons since
they are nonlinear modes and can propagate stably with two
out-of-phase components [Fig. 5(d)]. In other words, each
component of the dipole cannot be a self-localized entity alone
and only two components together can be guided stably by the
defective lattices [Fig. 3(b)]. Vortex solitons in the first-finite
gap [Fig. 5(e)] contain higher amplitude maxima and side lobes
than in the semi-infinite gap. The delocalization occurs when
the propagation constant approaches the lower edge of the
gap. The instability growth rate of vortex solitons in the defect
with nx = 4,ny = 2 is shown in Fig. 5(f). Obviously, vortex
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FIG. 6. (Color online) Defect vortex solitons in the repulsive defect with nx,y = 4 and nx = 4, ny = 2 [dashed in (a)]. (a) Power diagram.
Black point [corresponding to the circle in (f)] divides the vortex and dipole solitons. (b)–(d) Profiles of three defect solitons at b = 7.2, 7.65,
and 4 [marked by circles in (a)], respectively. Instability growth rate of defect vortex solitons in the first-finite gap (e) and vortex-dipole solitons
in the semi-infinite gap (f). All quantities are plotted in arbitrary dimensionless units.

FIG. 7. (Color online) Stable and unstable propagation of vortex solitons in the first-finite gap of attractive (a)–(c) and repulsive (d)–(f)
defective lattices. b = 3.32 in (a) and (b), 4.4 in (c), 4.2 in (d) and (e), and 4.5 in (f). (b), (e) Phase distributions of solitons shown in (a) and
(d) at z = 512. Cut of intensity distributions at y = 0 are shown. Top row: nx,y = 4. Bottom row: nx = 4,ny = 2. All quantities are plotted in
arbitrary dimensionless units.
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FIG. 8. Propagation simulation of an example of cruciform
solitons at z = 0 (a) and 512 (b) respectively. (c), (d) Propagation
results of a Gaussian beam in the form wr = 4 exp[−(x2 + y2)/25]
at z = 800. (e), (f) Propagation results of a beam in the form
w = 4 exp[−(x2 + y2)/25] exp(iφ) at z = 400. (c), (e) nx,y = 4.
(d), (f) nx = 4,ny = 2. γ = 2p in (a) and (b) and 2.5p in (c)–(f).
White noise was added into the initial inputs.

solitons in the first-finite gap are stable over a relatively wide
window. Note that there also exists a very narrow instability
region near the lower edge of the first-finite gap, just similar
to the vortex solitons in flat-topped defects.

The properties of solitons in the repulsive defective lattices
are qualitatively similar to those in the flat-topped and
attractive defective lattices. We only make four comments
here. First, both fundamental and vortex solitons can still
be found in the semi-infinite gap. The existence domains of
(vortex) solitons shrink in comparison with the flat-topped
and attractive defective lattices [Fig. 6(a)]. We expect that
there exists a critical γcr below which no fundamental or
vortex soliton can be found in the semi-infinite gap. This is in
agreement with the 1D case in repulsive defective lattices [20].
Second, the vortex solitons in the defect with nx = 4 and
ny = 2 also break into dipole solitons at bcr = 7.611 while
the fundamental solitons with nx,y = 4 and nx = 4, ny = 2
and vortex solitons with nx,y = 4 do not break [Fig. 6(c)].
The two minima of vortex solitons connecting the two central
main lobes are lower than that for flat-topped and attractive
defects [Fig. 6(b)]. The profile and phase distributions of vortex
solitons in the semi-infinite gap are similar to the azimuthons
proposed by Desyatnikov et al. [34]. Third, the profiles of vor-
tices in the first-finite gap have several discrete peaks around
the edges of the square or rectangular defect since the lattice
intensities at these peaks are higher than the repulsive defect
[Fig. 6(d)]. The delocalization process of solitons is faster
than that in the flat-topped and attractive defects due to the
lower refractive-index core. Finally, propagation simulations
reveal that fundamental solitons in the semi-infinite gap suffer
weak oscillatory instability for certain propagation-constant
windows, which indicates that the VK criterion fails to
predict the instability of fundamental solitons in repulsive
defects. Linear stability analysis results of vortex-dipole
solitons in the repulsive defect with nx = 4,ny = 2 are shown
in Figs. 6(e) (first-finite gap) and 6(f) (semi-infinite gap),

respectively. Figure 7 presents some stable and unstable pro-
pagations of vortex solitons in the attractive and repul-
sive defect. Figures 7(b) and 7(e) illustrate again the
difference between the canonical and noncanonical phase
structures.

For a deeper insight into the guiding effect of the defective
lattice, we change the defect shape to study the properties of
solitons. A typically stable propagation example of cruciform
solitons supported by a lattice with a cruciform flat-topped
defect is presented in Figs. 8(a) and 8(b). Lattice defects with
other shapes may lead to the formation of more complicated
structures. In experiments, the probe beams used to excite
solitons are usually Gaussian beams. Thus, the evolution of
a Gaussian beam guided by the defective lattice is important.
We input a Gaussian beam in the form wr = 4 exp[−(x2 +
y2)/25] and monitor its evolution in the defective lattices.
Figures 8(c) and 8(d) show the propagation results of the
Gaussian beam after a very long distance. We can see that
solitons with square or rectangular shapes can be formed
in the defective lattices with corresponding defect shapes.
For the realization of vortex solitons, one can add a vortex
phase mask before the input Gaussian beam. Examples of
excitations of vortex solitons in defective lattices in the form
w = 4 exp[−(x2 + y2)/25] exp(iφ) are presented in Figs. 8(e)
and 8(f). The phase structures of the fields at z = 400 are
similar to those displayed in Figs. 7(b) and 7(e). We also
simulate the evolution of solitons and Gaussian beams by
removing the self-defocusing nonlinearity. No stable localized
patterns are found, which indicates that the defocusing
nonlinearity is a necessary ingredient for the existence of stable
solitons.

V. CONCLUSIONS

To summarize, we propose a regime that consists of
an optical lattice with a flat-topped refractive-index defect
covering several lattice sites for supporting localized nonlinear
modes, including fundamental, dipole, and vortex solitons.
We show that the soliton shape can be conveniently con-
trolled by properly selecting defects with a similar shape
in periodic lattices. Properties of solitons in attractive and
repulsive defective lattices are also discussed. We conclude
that stable defect solitons in defocusing media can exist in
the semi-infinite gap and even in repulsive defects provided
that the defect is not very deep. The possibilities of their
existences can be accounted for by their associated refractive-
index changes. In particular, we find that stable vortex
solitons with an nonconventional intensity and phase distri-
bution can be supported by defects with different transverse
sizes. Our findings can be applied directly to Bose-Einstein
condensates with repulsive interactions in 2D defective
lattices.
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