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In lossless periodic media, the concept of group velocity is fundamental to the study of propagation dynamics.
When spatially averaged, the group velocity is numerically equivalent to energy velocity, defined as the ratio
of energy flux to energy density of modal fields. However, in lossy media, energy velocity diverges from group
velocity. Here, we define a modal field velocity which remains equal to the complex modal group velocity in
homogeneous and periodic media. The definition extends to the more general situation of modal fields that exhibit
spatial or temporal decay due to lossy elements or Bragg reflection effects. Our simple expression relies on a
generalization of the concepts of energy flux and density. Numerical examples, such as a two-dimensional square
array of silver rods in vacuum, are provided to confirm the result. Examples demonstrate how the dispersion
relation of the periodic structure, the properties of its modes, and their group velocities change markedly in lossy
media.
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I. INTRODUCTION

Media constructed from periodic microstructured metallic
elements have attracted significant research interest recently in
the fields of plasmonics and metamaterials. An understanding
of pulse propagation through such media is important to their
utility in future applications. However, loss is an unavoidable
feature of metallic materials at optical and infrared wave-
lengths. Loss is fundamental to, and substantially impacts, the
dynamics of pulse propagation, and cannot be ignored. For a
medium with a given material dispersion relation satisfying the
Kramers-Kronig relations, both the real and imaginary parts of
the dispersion relation need be considered to obtain physical
pulse propagation results.

It is well established in the literature that loss plays
a significant role in pulse propagation through complex
media. For example, plasmonic interconnects are promising
because of their high bandwidth and subwavelength modal
confinement [1,2], and the dispersion relations of lossy and
lossless structures differ. This difference is apparent even in
the simple case of a surface mode of planar lossy Drude-model
waveguides, where modes with group velocities near zero no
longer exist when loss is not neglected [3,4]. In general, loss
particularly impacts slow light modes of any structure. In the
photonic crystal literature, material losses are known to limit
the group index of slow light modes [5,6]. More recently,
broadband slow light modes have been found in lossless
planar metamaterial waveguides, but these disappear when
loss is considered [7,8]. Loss also imposes limitations on the
capabilities of metamaterial in other applications: Pendry’s
perfect lens cannot be realized, and only a subresolution
superlens is possible [9], and ideal cloaking cannot be achieved
in a lossy metamaterial [9].

That accounting for loss is required to achieve physical
pulse propagation results is nowhere more apparent than in

the fast light literature. In a fast light medium where material
losses or gains are ignored, the transit of a pulse through the
medium can be smaller than the vacuum light travel time,
violating special relativity and causality [10]. However, in this
circumstance, the occurrence of physical amounts of loss or
gain reshapes the pulse, ensuring propagation dynamics still
obey relativity [11,12]. In all these examples, the imaginary
part of a Kramers-Kronig-consistent dispersion relation sig-
nificantly contributes to the physics of pulse propagation and
cannot be neglected.

In lossless periodic media, the pulse propagation velocity
is determined by the group velocity and the energy velocity.
The utility of the group and energy velocities stems from the
ability to calculate these quantities from the band diagram or
waveguide dispersion relation and modal fields, respectively.
The group velocity is defined by

vg = ∇kω, (1)

where ω and k are connected by the structure’s dispersion re-
lation, ω = ω(k). In homogeneous media, the energy velocity
is defined as the ratio of energy flux to energy density,

vE = 〈S〉
〈U 〉 , (2)

where S is the time-averaged Poynting vector, and U is
the time-averaged energy density. For periodic media, these
quantities are defined by also spatially averaging over the unit
cell.

In homogeneous lossless media, the group velocity is
equivalent to the energy velocity,

vg = vE . (3)

Yariv and Yeh have shown that this relation remains true in
lossless periodic media [13]. These relations allow both pulse
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propagation velocity and a structure’s dispersion relation to be
expressed in terms of the modal field distribution across the
unit cell. These results apply even in the presence of material
dispersion provided the loss is sufficiently small [10].

As in the examples discussed, loss has a physically
significant impact on both pulse propagation and the band
diagram. More subtle issues (a) whether group velocity still
represents the pulse propagation velocity and (b) whether vg

and vE , as defined in (1) and (2), remain equivalent, as in
(3). A brief discussion of (a) is given in Sec. II, along with
alternatives to group velocity that predict pulse propagation
dynamics in lossy media.

The main aim of this paper is to examine (b). This relation
is not valid without modification when the modes used to
calculate 〈S〉 and 〈U 〉 exhibit spatial or temporal attenuation,
since energy dissipated by the propagation medium is now
relevant. Redefining 〈U 〉 to account for these transformations,
as Loudon has done, means that (3) no longer holds [14].
The main result of this paper is a generalization of the ratio
defined in (2), which can be calculated from the modal fields
and remains numerically equal to the group velocity defined
in (1). The result holds in systems where modal fields exhibit
spatial or temporal decay, whether due to lossy elements in
the structure or due to band gap effects in lossless periodic
media. This is achieved by including both propagating and
counterpropagating (adjoint) fields into the definitions of 〈S〉
and 〈U 〉. We term this new ratio the adjoint field velocity.
Section II provides the motivation for this choice, and the
derivation is presented in Sec. III.

Section IV discusses spatial and temporal decay of modes
given by the imaginary parts of ω and k. It discusses the
physical relevance of the freedom to choose between ω or k

being complex and the impact of this choice on modal fields
and band structures. The adjoint field velocity is shown to
remain equal to the group velocity in both instances. Properties
of counterpropagating modes in the context of the adjoint field
velocity are presented. Technical issues arising from a complex
vector k due to periodicity in two or more dimensions are
discussed. Section V provides numerical examples to confirm
the agreement between group velocity and the adjoint field
velocity derived in Sec. III in lossless photonic crystals both
in the band and the band gap and in a lossy silver photonic
crystal. Appendix A presents a brief introduction to the dual
basis, in which the adjoint modes reside. Appendix B contains
a derivation of another ratio equivalent to the group velocity.
It does not use adjoint fields, but we find that extra terms are
required.

II. COMPLEX GROUP VELOCITY

In this section, we discuss group velocity in lossy periodic
systems and its links to both pulse propagation and energy
velocity. In particular, the equality between group velocity and
the energy velocity, defined in (2), no longer holds, providing
motivation for the adjoint field velocity.

In lossless periodic media, group velocity is unambiguously
related to the time-domain pulse velocity. In lossy media,
additional pulse propagation phenomena are observed, includ-
ing pulse attenuation and peak reshaping. Meanwhile, vg , the
change in ω due to an infinitesimal change in k along the

dispersion relation ω(k), has both real and imaginary parts,
requiring interpretation in terms of the aforementioned pulse
propagation effects. Note that the complex nature of vg bears
no relation to the complex derivative of a complex analytic
function, since, for example, vg depends on the direction of k.

Brillouin [10] and Loudon [14] have suggested that in
the presence of significant loss the connection between
group velocity, as defined in (1), and pulse propagation
collapses. In highly lossy and dispersive media [15,16] or
more recently in metamaterials [17,18], dω/d[Re(k)] often
predicts a superluminal transit time, seemingly leading to the
violation of relativity and causality. This has motivated Loudon
to define a new energy velocity that remains subluminal, by
accounting for not only the energy in the electromagnetic wave
but also energy dissipated by the motion of particles in the lossy
propagation medium. This energy velocity provides successful
numerical predictions of pulse propagation [19].

However, the complex quantity dω/dk remains linked
to pulse propagation. Garrett and McCumber have shown
that dω/d[Re(k)] still gives the velocity of the time-domain
peak of a Gaussian pulse, even when dω/d[Re(k)] is
superluminal [12].

These findings have been experimentally confirmed
[15,16]. Others have identified the imaginary part of dω/dk

as a measure of the shift in the carrier frequency of a Gaussian
pulse [20]. If dω/dk is known over a broad frequency range,
then the real and imaginary parts of dω/dk correspond to
propagation velocity and pulse reshaping, respectively [21].

We now turn to the connection between group velocity
and energy velocity, with the energy velocity being defined
in (2). Specifically, for a mode in a band of a lossless structure
periodic in one dimension (1D),

vE = lF
N , (4)

where l is the length of the unit cell and F corresponds to the
modal energy flux through the unit cell,

F = 1

2

∫
Re(E × H̄) · n̂ ds, (5)

and is thus integrated over one face of the unit cell. N is the
modal energy density,

N = 1

4

∫
(ε|E|2 + µ|H|2) dx, (6)

integrated over the entire unit cell. The ratio lF/N has
dimensions of velocity. In dispersive media where material
loss is small enough to be neglected, N requires modification,

N = 1

4

∫ (
d(εω)

dω
|E|2 + d(µω)

dω
|H|2

)
dx, (7)

as shown by Brillouin [10].
When material loss is introduced, these expressions no

longer apply, since there is a transformation of energy carried
by the electromagnetic wave into energy that is dissipated by
the medium. Since lF/N as defined here no longer includes
all the energy transformations, it no longer results in correct
values for vg . This can be illustrated for homogeneous media
by inserting plane waves with a complex ω or complex k into
(5) and (6).
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In the approach of Loudon, the energy density,N , is defined
to include terms due to forced oscillations of particles resulting
from field interactions within the propagation medium [14].
The definition of energy flux is unchanged. The vE associated
with this definition is no longer equivalent to vg , and the
connection between modal field distributions and the band
diagram or waveguide dispersion relation is lost. Furthermore,
vE no longer depends only on electromagnetic properties of the
medium: An explicit model (Drude, Lorentz oscillator, etc.) of
the material is required. The resulting vE can vary depending
on the details of the dispersion model used [22,23].

We define a velocity calculated from the modal fields which
remains equivalent to vg . We demonstrate that the definitions
of flux and density in (4) fail to achieve equivalence with vg

because the modal fields experience decay. The source of this
decay may be either due to lossy elements within the unit cell
or due to Bragg reflection effects in a lossless photonic crystal.
Instead, F and N will be defined as a product of modes and
their corresponding counterpropagating modes, specifically,
modes where k → −k. Since the attenuation of these modes
are in opposing directions, the product compensates for spatial
field attenuation. This achieves a generalization of the role of
energy velocity to modes that experience decay. The definition
reduces to the energy velocity for nondecaying modes, but
it diverges from Loudon’s definition of energy velocity for
decaying modes, as it retains equivalence with the group
velocity.

Mathematically, combinations of propagating and coun-
terpropagating fields correspond to modes from a basis and
its dual, or equivalently, combinations of modes and adjoint
modes. This was shown by Botten et al. in the context of
diffraction gratings [24]. The use of the dual basis is motivated
by the loss of Hermiticity when ε and µ are complex [25].
Eigenmodes of a non-Hermitian operator lack orthogonality
and completeness properties. Inclusion of the dual basis
establishes a complete biorthonormal basis [24,26]. A brief
introduction to the dual basis and adjoint fields is given in
Appendix A.

III. DERIVATION OF ADJOINT FIELD VELOCITY

In this section, we derive a relation between group velocity
and energy velocity in a periodic medium:

dω

dk
= lF

N . (8)

Energy velocity, lF/N , is calculated from products of field
quantities E and H that correspond to energy flux and energy
density. Using adjoint fields defines the adjoint field velocity,
providing the extension to the general case of modes that
experience attenuation across the unit cell due to loss or Bragg
reflection effects, defining an adjoint field velocity that remains
equivalent to group velocity.

A. Lossless dispersive media

We begin with the simple case of a lossless periodic medium
in the band, since the structure of the derivation is similar to the
general lossy case. Material dispersion is permitted, but loss
must be negligible so that ω and k can be assumed real. We

arrive at a result which is identical to that of Joannopoulos [25].
We begin with the vector identity

∇ · (E1 × H̄2) = H̄2 · (∇ × E1) − E1 · (∇ × H̄2), (9)

where E1 and H2 are time harmonic fields [E = E0(x)e−iωt ]
belonging to modal fields at two different frequencies, ω1 and
ω2. The bar denotes complex conjugation. Inserting Maxwell’s
curl equations, we find

∇ · (E1 × H̄2) = iω1µ1 H1 · H̄2 − iω2ε2 E1 · Ē2, (10)

where µ2 and ε1 denote the quantities at ω2 and ω1, respec-
tively. We exchange the subscripts, 1 → 2 and 2 → 1, and
complex conjugate to give

∇ · (Ē2 × H1) = −iω2µ2 H1 · H̄2 + iω1ε1 E1 · Ē2. (11)

If ε and µ are nondispersive, we add (10) and (11) to obtain

∇ · (E1 × H̄2 + Ē2 × H1)

= i(ω1 − ω2)[ε E1 · Ē2 + µH1 · H̄2]. (12)

Since, in general ε1 �= ε2 and µ1 �= µ2, we first simplify (10)
and (11) by expanding, in a Taylor series, ω2ε2 and ω2µ2 about
ω1ε1 and ω1µ1,

ω2ε2 = ω1ε1 + (ω2 − ω1)
d(εω)

dω

∣∣∣∣
ω1

+ O((ω2 − ω1)2), (13)

and similarly for µ. On neglecting terms of O((ω2 − ω1)2),
these expansions imply

iω1ε1 − iω2ε2 = i(ω1 − ω2)
d(εω)

dω

∣∣∣∣
ω1

, (14)

iω1µ1 − iω2µ2 = i(ω1 − ω2)
d(µω)

dω

∣∣∣∣
ω1

. (15)

Now, adding (10) and (11) gives

∇ · (E1 × H̄2 + Ē2 × H1)

= i(ω1 − ω2)

[
d(εω)

dω

∣∣∣∣
ω1

E1 · Ē2 + d(µω)

dω

∣∣∣∣
ω1

H1 · H̄2

]
.

(16)

We integrate over the unit cell, denoted UC:∮
∂UC

(E1 × H̄2 + Ē2 × H1) · n̂ ds

= i(ω1 − ω2)
∫

UC

[
d(εω)

dω

∣∣∣∣
ω1

E1 · Ē2

+ d(µω)

dω

∣∣∣∣
ω1

H1 · H̄2

]
dx, (17)

where ∂UC denotes the boundary of the unit cell. To trans-
form (17) into (8), we consider the limit as ω2 → ω1. When
ω2 is infinitesimally close to ω1, to first order, E1 ≈ E2 and
H1 ≈ H2. This is justified in Appendix B. Then the right-hand
side (RHS) of (17) is

RHS(17) = i�ω

∫
UC

[
d(εω)

dω
|E|2 + d(µω)

dω
|H|2

]
dx

+O((�ω)2), (18)
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where �ω = ω1 − ω2, and the partial derivatives are evaluated
at ω1. The integrand can be recognized as being proportional to
the electromagnetic energy density for a lossless medium, with
corrections to account for material dispersion, first obtained by
Brillouin [10].

The left-hand side (LHS) can be simplified using Bloch’s
theorem before applying any approximations, by expressing
quantities on one face of the unit cell in terms of quantities on
the opposing face. For a structure with 1D periodicity given
by a lattice vector in the x̂ direction,

LHS(17) = −
∫

L
(E1 × H̄2 + Ē2 × H1) · x̂ dy

+
∫

R
(E1 × H̄2 + Ē2 × H1) · x̂ dy, (19)

integrating over the y coordinates of the unit cell, where
subscripts L and R refer to the left and right faces of
the unit cell. Applying Bloch’s theorem, ER = ELeikl and
ĒR = ĒLe−ikl , where k is the Bloch wave number, and l is the
length of the unit cell, we get

LHS = (ei(k1−k2)l − 1)
∫

L
(E1 × H̄2 + Ē2 × H1) · x̂ dy

= i(k1 − k2)l
∫

L
(E1 × H̄2 + Ē2 × H1) · x̂ dy

+O((�k)2)

= i�kl

∫
L

Re(E × H̄) · x̂ dy + O((�k)2), (20)

where in the second equality a Taylor expansion of the
exponential was used and terms of O((�k)2) are neglected.
In the third equality, fields are again assumed invariant to first
order, neglecting higher order terms of O((�k)2).

Following from (18) and (20), this allows the two sides of
(17) to be equated,

2�kl

∫
L

Re(E × H̄) · n̂ dy

= �ω

∫
UC

[
d(εω)

dω
|E|2 + d(µω)

dω
|H|2

]
dx. (21)

Replacing �ω
�k

→ dω
dk

and rearranging gives (8), where F is
given by (5) and N is given by (7). For nondispersive ε and µ,
this reduces to (6). These formulas apply in the restricted case
of a lossless dispersive material in the band since frequency ω

and wave vector k were assumed to be real. Since F/N is the
ratio of energy flux to energy density, it is interpreted as the
energy velocity [25].

B. Lossy dispersive media

We now provide a derivation of (8) in the general case
of a lossy and dispersive system, which is the main result
of this paper. The derivation mirrors the lossless case, which
proceeded for two reasons: (a) Fields and conjugate fields both
had frequency ω and (b) products of fields and conjugate fields
(e.g., |E|2) had the same periodicity as the lattice. Periodicity
is exhibited despite the modal fields only being quasiperiodic,
accumulating a complex phase factor given by k. Where ω is
complex, conjugate fields now have frequency ω̄. Where k is

complex, products of fields and conjugate fields are no longer
periodic and also exhibit spatial decay.

Using adjoint fields resolves these issues. Products of
propagating and counterpropagating fields remain periodic
with the lattice. Furthermore, counterpropagating fields still
have frequency ω, not ω̄. This allows the derivation to proceed
as before with only minor adjustments. Mathematically, the
counterpropagating mode is adjoint to the propagating mode.
Modes and adjoint modes are related by [24]

E†(x,ω,k,ε,µ) = E(x,ω,−k,ε,µ), (22)

where E† denotes the adjoint field. Fields and adjoint fields
decay in opposing directions, and their product does not decay.
This contrasts with the properties of the complex conjugate
mode

Ē(x,ω,k,ε,µ) = E(x,−ω̄,−k̄,ε̄,µ̄), (23)

where complex conjugate fields are described by the Bloch
vector −k̄ rather than −k, and by frequency −ω̄ rather than ω.
Despite these difficulties, an alternative derivation using the
complex conjugate fields is given in the Appendix B to obtain
vg in the general case of a lossy dispersive periodic medium.

As before, we utilize the vector identity

∇ · (E1 × H†
2) = H†

2 · (∇ × E1) − E1 · (∇ × H†
2). (24)

Adding this to the equivalent of (11) and inserting Maxwell’s
equations give

∇ · (E1 × H†
2 − E†

2 × H1)

= i(ω1 − ω2)

[
d(µω)

dω
H1 · H†

2 − d(εω)

dω
E1 · E†

2

]
. (25)

Since both sides vary in time as exp[−i(ω1 + ω2)t], this
common factor may be canceled. Further manipulation gives

2�kl

∫
L
(E1 × H†

2 − E†
2 × H1) · n̂ dy

= �ω

∫
UC

[
d(µω)

dω
H1 · H†

2 − d(εω)

dω
E1 · E†

2

]
dx, (26)

Rearranging and replacing �ω
�k

→ d-ω
d-k , where the bar denotes a

path-dependent derivative to distinguish it from the derivative
of a complex analytic function, gives

d-ω

d-k
= lF

N , (27)

where

F = 1

4

∫
L
(E × H† − E† × H) · n̂ ds, (28)

N = 1

4

∫
UC

[
d(εω)

dω
E · E† − d(µω)

dω
H · H†

]
dx. (29)

This result applies in the general case where ω, k, or both may
be complex. In Section V we discuss some of the properties
of adjoint fields and the quantities derived from these fields,
F and N . Section V gives two examples that are beyond the
bounds of applicability of (5) and (7), but where (28) and (29)
give the correct d-ω/d-k.
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FIG. 1. Unit cell selected to simplify the calculation of F to a
1D calculation in a structure with 2D periodicity. Both (a) and (b)
are appropriate choices for unit cells applying to a mode occupying
the �-M segment of a square lattice. Vertex coordinates are shown,
where d is the lattice parameter. The vector n̂ is normal to the chosen
interface of the unit cell, where F is evaluated. The appropriate
distance for (27) is l.

C. Two- or three-dimensional periodicity

For in-band modes of lossless periodic structures in two
or three dimensions, Bloch modes are now described by
a real vector k. The 1D lossless result of (8) can still be
used to calculate ∇kω, in the direction k, if the geometry
of the unit cell is chosen appropriately. Issues arising from
a complex vector k are discussed later. All but one of the
basis vectors of the unit cell must be chosen to be orthogonal
to k. Then, (8) holds, with (5) being a line integral of the
normal flux over one face of the unit cell that is parallel
to the basis vectors orthogonal to k. Figure 1 shows the
choices of unit cell required for a mode along �-M in a
two-dimensional (2D) square lattice. For example, for a mode
of the square lattice along �-M, both a rotated square unit
cell and a parallelogram-shaped unit cell are appropriate.
The RHS(8) is an integral over the unit cell’s area, and the
LHS(8) is a line integral of the component of Re(E × H̄)
in the n̂ direction shown, on the chosen face of the unit cell.

This result follows from considering the surface integral in
(17). Ordinarily, the integral contains contributions from two or
three sets of opposing faces. All but one set of contributions can
be canceled when the basis vectors of the unit cell are chosen
such that �k · e2 = �k · e3 = 0, where �k is the difference
in the Bloch wave number of modes 1 and 2 and en are

the basis vectors. The integrand in (17) on opposing faces
of the unit cell is then related through Bloch’s theorem via
the multiplicative factor ei�k · en = 1, where n = 2 or 3. The
integrands on opposing faces are equal and opposite, and thus
they cancel. The definition of F reduces to the 1D case given
in (5).

Furthermore, it is possible to use (8) and (5) to calculate
∇kω in any direction k̂, not just the direction of the Bloch wave
number. Again, by returning to (17), eigenmodes E1 and E2

can be chosen such that �k is in the direction k̂. Again the
unit cell must be chosen such that �k · e2 = �k · e3 = 0. The
results hold as before.

Additional subtleties arise in lossy media since k is now a
complex vector. We may consider the three spatial components
of k, each with real and imaginary parts. Alternatively, we may
consider the spatial directions of the real and imaginary parts of
k, which may or may not be collinear. If collinearity is present,
then the calculation of ∇kω, based on (27), reduces to a 1D
problem again by choosing all but one basis vectors of the unit
cell to be perpendicular to k. However, when collinearity is
absent, no choice of basis vectors allows all but one basis
vector to be perpendicular to both the real and imaginary
parts of k, and a reduction to a 1D problem is impossible.
For the purpose of this paper, we only discuss propagation of
modes where Re(k) and Im(k) are collinear. In Section IV, we
discuss in detail factors that control the directions of the real
and imaginary parts of k, including the geometry of energy
coupling into a periodic structure.

IV. PROPERTIES OF ADJOINT FIELDS

In this section, we discuss in greater detail the modes used
in the definition of adjoint flux and density. We begin with a
discussion of the impact of loss on Bloch modes of a periodic
system due to ω or k being complex. We also discuss the effect
of a complex k present in structures with periodicity in two or
three dimensions.

A. Modes with complex ω or complex k

Until now, the modal fields of lossy periodic structures have
not been discussed, except in terms of abstract properties such
as quasiperiodicity. We show that the eigenmodes of a lossy
structure are not unique and, depending on whether ω or k is
complex, distinct sets of eigenmodes are obtained. The set of
eigenmodes chosen is motivated by physical considerations.

We illustrate with the simple example of a lossy homo-
geneous medium. Let the monochromatic plane wave fields
in a medium given by the dispersion relation k2 = εµω2

propagating in the ẑ direction be described by

E(x) = x̂ei(kz−ωt), H(x) = ŷ
√

ε

µ
ei(kz−ωt). (30)

The adjoint fields represent the solution propagating in the
opposite direction, or k → −k,

E†(x) = x̂e−i(kz+ωt), H†(x) = − ŷ
√

ε

µ
e−i(kz+ωt). (31)

One or both of ω and k must be complex to satisfy the dis-
persion relation k2 = εµω2, and ultimately the wave equation.
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However, ω and k cannot be uniquely specified. In particular,
ω may be chosen as real, forcing k to be complex, and vice
versa. When ω is chosen as real, the fields in (30) decay as
e−κz, where κ is the imaginary part of k, while the adjoint
fields (31) grow as eκz. Field amplitudes are constant in time.
When k is chosen as real and ω is complex, fields do not
spatially decay but change uniformly in space as a function of
time. A complete set of eigenmodes of the system is obtained
by varying the real parameter from 0 to ∞, with the complex
parameter determined by the dispersion relation.

From a mathematical perspective, the choices of ω or k

being real are equally valid. For a given physical problem,
however, one choice is more relevant than the other. The choice
of ω real and k complex is more desirable when describing the
propagation through passive media, for example modes of a
waveguide, surface modes, or bulk modes of a photonic crystal.
Energy is coupled into the mode, which subsequently decays
as it propagates in space. Figure 2 shows an example where
the lossy modes of a semi-infinite metallic photonic crystal are
excited by a plane wave in semi-infinite free space. Modes of
the photonic crystal are Bloch modes with a complex k. Typical
boundary conditions can be applied at the interface to obtain
coupling coefficients between the free space modes and the
Bloch modes. The Bloch wave number k then describes phase
advancement and attenuation of the field inside the passive
medium.

Modes with complex ω and real k better describe time
evolution of fields after an initial impulse in time. For
example, electromagnetic energy may be inserted into a cavity
mode, which then exhibits a characteristic decay time. The
initial condition can be expressed as a linear superposition
of modes, each described by a decay rate proportional to
the imaginary part of ω. Real k is also appropriate under
scenarios where fields are not subject to spatial decay, for
example, a pumped lasing mode of an optical cavity. Here, the
imaginary part of ω is related to the lasing threshold of the
mode [27].

FIG. 2. (Color online) Boundary condition between semi-infinite
free space and a semi-infinite 2D photonic crystal. A Bloch mode
described by k is excited by a plane wave described by k0. Boundary
conditions ensure that the parallel component of k0‖ is conserved
from the plane wave to the Bloch mode, determining k‖.

B. Modes of 2D or 3D structures

As mentioned in Sec. III, structures with periodicity in two
or three dimensions can be simplified to a 1D problem when
the real and imaginary parts of k are collinear. We now discuss
the conditions which result in Bloch modes described by k
with the collinearity property. A Bloch mode’s k is determined
not only by the direction of propagation within the structure
but by the nature of the coupling into the structure. We use the
illustrative example of a semi-infinite lossy photonic crystal
incident from above by a plane wave described by k0, where
boundary conditions must be satisfied at the interface (Fig. 2).
We refer to this interface as the cut plane of the crystal. The
component of k0 parallel to the interface is conserved at the
boundary between free space and the semi-infinite crystal
[28] (i.e., k0‖ = k‖), to within a reciprocal lattice constant.
Furthermore, k‖ remains conserved throughout the semi-
infinite crystal, and it is consequently identical at each suc-
cessive layer of the photonic crystal. The k0‖ of the incoming
plane wave therefore specifies k‖ of the Bloch mode within the
crystal.

For an incident plane wave not spatially decaying,
Im(k0‖) = Im(k‖) = 0. The Bloch mode does not spatially
decay in the parallel direction. For a mode with real ω,
spatial decay of a Bloch mode is present in a lossy medium,
and any imaginary component of k must be perpendicular
to the interface. If the incident plane wave has a nonzero
component of k0‖, then k‖ is also nonzero. In this system,
the real and imaginary parts of k are not collinear, since Im(k)
is perpendicular to the cut plane, while Re(k) has a component
parallel to the cut plane.

In summary, while the real and imaginary parts of k are
connected by the dispersion relation, ω = ω(k), the geometry
of energy coupling into Bloch modes determines key aspects
of k. For bulk modes of 2D photonic crystals, the orientation
of Im(k) is determined entirely by the cut plane, and the value
of k‖ by the incident plane wave. In general, the real and
imaginary parts of k can only be collinear if a normally incident
plane wave is considered. The 1D result of (27) is restricted to
modes with this collinearity property.

C. Properties of adjoint flux and density

We now turn our attention to the properties of adjoint fields
in the context of the adjoint field velocity. First, we show that
the simple fields of a homogeneous medium given by (30)
and (31) produce the correct value of vg when evaluated in
terms of (27). The time dependence of these harmonic fields is
ignored, having been factored out of the field quantities in F
and N . Although the adjoint field velocity is valid whether ω

or k is complex, we choose to maintain ω real and k complex,
as this is more suitable for describing propagation within the
medium after coupling from free space modes. Due to the infi-
nite translational symmetry, and since any product of fields and
its adjoint fields is conserved in magnitude under translation
in space, a unit cell of any size beginning at any origin can
be chosen. Hence, F = 2

√
ε/µ and N = 2lε, where l is the

length of the unit cell in x. This gives d-ω/d-k = 1/
√

εµ, as
expected.

This simple example displays four general properties of any
Bloch mode under the adjoint formulation.
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(i) Integrands in (28) and (29) do not decay from one unit
cell to the next. Fields are always coupled with adjoint fields,
with the opposing Bloch factor, k → −k, decaying in the op-
posite direction. Flux F and density N are consequently fully
periodic functions of space. As a result, the adjoint formulation
need not explicitly deal with decaying electromagnetic fields
due to dissipation of energy by the medium. Formulations of
F and N based on complex conjugate quantities do not have
this property in a lossy medium.

(ii) The adjoint field velocity reproduces the energy velocity
when ω and k are both real. Specifically, F and N , defined in
(28) and (29), reduce to the equivalent complex conjugate
quantities defined in (5) and (7). From the properties of
complex conjugate and adjoint fields (23) and (22), these fields
represent modes that differ only in the sign of ω. They satisfy
the same vector Helmholtz equation,

(∇2 + εiµiω
2)E = 0, (32)

in each region i, as the sign of ω is immaterial. Furthermore,
they see identical ε and µ across the unit cell and satisfy the
same boundary conditions. The conjugate and adjoint spatial E
fields are identical. But by Faraday’s law, ∇ × E = −∂ B/∂t ,
the conjugate and adjoint H fields differ by a minus sign due
to the difference in the sign of ω. These properties allow the
recovery of (5) and (7) from (28) and (29), collapsing the
adjoint definitions of F and N to their complex conjugate
counterparts.

(iii) Fields and adjoint fields are related by symmetry, since
these are the forward and backward propagating modes. If the
transformation k → −k accords with a symmetry of the lattice
then symmetry arguments can be used to derive the adjoint
field from the original field. The simple example given here and
many 2D and 3D photonic crystal geometries contain inversion
centers. Propagating through the structure with Bloch wave
number −k is equivalent to propagation through the space
inverted structure with Bloch wave number k. The adjoint
field is then obtained by following rules of E and H fields
under an inversion operation [29],

E†(x,k) = E(x,−k) = −E(−x,k). (33)

The first equality results from identifying the adjoint field as
the backward propagating wave [24], while the second equality
utilizes the inversion properties of E in three dimensions. The
H field transforms as a pseudovector,

H†(x,k) = H(x,−k) = H(−x,k). (34)

Therefore only the forward propagating mode needs to be
explicitly calculated. In the following calculations, in Fig. 3, 5,
and 8, the adjoint field velocity is calculated using these
inversion properties.

(iv) The values of F and N are not unique, but the ratio
F/N is unique. In the complex conjugate formulation, (5)
and (7), this is seen by scaling E, and therefore H , by any
complex factor. The magnitudes of F and N scale by the
square modulus of that factor, but the ratio F/N remains
unaffected. In the adjoint formulation, (28) and (29), scaling E
by a complex multiplicative factor demonstrates that both the
magnitude and complex phase of F and N are unconstrained.
However, their ratio is similarly unaffected. In the former

case, defining a mode to contain unit energy constrains N .
This is usually achieved by applying orthonormality of modes,
〈ψi |ψj 〉 = δij . A similar orthonormality may be applied to the
adjoint formulation; however, this does not guarantee that the
resulting N has the interpretation of energy density.

V. NUMERICAL EXAMPLES

In this section we present three numerical examples
demonstrating the equivalence of group velocity and adjoint
field velocity (27). The first example illustrates the properties
of adjoint fields and the adjoint definitions of flux and density
described in Sec. IV in a 1D periodic geometry. The second and
third examples confirm the validity of (27) in situations where
traditional definitions of energy flux and energy density fail:
in the band gap of a lossless photonic crystal and in a lossy
photonic crystal. Both are 2D examples. The third example
deals with the omnidirectional flat bands observed in lossless
metallic rods, ascribed to plasmon resonances.

We first consider propagation through a 1D photonic crystal
at normal incidence. The unit cell is composed of vacuum
and a lossy dielectric. Calculations are performed using the
transfer matrix method [30]. The modal field E is plotted in
Fig. 3, spanning 1.5 unit cells with two layers of dielectric and
one layer of vacuum. The adjoint field E† is obtained by a
reflection of E about the inversion center at 0.75. The freedom
to scale adjoint fields by a complex multiplicative factor is
used to ensure that (εEE† − µHH †) is a real quantity within
the vacuum. The field E and adjoint field E† decay in opposite
directions with opposite quasiperiodicities, ensuring (εEE† −
µHH †) remains periodic and (EH † − HE†) is constant. This
demonstrates, for periodic media, that products of fields and
their adjoints do not spatially decay and, in particular, the
adjoint flux is conserved.
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FIG. 3. (Color online) Field quantities of a 1D photonic crystal
composed of two materials a and b, with dielectric constants εa =
4 + 4i and εb = 1 and lengths la = 0.5 and lb = 0.5, with modes at
ω/c = 0.45. Shown are the magnitude (blue solid) and phase (green
dash dot) of E (a) and E† (b) fields and the real (blue solid) and
imaginary parts (green dash dot) of the integrands of N (c) and F (d)
given by (29) and (28).
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0
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0.5

M MΓ Y

d/
λ

FIG. 4. Band diagram of a 2D periodic structure consisting of a
square array dielectric cylinders in vacuum. The index of the cylinders
is n = 3, and the radius is a = 0.3d , where d is the lattice parameter.

The next two examples are 2D examples of a square array of
rods in vacuum: (a) an all dielectric structure and (b) a metallic
structure. While the structures are 2D, the 1D result of (27) can
be applied with an appropriate choice of unit cell. We focus
on the dispersion relation in the �-X direction. The direction
of attenuation in modal fields is also in the �-X direction,
achieved by analyzing a semi-infinite photonic crystal with a
cut plane parallel to the �-Y direction.

Band structures were calculated by using a multipole expan-
sion and a transfer matrix method. Fields around each cylinder
were expanded in a multipole basis, where analytic expressions
were derived for the cylindrical boundary conditions [31].
Lattice sums were used to related the field incoming onto
each cylinder to the field outgoing from other cylinders within
a single layer of the lattice [32]. The transfer matrix eigenvalue
method was applied between the constituent layers of the
lattice to produce the band structure [28,33].

Figure 4 shows the band diagram of dielectric rods in
vacuum. Figure 5 compares the group velocity, as calculated
as dω/dk from the band diagram in Fig. 4, and the adjoint
field velocity, as calculated from the modal fields, of the
�-X section. Agreement is found in both the first and second
bands, where (27) reduces to the standard definition of energy
velocity, and in the band gap, where energy velocity and adjoint
field velocity differ.

The third example consists of silver rods in vacuum, which
features multiple omnidirectional flat bands at wavelengths
around the plasma frequency when loss is neglected [34].

0 0.1 0.2 0.3 0.4

−0.5

−0.25

0

0.25

0.5

d/λ

dω
/d

k 
 (

c)

FIG. 5. (Color online) Comparison for the �-X segment of the
group velocity as calculated from Fig. 4 (lines) and the adjoint field
velocity calculated from the modal fields (dots). Blue solid and green
dash dot lines denote the real and imaginary parts, respectively. Shown
are the first and second bands, where vg is real, and the band gap,
where vg is purely imaginary.

0 0.5 1
0.5

0.6

0.7

0.8

0.9

k
B
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FIG. 6. Band structure of a square array of silver rods in vacuum,
with a = 0.3d , in the �-X direction and loss neglected. Around the
plasma frequency, at d/λ ≈ 0.87, a series of flat bands is observed.

A multiresonance Drude-Lorentz model was used to match
the optical constants for silver [35]. Figures 6 and 7 shows the
�-X segment of the band diagram when loss was neglected
and when loss was not neglected, respectively. Figure 7 shows
the three least lossy modes for each frequency, where loss is
quantified by the imaginary part of k. Comparing the lossless
and lossy band diagrams, one sees that the flat regions of
the band diagram are significantly impacted by loss, demon-
strating the importance of loss in the context of Kramers-
Kronig-consistent dispersion relations. Figure 8 compares
group velocity and adjoint field velocity. Only the least lossy
mode is shown. As in the previous examples, numerical agree-
ment is found between group velocity and the adjoint field
velocity.

VI. DISCUSSION

When electromagnetic fields lose energy to material ab-
sorption, the fields no longer conserve energy. However, the
reciprocity theorem remains a valid constraint [36], which is
exploited in our construction of the field quantities F and N
in the definition of the adjoint field velocity. Therefore, the
interpretations of F and N when loss is present differ from
those of the analogous energy velocity quantities of 〈S〉 and
〈U 〉 when loss is absent. However, these analogous quantities
can still be compared within the context of reciprocity and
energy conservation. The divergence of time-averaged energy
flux S being zero, ∇ · Re(E × H̄) = 0, is a statement of energy
conservation; the divergence of the integrand of F being zero,
∇ · (E × H† − E† × H) = 0, is a statement of Lorentz reci-
procity. Indeed, it can be shown from the properties of Bloch
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0.7

0.8

0.9

k
B
d  (π)
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λ

FIG. 7. Same as Fig. 6, but loss is not neglected. Shown are the
three least lossy modes.
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FIG. 8. (Color online) Comparison of the real (blue solid) and
imaginary (green dash dot) parts of group velocity (solid lines) and
adjoint field velocity (dots) in the �-X segment for the bands of Fig. 7.
Only the least lossy mode is shown.

modes and their adjoints that this divergence is always zero.
Similarly, for 〈U 〉 and N , the time derivative of the integrands
being zero are also statements of energy conservation and
reciprocity, respectively. Therefore, F and N are analogous
to 〈S〉 and 〈U 〉 in the context of reciprocity rather than energy
conservation.

The derivation of the energy velocity in Sec. III produces a
result that is equivalent to that obtained from k · p perturbation
theory [37,38]. In the lossless case, the difference between our
derivation and k · p theory is largely immaterial; the meaning-
ful difference arises in the approach to loss. Whereas authors
such as Loudon and Sipe include energy transformations from
the fields into energy dissipated by the medium [14,39], we
turn to adjoint fields. In the context of k · p theory, accounting
for all energy transformations preserves Hermiticity of the
differential operators that generate the eigenmodes of the
system, and Hermiticity is required for the necessary properties
of orthonormality and completeness. Using adjoint modes
instead considers the dual basis, which provides a complete
biorthonormal set of modes. Calculating vg from the field
quantities remains purely an electromagnetic problem, and
an explicit model for material characteristics is not required as
they are implicitly captured in ε(ω) and µ(ω). In our derivation,
we have not explicitly used the completeness and biorthonor-
mality properties, utilizing only the fact that products of
modes and adjoint modes possesses the same periodicity as the
structure.

Two derivations are presented in this paper relating
the complex group velocity to integrals over modal fields.
Section III introduces adjoint fields, while Appendix B
continues to use complex conjugate fields. Both forms give
dω/dk, but the adjoint field velocity directly gives dω/dk,
while the complex conjugate formulation gives dω/d[Re(k)]
and dω/d[Im(k)] separately. The adjoint form is simpler,
as extra terms are needed to account for attenuation of
modal fields when complex conjugate fields are used. Most
significantly, the complex conjugate fields no longer allow two
modes on the same band that are infinitesimally separated to
be treated as identical to first order. Consequently, to calculate
dω/d[Re(k)], calculations of d E/d[Re(k)] and other similar
quantities are explicitly required, a clear disadvantage when
compared with the adjoint field velocity.

When loss is present, attenuation is a required feature of
the modes. However, the modes may have either ω or k being

complex, corresponding to temporal and spatial attenuation,
respectively. The adjoint field velocity can handle both such
modes, or even modes where both ω and k are complex.
The adjoint field velocity is different in these two situations,
owing to the differing field distributions. This dictates that
the complex group velocity, and hence the dispersion relation,
varies markedly depending on whether ω or k is complex.
For example, group velocity, in particular dω/d[Re(k)], is
significantly impacted by loss at the small group velocity
regions of the band in the complex k but not in the complex ω

band diagram. However, there is no inconsistency, as complex
ω and complex k modes are relevant to different physical
situations.

In this paper, we have considered only the adjoint field
velocity in 1D, which can be applied to structures periodic in
2D or 3D under limited circumstances. Extensions of the def-
inition to higher dimensions are possible. The dimensionality
of the structure affects only the adjoint flux, F , as it is a vector
quantity. Generalizations of F will project the integrand of F
in the direction of a vector k and integrate over the entire unit
cell rather than along a single boundary.

VII. CONCLUSION

We have introduced a velocity termed the adjoint field
velocity that reproduces the group velocity in lossy media and
is calculated from modal field distributions. The adjoint field
velocity reduces to the energy velocity in modes of lossless
media that do not show attenuation. In lossy media, where
the energy velocity differs from the group velocity, the adjoint
field velocity remains linked to the group velocity. Thus the
adjoint field velocity provides the link between the slope of the
dispersion relation and the modal field distribution. In addition
to lossy media, the adjoint field velocity is valid whenever
the modes of the system have a complex ω or complex
k, as in evanescent modes in the band gap of a photonic
crystal. Examples are provided to demonstrate the numerical
agreement with the group velocity. The results derived are for
the 1D case, applying to structures with periodicity in 1D, or
structures with infinite translational symmetry in at least 1D. In
restricted cases, the results can be applied to structures periodic
in 2D or 3D, specifically, when the direction of spatial field
attenuation coincides with propagation of energy. Any sym-
metries present within the structure can be used to obtain the
adjoint fields, and thus only one set of modes need be explicitly
calculated.
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APPENDIX A: BRIEF INTRODUCTION
TO ADJOINT MODES

We provide a brief introduction to the adjoint modes and
restate some key results of [24] relevant to this paper.

Modes of periodic systems are eigenfunctions of the
operator

1

µ
∇ ×

(
1

ε
∇ × H

)
= ω2 H, (A1)
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which is expressed abstractly as

Lui = βiui, (A2)

where βi is the eigenvalue of the ith mode ui . Adjoint modes
satisfy a similar eigenvalue equation,

L†u†
i = β

†
i u

†
i , (A3)

where u
†
i is the ith eigenmode of a yet to be defined adjoint

operator L†. An inner product may be defined on the set of all
eigenmodes ui and u

†
i ,

〈u†
i ,uj 〉 =

∫
H†

i · H j dx. (A4)

The adjoint operator, L†, may be defined such that its
eigenmodes, u

†
i , satisfy the orthonormality condition under

an inner product,

〈u†
i ,uj 〉 = δij , (A5)

where δ is the Kronecker delta. Where the operator L is
Hermitian,

〈Lu
†
i ,uj 〉 = 〈u†

i ,Luj 〉, (A6)

adjoint fields are given by the familiar complex conjugation
operation and the adjoint eigenvalue equation (A3) may be
reduced to [25]

Lūi = βiūi . (A7)

However, when the operator L is not Hermitian, the eigen-
modes obtained from (A7) no longer satisfy the orthonormality
condition. Botten et al. show in the context of lossy lamellar
gratings that defining u

†
i as the set of modes counterpropagat-

ing to ui satisfies the orthonormality condition. These modes
have the properties

E†(x,ω,k,ε,µ) = E(x,ω,−k,ε,µ). (A8)

It is the property of adjoint modes that k → −k which we
specifically utilize in this paper.

APPENDIX B: COMPLEX GROUP VELOCITY WITHOUT
ADJOINT FIELDS

We derive the form of F and N in a dispersive and lossy
medium using the complex conjugate fields. We begin with

∇ · (E1 × H̄2) = +iω1µ1 H1 · H̄2 − iω̄2ε̄2 E1 · Ē2,

−∇ · (E2 × H̄1) = −iω2µ2 H̄1 · H2 + iω̄1ε̄1 Ē1 · E2,
(B1)−∇ · (Ē1 × H2) = +iω̄1µ̄1 H̄1 · H2 − iω2ε2 Ē1 · E2,

∇ · (Ē2 × H1) = −iω̄2µ̄2 H1 · H̄2 + iω1ε1 E1 · Ē2,

where the four identities may be obtained by a combination
of swapping indexes, complex conjugation, or multiplying by
−1. As before, we add the four equations. In this derivation,
we assume ω is real and k is complex. The corresponding
result for complex ω follows by not assuming ω = ω̄. The
right-hand side may be simplified by expanding both ω2ε2 and

E2 in a Taylor series, neglecting the second-order terms. After
integration, the right-hand side is

2i(ω1 − ω2)
∫

UC

[
d(εrω)

dω
|E|2 + 2ωεiIm

(
E · ∂ Ē

∂ω

)

+ d(µrω)

dω
|H|2 + 2ωµiIm

(
H · ∂ H̄

∂ω

)]
dx, (B2)

where subscripts r and i denote the real and imaginary parts
of ε and µ. In the absence of loss, this reduces to

2i(ω1 − ω2)
∫

UC

[
d(εω)

dω
|E|2 + d(µω)

dω
|H|2

]
dx, (B3)

which justifies the assumption in (18) that E1 = E2 to first
order. On the LHS, we obtain, after integrating over the unit
cell and using Bloch’s theorem to express fields on opposing
sides of the unit cell,

LHS =
∫

L
Im [(E1 × H̄2 + Ē2 × H1)

× (ei(k′
1−k′

2)le−(k′′
1 +k′′

2 )l − 1)] · n̂ ds

≈
∫

L
Im [(E1 × H̄2 + Ē2 × H1){[1 + i(k′

1 − k′
2)l]

× e−(k′′
1 +k′′

2 )l − 1}] · n̂ ds, (B4)

introducing the notation k′ = Re[k] and k′′ = Im[k].
Expanding E2 and H2 in powers of (k′

2 − k′
1) and dropping

second-order terms gives

LHS = (k′
1 − k′

2)
∫

L

[
Re(E1 × H̄1)le−(k′′

1 +k′′
2 )l

− Im

(
E1× ∂ H̄1

∂k′ + ∂ Ē1

∂k′ × H1

)
(e−(k′′

1 +k′′
2 )l−1)

]
·n̂ds.

(B5)

Again, setting k′′
1 and k′′

2 to 0 gives an expression equivalent
to (18). Equating the left- and right-hand sides and allowing
�ω
�k′ → dω

dk′ gives

∂ω

∂k′ = lF
N , (B6)

where

N =
∫

UC

[
d(εrω)

dω
|E|2 + 2ωεiIm

(
E · ∂ Ē

∂ω

)
+ d(µrω)

dω
|H|2

+ 2ωµiIm

(
H · ∂ H̄

∂ω

)]
dx (B7)

and

F =
∫

L

[
Re (E × H̄)le−2k′′l − Im

(
E × d H̄

dk′ + d Ē
dk′ × H

)

× (e−2k′′l − 1)

]
· n̂ ds. (B8)

The quantity dω/dk′′ can also be obtained by considering a
change in sign of two of the four identities in (B1).
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