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Generating single-mode behavior in fiber-coupled optical cavities
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We propose to turn two resonant distant cavities effectively into one by coupling them via an optical fiber
which is coated with two-level atoms [J. D. Franson et al., Phys. Rev. A 70, 062302 (2004)]. The purpose of the
atoms is to destructively measure the evanescent electric field of the fiber on a time scale which is long compared
to the time it takes a photon to travel from one cavity to the other. Moreover, the boundary conditions imposed
by the setup should support a small range of standing waves inside the fiber, including one at the frequency of
the cavities. In this way, the fiber provides an additional decay channel for one common cavity field mode but
not for the other. If the corresponding decay rate is sufficiently large, this mode decouples effectively from the
system dynamics. A single nonlocal resonator mode is created.
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I. INTRODUCTION

Recent progress in experiments with optical cavities has
mainly been motivated by potential applications in quantum
information processing. These applications often require the
simultaneous trapping of at least two atomic qubits inside
a single resonator field mode. It has been shown that
the common coupling to a quantized mode can be used
for the implementation of quantum gate operations [1–5]
and the controlled generation of entanglement [6–10]. How-
ever, the practical realization of these schemes with current
technologies is experimentally challenging. The main reason
is that strong atom-cavity interactions require relatively small
mode volumes and high-quality mirrors; aims that are difficult
to reconcile with the placement of several atoms or ions into
the same cavity.

To solve this problem, it has been proposed to couple distant
cavities via linear optics networks [11–13]. Under realistic
conditions, this strategy allows at least for the probabilistic
build-up of highly entangled states. Alternatively, one could
shuttle atoms successively in and out of the resonator [14–16].
In this article we propose to use instead fiber-coupled cavities
which employ reservoir engineering and similar ideas as in
Ref. [17] to turn two distant cavities effectively into one.
Our aim is that atomic qubits placed into different cavities
behave as if they were placed into the same cavity. When
this becomes possible, quantum computing schemes designed
for several qubits placed into the same resonator can be
applied to a much wider range of experimental scenarios.
They can be implemented with atomic qubits, quantum dots
[18,19], nitrogen vacancy (NV) color centers [20,21], and
superconducting flux qubits [22]. Another possible application
of fiber-coupled cavities is the transfer of information from one
cavity to another [23–25].

The experimental setup considered in this article (cf. Fig. 1)
consists of two cavities with the same frequency ωcav. Given
two cavities with fixed polarization, there are two quantized
cavity field modes. For example, one could describe the setup
using the individual cavity modes with annihilation operators
c1 and c2. But there is also the possibility of describing the
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cavities by two common (i.e., nonlocal) field modes. Their
cavity photon annihilation operators are of the general form

ca = 1

ξ
(ξ ∗

2 c1 − ξ ∗
1 c2),

(1)

cb = 1

ξ
(ξ1 c1 + ξ2 c2),

where ξ1 and ξ2 are complex coefficients and

ξ =
√

|ξ1|2 + |ξ2|2 . (2)

One can easily check that, if c1 and c2 obey the usual boson
commutator relations, then so do ca and cb,

[ ca,c
†
a ] = [ cb,c

†
b ] = 1 and [ ca,c

†
b ] = 0. (3)

An atomic qubit placed into one of the two cavities interacts
in general with the ca and with the cb mode, since both are
nonlocal.

The purpose of the cavity fiber coupling with atomic coating
shown in Fig. 1 is to assign different spontaneous decay rates
to the ca and to the cb mode. If one of the two common cavity
modes has a much larger spontaneous decay rate than the
other one, it effectively decouples from the system dynamics
[17,26]. A single nonlocal resonator mode is created. This
means that atomic qubits placed into different cavities would
indeed behave as if they were placed into the same cavity.

To achieve this task, we impose the following conditions
on the experimental setup considered in this article:

(i) Differing from Refs. [27,28], we do not treat the fiber as
a resonant cavity with a single well-defined frequency. Instead,
we assume boundary conditions which allow for a continuous
range of frequencies which should include the cavity frequency
ωcav. This broadening of the fiber spectrum is in general due
to the finite width of the fiber, imperfection of the mirrors, and
the presence of atoms in its evanescent field [29].

(ii) At the same time, the frequency range supported by the
fiber should not be too broad. The fiber needs to be short and
thin enough to have a well-defined optical path length for each
frequency supported by the fiber. At the optical frequency
ωcav, there should be only one standing wave which fulfills
the boundary condition of vanishing electric field amplitudes
at the surface of the adjacent cavity mirrors. Standing waves
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FIG. 1. (Color online) Experimental setup of two optical cavities coupled via a single-mode fiber. Photons can leak out through the outer
mirrors with the spontaneous decay rate κ1 and κ2, respectively. The connection between both cavities constitutes a third reservoir with
spontaneous decay rate κm for a common nonlocal resonator field mode.

which are half a wave length λcav shorter or longer should not
fit into the fiber.

(iii) The single-mode fiber connecting the two cavities in
Fig. 1 should be coated with two-level atoms. The purpose of
the atoms is similar to their purpose in Ref. [30] by Franson
et al. namely to measure the evanescent electric field of the
fiber and to provide an additional reservoir for the cavity
photons. In the following, we assume that the atoms have
a transition frequency ω0 and a nonzero decay rate � such that
they absorb light traveling through the fiber and dispose of
it via spontaneous emission. In the following we denote the
spontaneous decay rate associated with the leakage of photons
out of the fiber by κm.

(iv) The atoms should measure electric field amplitudes on
a time scale which is long compared to the time it takes a
photon to travel from one cavity to the other. In this way, the
atoms measure only relatively long-living photons inside the
fiber, i.e., the field amplitudes of the electromagnetic standing
waves with vanishing amplitudes at the fiber ends. They should
not be able to gain information about the source of a photon.

(v) Here we are especially interested in the parameter
regime, where κm is much larger than the spontaneous
decay rates κ1 and κ2 which describe the absorption of
photons in the cavity mirrors and the leakage of photons
into adjacent reservoirs other than the fiber. Moreover, κm

should be much larger than any other coupling constants, like
the Rabi frequencies �1 and �2 of externally applied laser
fields, i.e.,

κm � κi,�i. (4)

In other words, cavity photons which leak out through the fiber
decay on a much shorter time scale than the cavity photons
which do not see this reservoir.

Suppose, there is initially one photon in cavity 1 and none
in cavity 2. In this case, some light will travel from cavity 1 to
cavity 2. Once there is excitation in both cavities, the photons
which do not couple to the one mode supported by the fiber
at frequency ωcav can no longer enter the fiber. Other cavity
photons leak more easily into the fiber, since their efforts
are met by waves with the same amplitude coming from the
other side. The above conditions assure that the photons are
measured on a relatively slow time scale and that the atoms
in the evanescent field of the fiber cannot distinguish photons
traveling left or right. They can only absorb light which can
exist for a relatively long time inside the fiber. This means
they only absorb photons from one common cavity mode but
not from the other. There is hence a finite probability that the

initial photon leaks relatively quickly into the environment. In
addition, there is the possibility that the initial photon remains
inside the setup for a relatively long time and becomes a shared
photon between both cavities with no amplitude in the fiber. In
the following we associate the cavity mode which does not see
the fiber with the ca mode. The spontaneous decay rate κa of
photons in the ca mode is hence of a similar size as κ1 and κ2.
The cb mode, however, sees the fiber reservoir in the middle in
addition and has a decay rate comparable to κm. Equation (4)
hence implies

κb � κa,�i, (5)

which is exactly what we want to achieve.
Although this article refers in the following only to single-

mode fibers, any coupling of the cavities which meets the
above requirements would work equally well. One possible
alternative is shown in Fig. 2. If the cavities are mounted on
an atom chip, a similar connection between them could be
created with the help of a waveguide (or nanowire) etched
onto the chip. Such a connection too supports only a single
electromagnetic field mode. To detect its field amplitude, a
second waveguide connected to a detector should be placed
into its evanescent field, thereby constantly removing any field
amplitude from the waveguide between the cavities.

C1 C2

evanescent 
coupling

waveguide

κ1 κ2

κm

FIG. 2. (Color online) Schematic view of an alternative ex-
perimental setup. If the cavities are mounted on an atom chip,
they could be coupled via a waveguide etched onto the chip. To
emulate environment-induced measurements of the field amplitude
within the waveguide, a second waveguide should be placed into its
evanescent field which constantly damps away any eletromagnetic
field amplitudes.
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Fiber-coupled optical cavities with applications in quantum
information processing have already been widely discussed
in the literature (see, e.g., Refs. [23–25,27,28,31]). The
main difference of the cavity coupling scheme presented
here is that it does not rely on coherent time evolution.
Instead it actively uses dissipation in order to achieve its
task. We therefore expect that the proposed scheme is more
robust against errors. For example, the fiber considered here
which is coated with two-level atoms acts as a reservoir
for the cavity photons and supports a continuous range of
frequencies. It can hence be longer than when it needs to
contain only a single frequency as in Refs. [24,25,27,28].
In addition, the setup considered here is robust against fiber
losses [23,31].

An alternative scheme for the generation of single-mode
behavior in distant optical cavities has recently been proposed
by us in Ref. [17]. Different from the setup in Fig. 1, we
considered two optical cavities with each of them individually
coupled to an optical single-mode fiber. These fibers guide
photons from each cavity onto a single photon detector
which cannot resolve the origin of the incoming photons.
Despite its similarity with the two-atom double slit experiment
by Eichmann et al. [32–34], a Gaussian beam analysis of
the scheme proposed in Ref. [17] shows that achieving
real indistinguishability would require optical fibers with a
diameter much smaller than the optical wavelength [35]. These
are relatively hard to realize experimentally although this is
feasible with current technology [36,37]. The setup in Fig. 1
avoids the use of subwavelength fibers by replacing them with
a single naturally aligned fiber.

There are five sections in this article. Section II gives an
overview over the open system description of a single cavity,
thereby providing a blueprint for the expected behavior of the
setup in Fig. 1. Section III includes a detailed derivation of
the master equation for two fiber-coupled cavities. Section IV
describes two different scenarios for which the cb mode
decouples effectively from the system dynamics with one of
them being especially robust against parameter fluctuations.
Finally, we summarize our findings in Sec. V.

II. OPEN SYSTEM APPROACH FOR A SINGLE
LASER-DRIVEN CAVITY

In this section we describe how to predict the possible
quantum trajectories of an optical cavity which is driven
by a resonant laser field and continuously leaks photons
through its cavity mirrors, as shown in Fig. 3. We derive
the master equation for this setup by adopting the quantum
jump approach introduced in Refs. [38–40] and calculate its
stationary state photon emission rate. Later we refer to the
equations in this section when deriving the master equation
for two fiber-coupled optical cavities and when discussing
conditions for their single-mode behavior.

A. System Hamiltonian

The setup in Fig. 3 consists of an optical cavity which
interacts with the surrounding free radiation field and is driven
by a resonant laser field. Its Hamiltonian is hence of the

LASER

Detector

Light

Cavity

FIG. 3. (Color online) Experimental setup of a single cavity
driven by a laser field. The photons leaking out through the cavity
mirrors are monitored by a detector.

form

H = Hcav + Hres + Hdip, (6)

where Hcav is the cavity Hamiltonian, Hres is the reservoir
Hamiltonian, and Hdip takes the dipole coupling of the cavity
to the driving laser field and the environment into account. If
we denote the frequency of the cavity mode and the modes of
the free radiation field with wave number k by ωcav and ωk and
the corresponding photon annihilation operators by c and ak ,
respectively, then

Hcav = h̄ωcav c†c ,
(7)

Hres =
∑

k

h̄ωk a
†
kak .

Here we assume that the polarization of the applied laser field,
the cavity field, and the modes of the free radiation field is the
same. As long as no mixing of different polarization modes
occurs, these are the only modes which have to be taken into
account. Moreover, we have

Hdip = eD · [Elaser(t) + Eres], (8)

where D ∝ c + c† is the effective dipole moment of the cavity
mode and where Elaser(t) and Eres are the electric fields of the
driving laser and of the free radiation field, respectively.

Treating the laser field with frequency ωL = ωcav as a
classical field while considering the modes of the reservoir
quantized, this Hamiltonian can be written as

Hdip = 1

2
h̄� eiωcavt c +

∑
k

h̄gk ca
†
k + H.c., (9)

where the rotating wave approximation has already been
applied. Here � is the (complex) laser Rabi frequency
and the gk are the (complex) coupling constants of the
interaction between the cavity and the free radiation field due to
overlapping electric field modes in the vicinity of the resonator
mirrors.

For simplicity, we now move into the interaction picture
with respect to the interaction-free Hamiltonian

H0 = Hcav + Hres. (10)

In this case, the Hamiltonian of system and environment
simplifies to

HI = 1

2
h̄� c +

∑
k

h̄gk ei(ωk−ωcav)t ca
†
k + H.c. (11)
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The laser field simply creates and annihilates photons inside
the cavity mode, while the cavity-reservoir coupling results in
an exchange of photon energy between system and environ-
ment.

B. No-photon time evolution

As in Refs. [38–40] we assume in the following that the
environment constantly performs measurements on the free
radiation field whether a photon has been emitted. In quantum
optical systems, there are in general no photons in the free
radiation field, since these travel away (or are absorbed by the
environment) such that they cannot return into the system. In
the following, we assume therefore that the cavity is initially in
a state |ϕ(0)〉, while the free radiation field is in its vacuum state
|0ph〉. Using the projection postulate for ideal measurements,
one can then show that the state of the system equals

|0ph〉|ϕ0(�t)〉 = |0ph〉〈0ph|UI(�t,0)|0ph〉|ϕ(0)〉 (12)

at �t under the condition of no photon emission. A comparison
of both sides of this equation shows that

|ϕ0(�t)〉 = Ucond(�t,0)|ϕ(0)〉 (13)

with the conditional time evolution operator defined as

Ucond(�t,0) ≡ 〈0ph|U (�t,0)|0ph〉. (14)

The probability for no photon emission in �t can now be
written as ‖Ucond(�t,0)|ϕ(0)〉‖2.

Using Eq. (11) and second-order perturbation theory,
and proceeding as in Refs. [38–40], one can easily show
that the corresponding conditional time evolution operator
equals

Ucond(�t,0) = I − i

2
(�c + �∗ c†)�t

−
∑

k

g2
k

∫ �t

0
dt

∫ t

0
dt ′ ei(ωk−ωcav)(t ′−t) c†c.

(15)

To evaluate the double integral in this equation, we substitute
t ′ by τ ≡ t − t ′. Considering a time interval �t with �t �
1/ωcav, the second integral can be replaced by a δ function.
Neglecting a term corresponding to a level shift which can
be absorbed into Hcav of the total system Hamiltonian, we
obtain∫ �t

0
dt

∫ t

0
dt ′ ei(ωk−ωcav)(t ′−t) = πδ(ωk − ωcav)�t. (16)

The conditional Hamiltonian corresponding to the time evolu-
tion in Eq. (15) hence equals

Hcond = 1

2
h̄� c + H.c. − i

2
h̄κ c†c (17)

with the spontaneous cavity leakage rate κ . Suppose we denote
the cavity-environment coupling constant gk for the mode
which is resonant with the cavity field by gc. Then κ can
be written as

κ = 2π

N g2
c , (18)

where N is a normalization factor which depends for example
on the quantization volume of the reservoir. The second term in
Eq. (17) takes into account that not seeing a photon gradually
reveals information about the system, thereby increasing the
relative population in states with lower photon numbers.

C. Effect of photon emission

Analogously, one can derive the state of the system in case
of an emission which we write in the following as

|ϕph(�t)〉 = R |ϕ(0)〉. (19)

Replacing the no-photon projector |0ph〉〈0ph| in Eq. (12) by
the projector onto all states with at least one photon in the
free radiation field, using first-order perturbation theory, and
proceeding again as in Refs. [38–40], we find that R equals

R = √
κ c. (20)

Here the normalization of the reset operator R has been
chosen such that ‖R |ϕ(0)〉‖2 �t is the probability for a photon
emission in �t .

D. Master equation

Averaging over both possibilities, i.e., over a subensemble
of cavities without and a subensemble of cavities with photon
emission in �t , we move from the above described quantum
jump approach [38–40] to the master equation. Doing so, we
find that the density matrix of the cavity field evolves according
to

ρ̇ = − i

h̄
[Hcondρ − ρH

†
cond] + R ρ R†. (21)

This is the standard master equation for the quantum optical
description of the field inside an optical cavity.

E. Stationary state photon emission rate

If we are, for example, interested in the time evolution of
the mean number of photons n inside the cavity, then there is
no need to solve the whole master equation (21). Instead, we
use this equation to get a closed set of rate equations with n

being one of its variables. More concretely, considering the
expectation values

n ≡ 〈c†c〉,
(22)

k ≡ i

|�| 〈�c − �∗ c†〉,

we find that their time evolution is given by

ṅ = 1
2 |�| k − κ n,

(23)
k̇ = |�| − 1

2κ k.

Setting the right-hand sides of these equations equal to zero,
we find that the stationary state of the laser-driven cavity
corresponds to n = |�|2/κ2. Since the steady-state photon
emission rate is the product of n with the decay rate κ , this
yields

I = |�|2/κ. (24)
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Measurements of the parameter dependence of this intensity
can be used to determine |�| and κ experimentally.

III. OPEN SYSTEM APPROACH FOR TWO
LASER-DRIVEN FIBER-COUPLED CAVITIES

In this section, we derive the master equation for the
two fiber-coupled optical cavities shown in Fig. 1. We
proceed as in the previous section and obtain their master
equation by averaging again over a subensemble with and
a subsensemble without photon emission. A discussion of
the behavior predicted by this equation for certain interesting
parameter regimes can be found later in Sec. IV.

A. System Hamiltonian

The total system Hamiltonian H for the setup in Fig. 1
in the Schrödinger picture is of exactly the same form as the
Hamiltonian in Eq. (6). Again, Hcav and Hres denote the energy
of the system and its reservoirs, while Hdip models the cavity-
environment couplings and the effect of applied laser fields. In
the following, we denote the annihilation operators of the two
cavities by c1 and c2, respectively, while

ωc,1 = ωc,2 = ωcav (25)

is the corresponding frequency which should be for both
cavities the same. In analogy to Eq. (7), the energy of the
resonators is hence given by

Hcav =
∑
i=1,2

h̄ωcav c
†
i ci . (26)

The reservoir of the system now consists of three components.
Its Hamiltonian can be written as

Hres =
∑
i=1,2

∑
k

h̄ωk a
†
k,iak,i +

∑
k

h̄ωk b
†
kbk, (27)

where ωk denotes the frequency of the free field radiation
modes with wave number k. The annihilation operators ak,i

describe the free radiation field modes on the unconnected
side of each cavity with k being the respective wave number
and i indicating which cavity the field interacts with. The
annihilation operators bk describe the continuum of quantized
light modes in the optical single-mode fiber with vanishing
electric field amplitudes at the fiber ends. For each wave num-
ber k, these modes correspond to a single standing light wave
with contributions traveling in different directions through
the fiber. As in the previous section, we restrict ourselves
to the polarization of the applied laser field. Since there is no
polarization mode mixing, this is the only polarization which
needs to be taken into account.

The only term still missing is the interaction Hamiltonian
Hdip which describes the coupling of the two cavities to
their respective laser fields and to their respective reservoirs.
Assuming that both lasers in Fig. 1 are in resonance and
applying the usual dipole and rotating wave approxima-
tion, Hdip can in analogy to Eq. (4) in Ref. [24], be

written as

Hdip =
∑
i=1,2

∑
k

h̄sk,i cia
†
k,i + h̄gk,i cib

†
k

+
∑
i=1,2

1

2
h̄�i e

−iωcavt ci + H.c., (28)

where sk,i and gk,i are system-reservoir coupling constants and
where �i is the Rabi frequency of the laser driving cavity i.

To calculate the photon and the no-photon time evolution
of the cavities over a time interval �t with the help of
second-order perturbation theory, we proceed as in Sec. II and
transform the Hamiltonian H of the system into the interaction
picture relative to H0 in Eq. (10). This finally yields

HI =
∑
i=1,2

∑
k

h̄sk,i e
i(ωk−ωcav)t cia

†
k,i

+ h̄gk,i e
i(ωk−ωcav)t cib

†
k + 1

2
h̄�i ci + H.c., (29)

which describes the interaction of the cavities with their
reservoirs and the two lasers.

B. No-photon time evolution

As in the previous section, in the single-cavity case, we
assume that the unconnected mirrors of the resonators leak
photons into free radiation fields, where they are continuously
monitored by the environment or actual detectors. In addition,
there is now a continuous monitoring of the photons which
can leak into the single-mode fiber connecting both cavities.
Again, it is not crucial whether an external observer actually
detects these photons, as long as the effect on the system is
the same as if the photon has actually been measured. It is
important only that photons within the three reservoirs, the
surrounding free radiation fields, and the single-mode fiber
are constantly removed from the system and cannot re-enter
the cavities.

In principle, there are now three different response times �t

of the environment, i.e., one for each reservoir. For simplicity,
and since it does not affect the resulting master equation, we
consider only one of them. Denoting this response time of
the environment again by �t , we assume in the following
that

1

ωcav

 �t and �t 
 1

κm
,

1

κ1
,

1

κ2
, (30)

where κm is the spontaneous decay rate for the leakage of
photons from the cavities into the optical fiber, while κi denotes
the decay rate of cavity i with respect to its outcoupling
mirror. The conditions in Eq. (30) allow us to calculate the
time evolution of the system within �t with second-order
perturbation theory. The first condition assures that there is
sufficient time between measurements for photon population
to build up within the reservoirs.1 The second condition
avoids the return of photons from the reservoirs into the
cavities.

1Otherwise, there would be no spontaneous emissions.
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Proceeding as in the previous section and using again
Eq. (14), we find that the conditional Hamiltonian describing
the time evolution of the two cavities under the condition of
no photon emission in �t into any of the three reservoirs
equals

Ucond(�t,0)

= I − i

2

∑
i=1,2

(�i ci + �∗
i c

†
i )�t

−
∫ �t

0
dt

∫ t

0
dt ′

∑
i=1,2

∑
k

ei(ωk−ωcav)(t ′−t)|sk,i |2 c
†
i ci

−
∫ �t

0
dt

∫ t

0
dt ′

∑
k

ei(ωk−ωcav)(t ′−t)(g∗
k,1 c

†
1 + g∗

k,2 c
†
2)

× (gk,1 c1 + gk,2 c2). (31)

In analogy to Eq. (17), the first three terms evaluate to

I − i

2

∑
i=1,2

(�i ci + �∗
i c

†
i )�t − 1

2
κ1�t c

†
1c1 − 1

2
κ2�t c

†
2c2.

(32)

Using exactly the same approximations as in the previous
section and the notation

ξi ≡
∑

k

gk,i , (33)

and with ξ defined as in Eq. (2), the final term in Eq. (31) can
be written as

− 1

2ξ 2
κm�t (ξ ∗

1 c
†
1 + ξ ∗

2 c
†
2) (ξ1 c1 + ξ2 c2) . (34)

Here κ1, κ2, and κm are the spontaneous decay rates already
mentioned in Eq. (30). The corresponding conditional Hamil-
tonian equals

Hcond =
∑
i=1,2

1

2
h̄�i ci + H.c. − i

2
h̄κi c

†
i ci

− i

2ξ 2
h̄κm (ξ ∗

1 c
†
1 + ξ ∗

1 c
†
2)(ξ1 c1 + ξ2 c2) (35)

and describes the no-photon time evolution of cavity 1 and
cavity 2.

C. Effect of photon emission

Proceeding as in Sec. II C, assuming that the respective
reservoir is initially in its vacuum state, using first-order
perturbation theory, and calculating the state of the system
under the condition of a photon detection, we find that photon
emission into the individual reservoir of cavity i is described
by

Ri = √
κi ci . (36)

The leakage of a photon through the fiber reservoir changes
the system according to

Rm = 1

ξ

√
κm (ξ1 c1 + ξ2 c2). (37)

The normalization of these operators has again been chosen
such that the probability for an emission in �t into one of the
reservoirs equals ‖Rx |ϕ(0) 〉‖2 �t with x = 1,2,m and with
|ϕ(0)〉 being the initial state of the two cavities.

D. Master equation

Averaging again over the possibilities of both no-photon
evolution and photon emission events, we arrive at the master
equation

ρ̇ = − i

h̄
[Hcond,ρ] + R1 ρ R

†
1 + R2 ρ R

†
2 + Rm ρ R†

m (38)

which is analogous to Eq. (21) but where ρ is now the density
matrix of the two cavity fields.

IV. SINGLE-MODE BEHAVIOR OF TWO
FIBER-COUPLED CAVITIES

In this section, we discuss how to decouple one of the
common cavity field modes in Eq. (1) from the system
dynamics [26]. After introducing a certain convenient common
mode representation, we see that there are two interesting
parameter regimes: The first one is defined by a careful
alignment of the Rabi frequencies �1 and �2, while the second
one is defined by the condition that κm is much larger than all
other spontaneous decay rates and laser Rabi frequencies in the
system, as assumed in Eq. (4). In this second parameter regime,
one of the common modes can be adiabatically eliminated
from the system dynamics. Consequently, this case does
not require any alignment and is much more robust against
parameter fluctuations. As we shall see below, the resulting
master equation and its stationary state photon emission rate
are formally the same as those obtained in Sec. II E for the
single-cavity case.

A. Common mode representation

Looking at the conditional Hamiltonian in Eq. (35), it is
easy to see that κm is the spontaneous decay of a certain single
nonlocal cavity field mode. Adopting the notation introduced
in Sec. I, we see that this mode is indeed the cb mode defined in
Eq. (1). As already mentioned in the Introduction, the cb mode
is the only common cavity field which interacts with the optical
fiber connecting both cavities. The fiber provides an additional
reservoir into which the photons in this mode can decay with
κm being the corresponding spontaneous decay rate. Photons
in the ca mode do not see the fiber and decay only via κ1

and κ2.
It is hence natural to replace the annihilation operators c1

and c2 by the common mode operators ca and cb. Doing so,
Eq. (35) becomes

Hcond = 1

2
h̄(�a ca + �b cb) + H.c. − i

2
h̄κm c

†
bcb

− i

2ξ 2
h̄ [(κ1|ξ2|2 + κ2|ξ1|2)c†aca + (κ1|ξ1|2

+ κ2|ξ2|2)c†bcb + (κ1 − κ2)(ξ1ξ2 c
†
bca + ξ ∗

1 ξ ∗
2 c†acb)]

(39)
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with the effective Rabi frequencies

�a ≡ 1

ξ
(�1ξ2 − �2ξ1),

(40)

�b ≡ 1

ξ
(�1ξ

∗
1 + �2ξ

∗
2 ).

The last term in Eq. (39) describes a mixing of the ca mode and
the cb mode which occurs when the decay rates κ1 and κ2 are
not of the same size. Finally, we find that the reset operators
in Eqs. (36) and (37) become

R1 = 1

ξ

√
κ1 (ξ2 ca + ξ ∗

1 cb),

R2 = −1

ξ

√
κ2 (ξ1 ca − ξ ∗

2 cb), (41)

Rm = √
κm cb

in the common mode representation.

B. Single-mode behavior due to careful alignment

Let us first have a look at the case where the single-mode
behavior of the two cavities in Fig. 1 is due to a careful
alignment of the Rabi frequencies �1 and �2 and both cavity
decay rates being the same, i.e.,

κ ≡ κ1 = κ2 (42)

which sets κ1 − κ2 equal to zero. When two fiber-coupled
cavities are driven by two laser fields with a fixed phase
relation, the result is always the driving of only one common
cavity field mode. If the cavities are therefore driven such that
the driven mode is identical to the ca mode, an initially empty
cb mode remains empty. As one can easily check using the
definitions of the Rabi frequencies �a and �b in Eq. (40), this
applies when

�1

�2
= −ξ ∗

2

ξ ∗
1

, (43)

as it results in �a �= 0 and �b = 0.
The question that now immediately arises is how to choose

�1 and �2 in an experimental situation where ξ1 and ξ2 are
not known. We therefore remark here that the sole driving of
the ca mode can be distinguished easily from the sole driving
of the cb mode by actually measuring the photon emission
through the optical fiber. In the first case, the corresponding
stationary state photon emission rate assumes its minimum,
while it assumes its maximum in the latter. Variations of the
Rabi frequency �1 with respect to �2 in a regime where both
of them are of comparable size as κm can hence be used to
determine ξ1/ξ2 experimentally.

Neglecting all terms which involve the annihilation operator
cb, as there are no cb modes to annihilate, results in the effective
master equation

ρ̇ = − i

h̄
[Hcond,ρ] + κ ca ρ c†a,

(44)

Hcond = 1

2
h̄�a ca + H.c. − i

2
h̄ κ c†aca.

This master equation is equivalent to Eqs. (17), (20), and (21) in
Sec. II which describes a single cavity. However, it is important

to remember that the above equations are only valid when the
alignment of the laser Rabi frequencies and cavity decay rates
is exactly as in Eqs. (42) and (43). Any fluctuation forces us
to reintroduce the cb mode into the description of the system
dynamics.

C. Robust decoupling of one common mode

To overcome this problem, let us now have a closer look
at the parameter regime in Eq. (4), where the laser Rabi
frequencies �a and �b, and the spontaneous decay rates κ1

and κ2 are much smaller than κm. To do so, we write the state
vector of the system under the condition of no photon emission
as

|ϕ0(t)〉 =
∞∑

i,j=0

ζi,j (t) |i,j 〉, (45)

where |i,j 〉 denotes a state with i photons in the ca mode and
j photons in the cb mode and the ζi,j (t) are the corresponding
coefficients of the state vector at time t . Using Eqs. (38), (39),
and (41) one can then show that the time evolution of the
coefficients ζi,0 and ζi,1 is given by

ζ̇i,0 = − i

2
[
√

i + 1�aζi+1,0 +
√

i�∗
aζi−1,0 + �bζi,1]

− 1

2ξ 2
κ1[i|ξ2|2ζi,0 +

√
iξ ∗

1 ξ ∗
2 ζi−1,1]

− 1

2ξ 2
κ2[i|ξ1|2ζi,0 +

√
iξ ∗

1 ξ ∗
2 ζi−1,1] (46)

and

ζ̇i,1 = − i

2
[
√

i + 1�aζi+1,1 +
√

i�∗
aζi−1,1 +

√
2�bζi,2

+�∗
bζi,0] − 1

2ξ 2
κ1[(|ξ1|2 + i|ξ2|2)ζi,1

+√
i + 1ξ1ξ2ζi+1,0 +

√
2iξ ∗

1 ξ ∗
2 ζi−1,2]

− 1

2ξ 2
κ2[(|ξ2|2 + i|ξ1|2)ζi,1 − √

i + 1ξ1ξ2ζi+1,0

−
√

2iξ ∗
1 ξ ∗

2 ζi−1,2] − 1

2
κmζi,1. (47)

In the parameter regime given by Eq. (4), states with photons in
the cb mode evolve on a much faster time scale than states with
population only in the ca mode. Consequently, the coefficients
ζi,j with j > 1 can be eliminated adiabatically from the system
dynamics. Doing so and setting the right-hand side of Eq. (47)
equal to zero, we find that

ζi,1 = − 1

κm

[
i�∗

bζi,0 − √
i + 1

ξ1ξ2

ξ 2
�κζi+1,0

]
(48)

with �κ defined as

�κ ≡ κ1 − κ2. (49)

Substituting Eq. (48) into Eq. (46), we find that the effective
conditional Hamiltonian of the two cavities is now given by

Hcond = 1

2
h̄�eff ca + H.c. − i

2
h̄κeff c†aca. (50)
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Up to first order in 1/κm, the effective Rabi frequency �eff and
the effective decay rate κeff of the ca mode are given by

�eff ≡ �a + ξ1ξ2�κ

ξ 2κm

�b,

(51)

κeff ≡ 1

ξ 2

[
κ1|ξ2|2 + κ2|ξ1|2 − |ξ1ξ2|2�κ2

ξ 2κm

]
.

The decay rate κeff lies always between κ1 and κ2. If both
cavities couple in the same way to their individual reservoirs,
i.e., when ξ1 = ξ2 and κ1 = κ2, then we have �eff = �a and
κeff = κ1.

Equation (48) shows that any population in the ca mode
always immediately causes a small amount of population in
the cb mode. Taking this into account, the reset operators in
Eq. (41) become

R1 = √
κ1

ξ2

ξ

[
1 − |ξ1|2�κ

ξ 2κm

]
ca,

R2 = −√
κ2

ξ1

ξ

[
1 + |ξ2|2�κ

ξ 2κm

]
ca, (52)

Rm = −√
κm

ξ1ξ2�κ

ξ 2κm
ca.

Substituting these and Eq. (50) into the master equation (21)
we find that it indeed simplifies to the master equation of a
single cavity. Analogous to Eq. (21) we now have

ρ̇ = − i

h̄
[Hcond,ρ] + κeff ca ρ c†a, (53)

while Eqs. (50) and (52) are analogous to Eqs. (17) and (20).
The only difference to Sec. II is that the single mode c is now
replaced by the nonlocal common cavity field mode ca , while
� and κ are replaced by �eff and κeff in Eq. (51). The cb mode
no longer participates in the system dynamics and remains to
a very good approximation in its vacuum state.

Finally, let us remark that one way of testing the single-
mode behavior of the two fiber-coupled cavities is to measure
their stationary state photon emission rate I . Since their master
equation is effectively the same as in the single-cavity case,
this rate is under ideal decoupling conditions, i.e., analogously
to Eq. (24), given by

I = |�eff|2/κeff . (54)

If the decay rates κ1 and κ2 and the Rabi frequencies �1

and �2 are known, then the only unknown parameters in the
master equation are the relative phase between ξ1 and ξ2, the
ratio |ξ1/ξ2|, and the spontaneous decay rate κm. These can,
in principle be determined experimentally, by measuring I for
different values of �1 and �2.2

2The dependence of I on the modulus squared of �eff means that it
is not possible to measure the absolute values of ξ1 and ξ2 but this is
exactly as one would expect it to be. Also in the single optical cavity,
the overall phase factor of the field mode is not known a priori and
has in general no physical consequences.

D. Effectiveness of the cb mode decoupling

To conclude this section, we now have a closer look at
how small κm can be with respect to the κi and �i while
still decoupling the cb mode from the system dynamics. To
have a criterion for how well the above described decoupling
mechanism works we calculate in the following the relative
amount of population in the cb mode when the laser-driven
cavities have reached their stationary state with ρ̇ = 0. This
means, we now consider the mean photon numbers

na ≡ 〈c†aca〉 and nb ≡ 〈c†bcb〉 (55)

and use the master equation to obtain rate equations which
predict their time evolution. In order to obtain a closed set
of differential equations, we need to consider the expectation
values

ka ≡ i

|�a| 〈�aca − �∗
ac

†
a〉,

kb ≡ i

|�b| 〈�bcb − �∗
bc

†
b〉,

m ≡ 1

ξ 2
〈ξ1ξ2c

†
bca + ξ ∗

1 ξ ∗
2 c†acb〉, (56)

la ≡ i

|�b|ξ 2
〈ξ1ξ2�bca − ξ ∗

1 ξ ∗
2 �∗

bc
†
a〉,

lb ≡ i

|�a|ξ 2
〈ξ1ξ2�acb − ξ ∗

1 ξ ∗
2 �∗

ac
†
b〉

in addition to na and nb. Doing so and using again Eqs. (38),
(39), and (41), we find that

ṅa = |�a|
2

ka − 1

2
�κ m − κana,

ṅb = |�b|
2

kb − 1

2
�κ m − (κb + κm)nb,

k̇a = |�a| − 1

2
�κ lb − 1

2
κaka,

k̇b = |�b| − 1

2
�κ la − 1

2
(κb + κm)kb,

ṁ = |�b|
2

la + |�a|
2

lb − |ξ1ξ2|2
ξ 4

�κ [na + nb]

(57)

−1

2
(κ1 + κ2 + κm)m,

l̇a = 1

2ξ 2|�a| [ξ1ξ2�b�
∗
a + ξ ∗

1 ξ ∗
2 �∗

b�a]

−|ξ1ξ2|2
2ξ 4

�κ kb − 1

2
κala,

l̇b = 1

2ξ 2|�b| [ξ1ξ2�b�
∗
a + ξ ∗

1 ξ ∗
2 �∗

b�a]

−|ξ1ξ2|2
2ξ 4

�κ ka − 1

2
κblb,

where

κa ≡ 1

ξ 2
(κ1|ξ2|2 + κ2|ξ1|2),

(58)

κb ≡ 1

ξ 2
(κ1|ξ1|2 + κ2|ξ2|2)
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are the spontaneous decay rates of the ca and the cb mode,
respectively.

The stationary state of the system can be found by setting
the right-hand sides of the above rate equations equal to
zero. However, the analytic solution of these equations is
complicated and not very instructive. We therefore restrict
ourselves in the following to the case where both cavities are
driven by laser fields with identical Rabi frequencies and where
both couple identically to the environment, i.e.,

� = �1 = �2 and ξ = |ξ1| = |ξ2|. (59)

The remaining free parameters are a phase factor � between
ξ1 and ξ2 defined by the equation

ξ2 = ei� ξ1 (60)

and the cavity decay rates κ1, κ2, and κm. The reason that we
restrict ourselves here to the case where the relative phase
between the Rabi frequencies �1 and �2 equals zero is that
varying this phase has the same effect as varying the angle �.

1. Identical decay rates κ1 and κ2

To illustrate how these free parameters affect the robustness
of the cb mode decoupling, we now analyze some specific
choices of parameters. The first and simplest choice of
parameters is to set the decay rates for both cavities the same.
As in Eq. (42) we define

κ ≡ κ1 = κ2 (61)

which implies �κ = 0 and κa = κb = κ . Moreover, the rate
equations in Eq. (57) simplify to the four coupled equations

ṅa = |�|√
2

(1 − cos �)
1
2 ka − κna,

ṅb = |�|√
2

(1 + cos �)
1
2 kb − (κ + κm)nb,

(62)

k̇a =
√

2|�|(1 − cos �)
1
2 − 1

2
κka,

k̇b =
√

2|�|(1 + cos �)
1
2 − 1

2
(κ + κm)kb.

The stationary state of these equations can be calculated by
setting these derivatives equal to zero. Doing so, we find that
the mean number of photons in the ca and in the cb mode
approach the values

na = (1 − cos �)
�2

κ2
,

(63)

nb = (1 + cos �)
�2

(κ + κm)2

after a certain transition time. A measure for the effectiveness
of the decoupling of the cb mode is given by the final ratio
nb/na which is given by

nb

na

= 1 + cos �

1 − cos �

κ2

(κ + κm)2
. (64)

In general, this ratio tends to zero when κm becomes much
larger than κ . There is only one exceptional case, namely the
case where cos � = 1. This case corresponds to sole driving

κm/κ1

Φ = π/2
Φ = π/10

Φ = 9π/10

nb

na

5 10 15 20

10 4

0.001

0.01

0.1

1

10

FIG. 4. (Color online) Stationary state value of nb/na as a
function of κm for ξ1 = ξ2 and �1 = �2 = κ1 = κ2 for three different
values of � obtained from Eq. (63).

of the cb mode, where the stationary state of the ca mode
corresponds to na = 0.

This behavior is confirmed by Fig. 4 which shows the
steady-state value of nb/na in Eq. (63) as a function of
κm for three different values of �. In all three cases, the
mean photon number in the cb mode decreases rapidly as
κm increases. This is an indication of the robustness of the
decoupling of the cb mode. It shows that this decoupling does
not require an alignment of the driving lasers. However, as
already mentioned above, one should avoid sole driving of the
cb mode. Indeed we find relatively large values for nb/na when
the angle � is relatively small. The case � = π/2 corresponds
to equal driving of both common modes. In this case we have
nb/na < 0.01 when κm is at least 8 times larger than κ , which is
a relatively modest decoupling condition. Close to the perfect
alignment case (with � = π ) which we discussed in detail in
the previous subsection, nb/na is even smaller than in the other
two cases. For � = 0.9 π and κm > 8 κ , we now already get
nb/na 
 0.001.

2. Different decay rates κ1 and κ2

In the above case with �κ = 0, there is no transfer of
photons between the two modes. To show that this is not an

5 10 15 20

1.000

0.500

0.100

0.050

0.010

0.005

0.001

κm/κ1

Φ = π/2
Φ = π/10

Φ = 9π/10

nb

na

FIG. 5. (Color online) Stationary state value of nb/na as a
function of κm for ξ1 = ξ2, �1 = �2 = κ1, and κ2 = 0.5 κ1. As in
Fig. 4, we observe a very rapid drop of the relative population in the
cb mode as κm increases.
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0.001

κm/κ1

Φ = π/2
Φ = π/10

Φ = 9π/10

nb

na

FIG. 6. (Color online) Stationary state value of nb/na as a
function of κm for ξ1 = ξ2, �1 = �2 = κ1, and κ2 = 1.5 κ1. As in
Figs. 4 and 5, nb/na decreases rapidly as κm increases. The main
difference to Fig. 5 is that we now have �κ < 0 instead of �κ > 0.

explicit requirement for the decoupling of the cb mode, we now
have a closer look at the case where �κ �= 0 and where mixing
between both common cavity modes occurs. Let us first have
a look at the case where � = 0 and where only the cb mode is
driven. In this case, we expect �κ to result in an enhancement
of the single mode behavior compared to the �κ = 0 case. The
reason is that the effective Rabi frequency �eff in Eq. (51) is
now always larger than zero such that na no longer tends to zero
when � → 0. Differing from this, we expect the stationary
state value of nb/na to increase when � = π . The reason
for this is that this case now no longer corresponds to perfect
alignment which required �κ = 0 [cf. Eq. (42)]. This behavior
of the two fiber-coupled cavities is confirmed by Figs. 5 and 6,
which have been obtained by setting the time derivatives of the
original rate equations (57) equal to zero. For the parameters
considered here, the introduction of �κ has no effect on the
effectiveness of the decoupling of the cb mode when � = π/2
and both modes are equally driven by laser fields.

V. CONCLUSIONS

In conclusion, we have presented a scheme that couples two
cavities with a single-mode fiber coated with two-level atoms
(cf. Fig. 1) or a waveguide (cf. Fig. 2). Since there are two
cavities, the description of the system requires two orthogonal
cavity field modes. These could be the individual cavity modes
with the annihilation operators c1 and c2 or common modes
with the annihilation operators ca and cb in Eq. (1). Here we
consider the case where the connection between the cavities
constitutes a reservoir for only one common cavity field mode
but not for both. If this mode is the cb mode, it can have a
much larger spontaneous decay rate than the ca mode which
does not see this reservoir. A nonlocal resonator is created,
when operating the system in the parameter regime given by
Eq. (4), where the cb mode can be adiabatically eliminated
from the system dynamics, thereby leaving behind only the ca

mode.
The purpose of the atoms which coat the fiber is similar to

their purpose in Ref. [30], namely to measure its evanescent
electric field destructively, although here there is no need
to distinguish between one and two photon states. These

measurements should occur on a time scale which is long
compared to the time it takes a photon to travel from one
resonator to the other. One can easily check that this condition
combined with Eq. (4) poses the following upper bound on the
possible length R of the fiber:

R

c

 1

κm

 1

κ1
,

1

κ2
. (65)

Here κ1, κ2, and κm are the spontaneous cavity decay rates
through the outcoupling mirrors of cavity 1 and cavity 2 and
through the fiber reservoir, respectively, while c denotes the
speed of light. This means that the possible length R of the
fiber depends on how good the cavities are. For good cavities,
R could be of the order of several meters. However, the upper
bound for R depends also on the fiber diameter and the quality
of the mirrors. The reason is that the fiber should not support
a too wide range of optical frequencies, i.e., the fiber should
support only one standing wave with frequency ωcav and not
two degenerate ones.

There are different ways of seeing how the coated fiber
removes one common cavity field mode from the system
dynamics. One way is to compare the setup in Fig. 1 with
the two-atom double-slit experiment by Eichmann et al. [32],
which has been analyzed in detail for example in Refs. [33,34].
In this experiment, two atoms are simultaneously (i.e., in
phase) driven by a single laser field and emit photons into
different spatial directions. The emitted photons are collected
on a photographic plate which shows intensity maxima as
well as completely dark spots. A dark spot corresponds to
a direction of light emission where the atomic excitation
does not couple to the free radiation field between the atoms
and the screen due to destructive interference. The setup in
Fig. 1 creates an analogous situation: the photons inside the
two resonators are the sources for the emitted light, thereby
replacing the atomic excitation. Moreover, the light inside the
fiber is equivalent to a single mode (i.e., one wave vector k)
of the free radiation field in the double slit experiment. There
is hence one common resonator mode—the cb mode—which
does not couple to the fiber.

This article describes the setups in Figs. 1 and 2 in a more
formal way. Starting from the Hamiltonian as in Ref. [1] for
the cavity-fiber coupling but considering the radiation field
inside the fiber as a reservoir we derive the master equation
for the time evolution of the photons in the optical cavities.
After the adiabatic elimination of one common cavity mode,
namely the cb mode, due to overdamping of its population, we
arrive at a master equation which is equivalent to the master
equation of a single laser-driven optical cavity.

A concrete measure for the quality of the decoupling of
the cb mode is the stationary state value of nb/na , where na

and nb are the mean numbers of photons in the ca and the cb

mode, respectively, when both cavities are driven by a resonant
external laser field. Our calculations show that this ratio can
be reduced significantly by a careful alignment of the driving
lasers. However, even when both cavity modes couple equally
to two external laser fields, nb/na can be as small as 0.01 even
when κm is only one order of magnitude larger than κ1, κ2,
and the Rabi frequencies of the driving lasers. This parameter
regime consequently does not require any alignment and is
very robust against parameter fluctuations.
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Possible applications of this setup become apparent when
one places for example atomic qubits, single quantum dots,
or NV color centers into each cavity. These would feel only
a common cavity field mode and interact as if they were
sitting in the same resonator. Such a scenario has applications
in quantum information processing, since it allows to apply
quantum computing schemes like the ones proposed in
Refs. [9,10] which would otherwise require the shuttling of
qubits in and out of an optical resonator to spatially separated
qubits.

In recent years, a lot of progress has been made in the
laboratory and several atom-cavity experiments which operate
in the strong coupling regime have already been realized
[41–47]. Some of these experiments have become possible
due to new cavity technologies. Optical cavities with a very
small mode volume are now almost routinely mounted on atom
chips using novel etching techniques and specially coated
fiber tips [44,45]. These can in principle also be coupled to

miniaturized ion traps [48] or telecommunication-wavelength
solid-state memories [49]. Alternatively, strong couplings are
achieved in the microwave regime with so-called stripline
cavities [50]. In several of these experiments, the coupling
of cavities via optical fibers or waveguides as illustrated in
Fig. 1 could be a possible next step.
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