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Strong asymmetry for surface modes in nonlinear lattices with long-range coupling
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We analyze the formation of localized surface modes on a nonlinear cubic waveguide array in the presence
of exponentially decreasing long-range interactions. We find that the long-range coupling induces a strong
asymmetry between the focusing and defocusing cases for the topology of the surface modes and also for the
minimum power needed to generate them. In particular, for the defocusing case, there is an upper power threshold
for exciting staggered modes, which depends strongly on the long-range coupling strength. The power threshold
for dynamical excitation of surface modes increases (decreases) with the strength of long-range coupling for the
focusing (defocusing) cases. These effects seem to be generic for discrete lattices with long-range interactions.
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I. INTRODUCTION

Arrays of coupled optical waveguides and periodic photonic
lattices constitute a current area of intense research activity due
to the rich physical phenomena that arise when combining
discreteness, periodicity, nonlinearity, and surface effects
[1]. In addition to the interest stemming from the creation
and controlling of the propagation of light beams for their
potential use in multiport switching and routing of signals
for envisioned all-optical devices, “discrete optics” has also
recently become one of the favorite tools for direct observation
of phenomena associated with discrete, periodic media, such as
Bloch oscillations [2], Anderson localization [3], and discrete
breathers and solitons [4], to name a few.

A substantial amount of work has been devoted to the
case of weakly coupled nonlinear waveguide arrays, where
the mode overlap between neighboring guides is small, and
the nonlinearity is strictly local. Recent experimental and
theoretical work in realistic systems, such as dipole-dipole
interactions in Bose-Einstein condensates (BECs) [5] and
discrete light localization in nematic liquid crystals [6],
has stimulated research into the effects of nonlocal effects.
In general, nonlocal nonlinearity tends to stabilize several
types of solitons, such as dark solitons in three-dimensional
(3D) dipolar BECs [7], chirp-imprinted spatial solitons in
nematic liquid crystals [6], optical vortex solitons [8], rotating
dipole solitons [9], and azimuthons [10]. The effect of
long-range dispersive interactions, on the other hand, has
received comparatively less attention. The effect of power-law
dispersion on anharmonic chains [11], as well as the inclusion
of second-order coupling in optical waveguide arrays [12,13],
suggests the onset of bistable effects. Although at first glance
the inclusion of long-range coupling would seem to lead to
an increase of the power level needed to excite a localized
mode [12], there are also some counterintuitive results for the
case of a single nonlinear (cubic) defocusing impurity. There, a
small addition of coupling to second nearest neighbors actually
decreases the power threshold for the generation of a localized
mode [14].

On the other hand, surface states have attracted considerable
attention of the community during the past five years. Unlike
the case of fundamental bulk modes, where there is no
minimum power to excite them, for one-dimensional (1D)

surface states there is a power threshold for their excitation.
When only nearest-neighbor interactions are considered, this
power is independent of the sign of the nonlinearity [15].

In this work we examine the formation and stability of
localized surface modes in a nonlinear optical waveguide array
with realistic-looking long-range coupling (see Fig. 1). The
semicircular geometry is a possible experimental configuration
where one could find long-range coupling effects. We find a
striking asymmetry between the behavior of the focusing and
defocusing cases, as the coupling range is varied. Contrary to
what occurs in a focusing case, for a defocusing nonlinearity
an increase in coupling range actually reduces the amount
of power needed to generate a surface localized stationary
mode. This counterintuitive result also holds for the dynamical
excitation of the surface mode from a narrow input beam. In
addition, we found an upper threshold for the excitation of
staggered states, effect that could be experimentally observed
in current zigzag arrays [13].

This paper is organized as follows. In Sec. II we introduce
our model of a nonlinear waveguide array with exponentially
decreasing long-range interactions. Section III is devoted to the
dispersion relation for the linear plane waves. In Sec. IV we
examine the nonlinear surface localized modes of the model,
and focus on the asymmetry introduced by the long-range
coupling, between the focusing and defocusing cases, as far as
topology and minimum power requirements are concerned.
In Sec. V we examine the effects of long-range coupling
on the dynamical evolution of an initially localized input
beam, revealing the diametrically opposite behavior of the
self-trapped portion between the focusing and defocusing
cases. Finally, Sec. VI concludes the paper.

II. MODEL

Let us consider a finite array of single-mode, nonlinear
(Kerr) optical waveguides including higher-order coupling
among sites. In the coupled-mode framework, the system
is described by a discrete nonlinear Schrödinger (DNLS)
equation:

i
dun

dz
+

∑
m�=n

Vn,mum + γ |un|2un = 0, (1)
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FIG. 1. (Color online) N -site waveguide array with long-range
coupling.

where un is the amplitude of the waveguide mode in the nth
waveguide, z is the propagation distance along the array, γ

is the nonlinear parameter, and the coefficient Vn,m is the
coupling between the nth and mth guides. To be consistent with
the coupled-mode approach, we will model Vn,m as Vn,m =
V e−α(|n−m|−1), where V is the usual coupling coefficient to
nearest neighbors and α > 0 is the strength for the long-range
interaction. A large α value implies interaction with essentially
one site (DNLS limit), while a small α increases the coupling
range.

The power, defined as P = ∑
n |un|2, is a conserved

quantity of model (1), and we will use it to characterize
nonlinear modes. We look for stationary solutions of the form
un(z) = un exp(iλz) of model (1), obtaining

λun =
∑
m�=n

V e−α(|n−m|−1) um + γ u3
n , (2)

where un ∈ Re and λ is the propagation constant.

III. LINEAR PROPERTIES

To obtain the dispersion relation for linear plane waves,
we set γ = 0 and insert a solution un = U sin(kn) in Eq. (2),
obtaining

λ(k,α) = V

(
eα cos k − 1

cosh α − cos k

)
, (3)

where k is the transversal wave number. Figure 2(a) shows
linear band regions for different values of α. The edges of these
bands are located at λmin ≡ λ(π,α) = −2V/[1 + exp(−α)]
and λmax ≡ λ(0,α) = 2V/[1 − exp(−α)], where the limit
N → ∞ has been assumed. The width λmax − λmin =
4V/[1 − exp(−2α)] increases as soon as coupling beyond
nearest neighbors is considered. As a consequence, the
existence region for staggered solutions [λ ∈ {−∞,λmin}] in-
creases with α while the corresponding region for unstaggered
solutions [λ ∈ {λmax,∞}] decreases. Figures 2(b) and 2(c)
show profiles for λmin and λmax with staggered [(−1)nun] and
unstaggered (un > 0 ∀ n) topologies, respectively.

IV. NONLINEAR SURFACE MODES

Next, we compute nonlinear stationary surface solutions for
focusing (γ > 0) and defocusing (γ < 0) nonlinearities by
implementing a multidimensional Newton-Raphson method
[15]. A linear stability analysis reveals that the Vakhitov-
Kolokolov criterion still holds in the presence of long-range
coupling, i.e., ∂P/∂λ > 0 implies stability. The P vs λ curves
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FIG. 2. (a) P vs λ diagrams (including linear bands) for α = 6
(black), 2 (gray), and 1 (light gray), for focusing and defocusing cases.
(b) and (c) Linear modes for k = π and k = 0, respectively. (d) and
(e) Nonlinear surface modes for points marked in (a). V = |γ | = 1
and N = 100. Black (gray) points in profiles denote un > 0 (<0).
The sizes of the dots in (b) and (c) are proportional to the amplitudes,
while the black (gray) colors in (b) and (d) denote positive (negative)
amplitudes.

for these modes show an important asymmetry between the
focusing and defocusing cases [see Fig. 2(a)]: In the short-
range coupling case (α = 6, black curves), power thresholds
(Pth) for positive and negative γ are equal, as in a DNLS
lattice [15]. However, when long-range coupling is relevant
(α � 6), Pth increases as α decreases in the focusing case.
On the contrary, for γ < 0 this threshold decreases when α

decreases [see gray and light-gray curves in Fig. 2(a)].
An explanation for the Pth asymmetry can be the following:

We start from a surface profile, such as the ones shown in
Figs. 2(d) and 2(e), with the general form u0{1,ε,β,ξ, . . .}
with 1 > |ε| > |β| > |ξ | > · · ·. By inserting this ansatz in
Eq. (2) for n = 1, we get λ = V (ε + βe−α + ξe−2α + · · ·) +
γ u2

0. Since discrete solitons exist outside of linear bands,
fundamental localized solutions would, in principle, bifurcate
exactly at the frontiers of these bands, depending on the
sign of nonlinearity. Let us discuss first the unstaggered case
and try to get an estimate for Pth in terms of α. It is well
known that when the solution approaches the linear band
(λ → λmax), its power decreases and it becomes more and
more extended (delocalized) [1,4]. This implies that (in such
a limit) ε,β,ξ, . . . → 1 (this limit is exactly the opposite of
the one occurring for a high level of power, where solutions
are extremely localized and ε,β,ξ, . . . → 0). Therefore, 1 +
e−α + e−2α + e−3α + · · · = 1/(1 − e−α), implying that λ →
V/(1 − e−α) + γ u2

0. However, this would imply that, for
u0 → 0, λ < λmax, which is certainly a contradiction because
the fundamental unstaggered solution could originate from the
top of the band but not inside of the band. As a consequence, at
least γ u2

0 ≈ V/(1 − e−α). Since power is directly proportional
to u2

0, we obtain the estimate Pth ∼ 1/(1 − e−α). Thus, for
γ > 0, Pth will be a decreasing function of α, diverging at
α = 0, and remaining finite at α 
 0. On the other hand, for

053820-2



STRONG ASYMMETRY FOR SURFACE MODES IN . . . PHYSICAL REVIEW A 82, 053820 (2010)

4 2 0 2 4

2

3

4

5

6

λ

P
ow

er

c
b

a

γ > 0
LINEAR
 BAND

γ < 0

1 2 3 4 5
0

(a)

1 2 3 4 5
0

(b)

nc
0

(c)

FIG. 3. (Color online) P vs λ diagrams for modes centered at n =
1 [(a) dashed line], n = 2 [(b) thick line], and n = nc [(c) thin line].
V = |γ | = α = 1 and N = 2nc = 100.

γ < 0, the situation is quite different. First, there is no trivial
transformation between unstaggered and staggered solutions
as in the nearest-neighbor DNLS model. However, again, while
the localized solution approaches the linear band (λ → λmin),
its power decreases and it becomes more delocalized, but
now the solution is staggered. That implies a sign differ-
ence between nearest-neighbor amplitudes in the same way
as for the fundamental linear mode located at λmin [see
Fig. 2(b)]. Therefore, ε, − β,ξ, . . . → −1. Now we solve the
sum 1 − e−α + e−2α − e−3α + · · · = 1/(1 + e−α), implying
that λ → −V/(1 + e−α) − |γ |u2

0. For u0 → 0, λ > λmin, i.e.,
a contradiction. Again, at least |γ |u2

0 ≈ V/(1 + e−α), so Pth ∼
1/(1 + e−α). Thus, for γ < 0, Pth is an increasing function of
α with a minimum at α = 0. Our analytical estimates agree
perfectly with the numerical behavior presented in Fig. 2(a).

We also computed localized solutions centered below the
surface in order to detect the onset of the bulk phenomenology
(see Fig. 3). For γ > 0, the power as a function of λ shows
the onset of a bistable curve for α <∼ 1.69. This feature was
observed before in the context of a zigzag model [12,13], and
seems to reflect an increase in effective dimensionality as soon
as coupling beyond nearest neighbors becomes important. The
most salient feature is that, in this case, the threshold power
to create a mode behaves in a manner opposite to that of
the usual DNLS. For example, for α = 1, Fig. 3 shows that,
for γ > 0, the minimum required power (Pth) for creating an
unstaggered localized solution increases as the mode center
is located further away from the surface. In that sense, the
system favors the localization of energy at the boundary for
γ > 0, contrary to the usual 1D DNLS model [15] (around
α ≈ 1.3, the DNLS phenomenology transforms into the long-
range one). On the other hand, the system asymmetry is
manifest for γ < 0; the Pth for exciting a staggered localized
mode decreases as the mode center is pushed away from the
surface. Now, the system does not favor the generation of
discrete surface solitons, as in the usual DNLS.

Fundamental nonlinear modes are unstaggered for γ > 0
and staggered for γ < 0. As the power content of the mode
is increased, we find that unstaggered modes retain their
character, as expected for high-power solutions. However,
contrary to what is expected, for staggered modes, a new
power threshold Pup appears where the staggered topology
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FIG. 4. Existence regions in α-λ space. The light-gray area
corresponds to unstaggered (λ > 0) and staggered (λ < 0) solutions.
The gray area represents the linear band while the white area denotes
no solutions. The black region denotes solutions with no well-defined
topology. Insets show examples of mode profiles in several regions.

of the mode is lost. Figure 4 shows the existence regions for
unstaggered and staggered solutions in α-λ space. We see
that unstaggered solutions exist from some minimum λ value
(surface threshold) up to infinite. On the contrary, for γ < 0
the staggered mode is well defined from the surface threshold
value (which depends weakly on α) up to a second λ value
(with power Pup) that increases monotonically with α. Close
to, but beyond this second threshold, the mode is no longer
staggered because, although it retains some oscillations of the
mode phases, it does not preserve a full staggered topology. As
λ decreases, the alternating phase topology is lost altogether.
The white thick line separating the light-gray and black regions
is a result of asking the solution if u3 < 0, as an indicator
of the change of topology in the central region. Figure 4(a)
shows a mode example where all lattice sites are negative
except for the first one, i.e., the mode is by definition not
staggered. In the numerical continuation there is no evidence
of this change on topology [see “sta” in Fig. 2(a) for γ < 0 and
α = 1]. Curves are monotonic and the only way to observe this
phenomenology is by taking a close look at the phase structure.

We can use a strongly localized mode approximation to
give an explanation for this unexpected behavior occurring
for γ < 0. This approach is valid when the propagation
constant is far from the linear band, where the mode can be
approximated as {un} = u0{1,ε,β,0, . . .}, and 1 
 |ε| 
 |β|.
We concentrate the analysis in the parameter β as an
indicator of the long-range interaction effect. If we insert
this ansatz in Eq. (2) and solve it for site n = 3, we obtain
β ≈ V (ε + e−α)/(λ − γ u2

0β
2). From the anticontinuous limit,

we know that high-power solutions consist essentially of
one excited amplitude plus some exponentially small tails.
Therefore, as a first approximation, |λ| >∼ |γ |u2

0. If γ > 0, also
λ,ε > 0 [see Figs. 2(a) and 2(e)], implying that β > 0 for any
α. This shows us that, for a focusing case, solutions preserve
their phase in the whole range of parameters. On the contrary,
when γ < 0, also λ,ε < 0 [see Figs. 2(a) and 2(d)]; therefore,
the sign of β will depend on the balance |ε| − e−α . For a
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FIG. 5. (Color online) Output power fraction in P0-α space.
(a) and (b) correspond to γ < 0 and γ > 0, respectively. Dark
and light regions denote f = 0 and f = 1, respectively. Insets:
Dynamical propagation for α = 1 and P0 = 4.

fixed α, this balance will be negative always for high-power
solutions because ε → 0 (anticontinuous limit). Therefore, for
a large α, an upper power threshold is expected to appear at
high frequencies; for smaller α, this threshold is expected to
occur closer to the band because ε is also larger there. This
agrees perfectly with the thick white line of Fig. 4.

V. DYNAMICS

We also looked into the effects of long-range coupling on
the dynamical evolution of an initially localized input beam.
We solved Eq. (1) numerically with an initial condition of
un(0) = √

P0δn,1, where P0 is the input power. For a given α

and P0, we computed the space-averaged fraction of power
remaining at the initial waveguide f , after a longitudinal

propagation distance: f = (P0zmax)−1
∫ zmax

0 |u1(z)|2dz. Re-
sults for f as a function of α and P0 are shown in Fig. 5
in the form of a density plot. Its most striking feature is the
diametrically opposite self-trapping behavior between γ > 0
and γ < 0. While in the first case [Fig. 5(b)] an increase in
coupling range (decreased α) increases the threshold power
for self-trapping, in the second case, a greater coupling
range implies a smaller power threshold. This counterintuitive
asymmetry becomes particularly strong around α ∼ 1 (see
insets). These results are in complete agreement with the ones
obtained for the stationary modes.

Finally, we repeated all of the above studies on a simpler
but related model that is amenable to direct experimental
probing—the zigzag model [12]—and have verified the strong
asymmetry effects for the formation of localized surface modes
at both the stationary and dynamics level. This opens the door
to a direct experimental verification of these effects.

VI. CONCLUSIONS

In conclusion, we have examined the formation of localized
surface modes on a nonlinear waveguide array in the presence
of realistic long-range interactions, and found a strong asym-
metry between the focusing and defocusing cases for the mode
topology and the minimum power to effect a localized surface
mode. We believe these effects are generic to discrete nonlinear
systems with long-range coupling.
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