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Entanglement properties of an ultracold atom interacting with a cavity quantized
electromagnetic field
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We study the temporal evolution of the properties of a two-level atom coupled to a single-mode cavity field
without dissipation with its center-of-mass motion quantized in one dimension. It is shown that, starting with
a separable state, genuine tripartite entangled states can be generated under resonance conditions of the light
frequency and atom transition frequency in the cold regime. The onset of Rabi oscillations is analyzed and
explicit predictions for properties like emission probability and dispersions for the center-of-mass position and
momenta are given for resonance and detuned conditions. Transmission-resonance effects on entanglement
and other properties are also analyzed. Comparisons with the semiclassical adiabatic approximation predictions
are also made.
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I. INTRODUCTION

The advent of laser-cooling techniques and experiments
involving cavity quantum electrodynamics (CQED) gave rise
to a growing interest to explore the dynamics of cold atoms
interacting with quantized cavity fields [1–14]. A paradigmatic
model used to study this coupled dynamics is that of a two-level
atom with its center-of-mass (c.m.) motion quantized in one
dimension (normally taken to be the z direction) interacting
with a single-mode cavity field. Although in most current
experiments with single atoms the center of mass does not
need to be treated quantum mechanically [7], using this
model it has been theoretically recognized that the atom
dipole-electromagnetic field coupling opens the possibility of
dramatic consequences [1–6]: Sufficiently cold atoms may be
reflected by the cavity field and the induced emission process
would be intimately associated with the atom center-of-mass
motion. To distinguish this process from the usual stimu-
lated emission, the concept of microwave amplification via
z-motion-induced emission of radiation (mazer) was intro-
duced [3]. Furthermore, in Ref. [4] a lossy cavity pumped
by cold atoms was considered, and the Born-Markov secular
master equation for the cavity field was obtained. Using this, it
was found that the photon distribution differs completely from
that of a cavity pumped by thermal atoms. Also, it was shown
that the mazer properties depend greatly on the cavity mode
profile. Results were presented for the mesa function, sech2

function, and sinusoidal modes [5]. More recently, Ref. [8]
considered the stationary states of a nonresonant interaction
and the mesa function mode to show that the cavity field could
slow down or speed up the atoms and block the emission
process according to the sign of the detuning; gravity effects
in a vertical mazer for resonant and nonresonant interactions
in the stationary regime were also studied in Refs. [9,10].

Another approach to the study of the motion of a cold
atom coupled to the cavity field is the use of the adiabatic
approximation with the dressed-atom point of view [15]. This
was first introduced in Ref. [16], where it was shown that, for a
large detuning, a sufficiently slow atom follows adiabatically
the dressed levels which act as potentials that decelerate or
accelerate the atom (here there is no quantum treatment of the
center-of-mass motion). Later, using a similar scheme, but with

the center-of-mass motion now quantized, it was shown that
the cavity field acts as a refractive index medium for the atom
and vice versa [17]. An analytical criterion to measure the
validity of the aforementioned adiabatic approximation was
analyzed in Ref. [18]. There it was shown that the adiabatic
approximation is suitable for certain ranges of the parameters
for the Gaussian and sinusoidal cavity modes.

In this article we consider a two-level atom with its center-
of-mass motion quantized in one dimension (1D) coupled to
a single-mode cavity field without dissipation. The system
at hand is tripartite and is constituted by the spatial or
center-of-mass degrees of freedom, the internal atom degrees
of freedom, and the cavity-field degrees of freedom. Of these,
two are discrete (the two levels of the atom and the number
of photons in the given mode of the cavity field) and the third
is a continuous one (the 1D spatial degree of freedom). The
objective of this work is to analyze in detail the time evolution
of various properties of the system (both as a whole or when
information about some degrees of freedom is traced out) as
the atom with a nonzero initial mean momentum enters the
cavity-field region, transits it, and exits. In particular, we seek
to characterize the type of entanglement and the degree of
mixing exhibited by the various components of the system.
Previous studies have been devoted to bipartite entanglement
in the semiclassical [19] and dispersive [20] regimes or with
emphasis in the transmission-resonance [21] regimes. Here,
we study the time evolution of the entanglement between
the different parts of the fully quantized system in several
regimes. Moreover, we are interested in describing how the
probability of emission evolves as the atom transits the cavity-
field region. We also study the wave-packet structure and
dynamics in search of matter wave precursors, echolike effects,
and transmission resonances. The dependence of all these
properties on the initial mean momentum of the atom, and the
cavity frequency detuning with respect to the atomic transition,
is also studied. Our highly precise numerical analysis does not
rely on the adiabatic approximation.

The article is organized as follows. In Sec. II, the Hamilto-
nian modeling the system is presented, and the basic equations
used to describe the temporal evolution of the system and of
its properties are established. In Sec. III, the semiclassical
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L. O. CASTAÑOS AND R. JÁUREGUI PHYSICAL REVIEW A 82, 053815 (2010)

adiabatic approximation (SCAA) is briefly presented in order
to compare and analyze qualitatively results when the center-
of-mass motion is treated quantum mechanically. In Sec. IV,
the numerical method and the parameters used to solve the
equations established in Sec. II are briefly described. In
Sec. V, the results are presented and discussed. In particular,
the intermediate, cold, and transmission-resonance regimes
(names originally coined in Ref. [4]) are considered, and the
cases for which the cavity-field frequency is resonant and
nonresonant with the atomic transition frequency, for blue
and red detuning, are treated. Finally, the main results are
summarized in Sec. VI.

II. THE MODEL

We consider a two-level atom with transition frequency
ωA coupled to a single mode of a cavity with frequency ωL.
The atom-field Hamiltonian in the long-wavelength and the
rotating-wave approximations and in the dipole representation
takes the form

H = 1

2M
P2 + h̄ωA

2
σ3 + h̄ωL

(
a†a + 1

2

)
+ h̄g0u(R)(a†σ + σ †a). (1)

Here g0 is the coupling strength for the interaction between
the quantized field and the atom, u is the mode function of the
cavity field, σ = |g〉〈e| is the atomic lowering operator, σ3 =
|e〉〈e| − |g〉〈g| is the atomic inversion operator (|e〉 denotes the
atom excited state, |g〉 the ground state), a(a†) is the cavity-
field annihilation (creation) operator, M is the atomic mass,
and R and P are the center-of-mass position and momentum
operators, respectively.

A constant of the motion for this Hamiltonian is Nc =
a†a + (1/2)σ3 + (1/2). Using Nc we can transform to an
interaction picture (IP) where the Hamiltonian takes the form

HI = 1

2M
P2 − h̄δL

2
σ3 + h̄g0u(R)(a†σ + σ †a), (2)

where δL = ωL − ωA is the detuning between the cavity-
field frequency and the atomic transition frequency. The IP
Schrödinger equation is

ih̄
d

dt
|ψ(t)〉 = HI |ψ(t)〉. (3)

The eigenvalues of the constant of the motion Nc are
0,1,2,... and the corresponding eigensubspaces are spanned,
respectively, by the sets

β−1 = {|r〉|g〉|0〉 : r ∈ R3},
and

βn = {|r〉| ± ,n〉 : r ∈ R3} (n = 0,1,2, . . .). (4)

Here |r〉 is the eigenvector of R, |n〉 (n = 0,1,2, . . .) is a cavity-
field Fock state, and we have introduced the kets

| ± ,n〉 = 1√
2

(|e〉|n〉 ± |g〉|n + 1〉) (n = 0,1, . . .), (5)

which together with |g〉|0〉 span the state space of the cavity
field and the two levels of the atom. In the rest of the article we

will restrict to the subspace spanned by a particular βn (n =
0,1,2,...).

The vectors in (4) allow us to express an arbitrary ket |ψ〉
in the subspace spanned by βn in the following form:

|ψ〉 = |ψ+n〉| + ,n〉 + |ψ−n〉| − ,n〉, (6)

where |ψ±n〉 are kets in the center-of-mass state space. Using
decomposition (6) it is easy to see that (3) is equivalent to the
following set of coupled equations

ih̄
d

dt
|ψ±n(t)〉 =

[
1

2M
P2 ± Vn(R)

]
|ψ±n(t)〉

− h̄δL

2
|ψ∓n(t)〉, (7)

where Vn(R) = h̄
√

n + 1g0u(R). Equation (7) is the basis of
all the calculations that follow.

A very important special case occurs when the atom is
in resonance with the cavity field (δL = 0). As discussed in
Refs. [1–4], the set of Eq. (7) becomes equivalent to that
of two independent particles without internal structure, one
moving in the potential Vn(R) with (non-normalized) state
|ψ+n(t)〉 and the other moving in the potential −Vn(R) with
(non-normalized) state |ψ−n(t)〉, since it is easy to show that
in this case 〈ψ+n(t)|ψ+n(t)〉 and 〈ψ−n(t)|ψ−n(t)〉 are constant
in time. In the following we will make continuous use of this
equivalence in the resonant case.

In general, we can identify three situations depending on
how the initial mean kinetic energy K0 of the atom is compared
with the height h̄

√
n + 1g0 of the potential (we assume that

the maximum value of u(r) is 1, as will be the case of our
mode function). Following Refs. [4] and [8], we will refer to
these different situations as the cold atom or mazer regime
when K0 � h̄

√
n + 1g0, the intermediate regime when K0 ∼

h̄
√

n + 1g0, and the hot atom or Rabi regime when K0 �
h̄
√

n + 1g0.
We will now give expressions for several properties of the

system that will enlighten the interpretation of the results in
Sec. V. These expressions are general in the sense that they
are valid whenever one restricts to the subspace spanned by βn

for some n = 0,1,... and in one, two, or three dimensions.
Given that the initial state of the system is pure and belongs

to the subspace spanned by βn, using (6) the density operator
ρ(t) of the system can be expressed in the form

ρ(t) = [|ψ+n(t)〉| + ,n〉 + |ψ−n(t)〉| − ,n〉]
× [〈ψ+n(t)|〈+,n| + 〈ψ−n(t)|〈−,n|]. (8)

The corresponding center-of-mass reduced density operator
ρc.m.(t) is obtained by tracing ρ(t) over the internal atom and
field degrees of freedom; the internal ρint(t) and field ρF (t)
reduced density operators are obtained similarly.

Using (8) it is easy to show that the probability to find the
atom in the excited state |e〉 at time t is given by the following
expression:

Pe(t) = 1
2 + Re〈ψ+n(t)|ψ−n(t)〉, (9)

where Re denotes the real part. Also, it is easily shown that
the expected value 〈σ3〉(t) of the atomic inversion and the
expected value 〈a†a〉(t) of the photon number depend on
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Pe(t) in the following way

〈σ3〉(t) = 2Pe(t) − 1, 〈a†a〉(t) = n + 1 − Pe(t). (10)

Note that when n = 0 the expected number of photons
〈a†a〉(t) is equal to the probability of emission Pem(t).

Ever since it was realized that the entanglement present
in quantum systems could be harnessed as a resource to
transmit and store information, there has been great interest
to characterize and manipulate it in many systems such as the
micromaser [22]. One of our goals is to determine the type of
entanglement present in the system under consideration and to
quantify the degree of mixing in the various parts of it. For the
latter, we take as figure of merit the linear entropies:

Sc.m.
L (t) = 1 − Trc.m.ρ

2
c.m.(t),

= 1 − 〈ψ+n(t)|ψ+n(t)〉2 − 〈ψ−n(t)|ψ−n(t)〉2

−2|〈ψ+n(t)|ψ−n(t)〉|2, (11)

measures the degree of mixing between the internal atom and
field degrees of freedom, and

SF
L (t) = 1 − TrF ρ2

F (t) = 2Pe(t)[1 − Pe(t)], (12)

measures the degree of mixing between the center-of-mass
internal atom degrees of freedom. The linear entropy S int

L (t) of
ρint(t) yields an expression exactly equal to (12) and measures
the degree of mixing between the center-of-mass and field
degrees of freedom. Notice that a nonzero value of one of these
linear entropies can be used as an indicator for the presence of
entanglement between the nontraced degree of freedom and a
traced degree of freedom.

To quantify the amount of entanglement between the
internal atom and field degrees of freedom we will use the
entanglement of formation EF (t). Since the dynamics are
restricted to the subspace spanned by βn, the cavity field can
only have n or n + 1 photons. Therefore the cavity field is
formally equivalent to a two-level system, and we can use the
concurrence C(t) to determine the entanglement of formation
between atom and field [23]:

EF (t) = s

(
1 +

√
1 − C2(t)

2

)
,

(13)
s(x) = −x log2 x − (1 − x) log2(1 − x),

where C(t) = max{0,
√

λ1−
√

λ2−
√

λ3−
√

λ4} and λ1 � λ2 �
λ3 � λ4 are the eigenvalues of the matrix

C(t) = [ρint+F (t)](σy ⊗ σy)[ρint+F (t)]∗(σy ⊗ σy). (14)

Here σy is the well-known Pauli matrix and [ρint+F (t)]∗ is
the element-wise complex conjugate of the density matrix
[ρint+F (t)] of the internal atom and field degrees of freedom.
The matrix [ρint+F (t)] is obtained by tracing ρ(t) over the
center-of-mass degrees of freedom and choosing a matrix
representation.

It is easy to show that the concurrence C(t) takes the form

C(t) =
√

1

2
A + λ

√
Pe(t) [1 − Pe(t)]

−
√

1

2
A − λ

√
Pe(t) [1 − Pe(t)], (15)

where

λ =
√

[〈ψ+n(t)|ψ+n(t)〉 − 〈ψ−n(t)|ψ−n(t)〉]2 + 4[Im〈ψ+n(t)|ψ−n(t)〉]2 (16)

and

A = 〈ψ+n(t)|ψ+n(t)〉2 + 〈ψ−n(t)|ψ−n(t)〉2

− 2Re[〈ψ+n(t)|ψ−n(t)〉2]. (17)

Im denotes the imaginary part.

III. SEMICLASSICAL ADIABATIC APPROXIMATION

The SCAA, briefly presented in this section, gives a simple
physical picture that allows one to understand qualitatively
how the atom should move and how the system should behave
in general terms when several conditions (to be explained
below) are satisfied. In this approximation the equations to be
solved in any particular problem are ordinary instead of partial.
The SCAA is presented in order to determine how well its
predictions compare with the exact results based on a full quan-
tum treatment and to understand qualitatively why the system
behaves in a particular way for certain values of the parameters.

When both the spatial extension of the center-of-mass
wave packet and the de Broglie wavelength of the atom are
much smaller than the rest of the lengths of the system,
a semiclassical approximation can be used to treat the

center-of-mass motion of the atom [16]. The center-of-mass
trajectory r(t) defines the time-dependent Hamiltonian

HAD(t) = h̄ωA

2
σ3 + h̄ωL

(
a†a + 1

2

)
+ h̄g0u[r(t)](a†σ + σ †a), (18)

which determines the evolution of the internal atom and
field degrees of freedom. This Hamiltonian has instantaneous
eigenvalues

E±n[r(t)] = h̄(n + 1)ωL ± h̄

2
�n[δL,r(t)] (19)

and corresponding instantaneous eigenvectors

|1,n,t〉 = cos

[
θn(t)

2

]
|e,n〉 + sin

[
θn(t)

2

]
|g,n + 1〉,

(20)

|2,n,t〉 = −sin

[
θn(t)

2

]
|e,n〉 + cos

[
θn(t)

2

]
|g,n + 1〉,

where

�n[δL,r(t)] =
√

δ2
L + 4(N + 1)g2

0u[r(t)]2,
(21)

tanθn(t) = −2
√

n + 1g0u[r(t)]/δL(0 � θn(t) � π ).
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In particular, it is easy to see that for zero detuning

|j,n,t〉 =
{| + ,n〉 if j = 1,

−| − ,n〉 if j = 2.
. (22)

The adiabatic approximation is now invoked: If the reduced
system that just describes the internal atom plus field degrees
of freedom is initially prepared in an eigenvector |j,n,t0〉 of
HAD(t0), then it will approximately evolve to |j,n,t〉, and the
properties of this reduced system can be determined using
|j,n,t〉. Also, E±n[r(t)] (plus for j = 1, minus for j = 2) act
as potentials under which the center-of-mass moves and the
semiclassical evolution equation for r(t) consistent with the
Hamiltonian HAD(t) is

M
d2r
dt2

= −∇E±n[r(t)]. (23)

Lets suppose that u(r) → 0 as |r| → +∞ (such as the case
we will be considering). Then it is easy to show that

|1,n,t〉 →
{|e,n〉 if δL < 0,

−|g,n + 1〉 if δL > 0,
(24)

|2,n,t〉 →
{−|e,n〉 if δL > 0,

−|g,n + 1〉 if δL < 0,

as |r| → +∞. Suppose now that the reduced system that just
describes the internal atom plus the field degrees of freedom
is initially prepared in the state |e,n〉 in a region where u(r)
is negligible. Then the reduced system will be found in the
eigenstate |j,n,t0 = 0〉 of HAD according to (24) if δL = 0,
and it will follow adiabatically the state |j,n,t〉 as the atom
moves under the corresponding potential E±n(r). Note that
this picture cannot be used when δL = 0 since, according to
(5) and (24), |e,n〉 is not even approximately an eigenstate of
(18) when u(r) is negligible.

We end this section with a caveat. The SCAA must not
be be confused with the quantum adiabatic approximation
(QAA) [17,18]. The former describes the center-of-mass
motion classically by means of Eq. (23) and the internal atom
and field state by (20). Meanwhile, the QAA describes the
state of the system as

φ1(r,t)|1,n,r〉 + φ2(r,t)|1,n,r〉 (25)

with

|1,n,r〉 = cos

[
θn(r)

2

]
|e,n〉 + sin

[
θn(r)

2

]
|g,n + 1〉,

|2,n,r〉 = −sin

[
θn(r)

2

]
|e,n〉 + cos

[
θn(r)

2

]
|g,n + 1〉,

tanθn(r) = −2
√

n + 1g0u(r)/δL (0 � θn(r) � π ), (26)

and consists in evolving the wave packets φ1(r,t) and φ2(r,t)
[differing from the 〈r|ψ±n(t)〉 used in this article, Eq. (7)]
under independent Schrödinger equations of the form

ih̄
d

dt
φj (r,t) =

[
− h̄2

2M
∇2 + Vj (r)

]
φj (r,t), j = 1,2, (27)

with potentials Vj (r) of the form in Eq. (19) with r(t) replaced
by r. This approximation has the advantage of taking as a

starting point quantum decoupled equations when there is
nonzero detuning. Its range of validity was studied in detail
in Ref. [18]. Here we shall not use this approximation since
our exact treatment of partial differential equations does not
require it.

IV. THE NUMERICAL SIMULATION

For the numerical simulation we will restrict to one
dimension, which will be taken to be the z direction.
Furthermore, we will restrict to the subspace spanned by
β0 (that is the cavity field will be able to have only zero
or one photons). A complete quantum treatment in the
coordinate representation of Eqs. (7) requires solving the
equations

ih̄
∂

∂t
ψ±0(z,t) =

[
− h̄2

2M

∂2

∂z2
± V0(z)

]
ψ±0(z,t)

− h̄δL

2
ψ∓0(z,t), (28)

where V0(z) = h̄g0u(z).
We solved numerically equations (28) by the method of

lines (MOL) [24–26] with an adaptive spatial grid. The
advantage of the MOL solution is that we can see the wave
packets evolve, that is, we can see how they advance, transit
the cavity, exit, and deform in the process. Also, the wave
functions in the momentum representation were reconstructed
using the fast Fourier transform and the Shannon sampling
theorem [27].

As for the parameters of our numerical simulation, we
took λA = 2πc/ωA = 780 × 10−9 m for the wavelength of the
atomic transition, g0 = 2π × 16 × 106 s−1, and M = 1.4 ×
10−25 kg. We considered a Gaussian cavity mode function

u(z) = e−z2/w2
0 , (29)

whose standard deviation is w0/
√

2. This continuous potential
is considered a good approximation for an open cavity mode.
It was first studied numerically in the context of CQED for
stationary states and zero detuning [28]. Later, transmission
effects due to wave-packet dynamics were explored both for
zero and red detuned atom-field interactions [21]. The waist
of the mode w0 will be taken as 10−6 m in general, with
the exception of the analysis of the transmission resonances
(treated in Sec. VD) where it will be varied. These values of
the parameters correspond to the experiments with Rubidium
85 described in Ref. [29], excluding w0, which in that
experimental setup has the value w0 = 29 × 10−6 m. Our
w0 values correspond to highly focused modes. We will show
in the next section that many of our results are, nevertheless,
independent of the value of w0 when outside the transmission-
resonance regime.

Initially, the atom was taken to be in the excited state,
the cavity to contain zero photons and the center of mass
to be described by a minimum-uncertainty Gaussian wave
packet. That is, we took the initial state of the system to be the
following separable state:

|ψ(0)〉 = |ψc.m.〉|e〉|0〉, (30)
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where

ψc.m.(z) = 〈z|ψE〉 =
(

1

2π2

)4

× exp

[
−1

4

(
z − µ



)2

+ ikz

]
. (31)

Here µ is the expected value of the center-of-mass position,
 is the standard deviation of the center-of-mass position,
and h̄k is the mean momentum of the atom, all at time t = 0.
For definiteness, we took these to be µ = −4w0/

√
2,  =

λdB/4 with λdB the initial mean de Broglie wavelength of
the atom, λdB = 2π/k = 2πh̄/(Mv) with v = α

√
2h̄g0/M the

initial mean velocity of the atom.
Using Eq. (5), Eq. (30) can be reexpressed in the form given

by Eq. (6) as follows:

|ψ(0)〉 = 1√
2
|ψc.m.〉| + ,n = 0〉 + 1√

2
|ψc.m.〉| − ,n = 0〉.

(32)

With the exception of the analysis of the transmission
resonances, we report numerical simulations for three different
values of α = 1/10,1/

√
2, and

√
5/4. The initial kinetic

energy for the first α is much smaller than the atom-field
coupling energy h̄g0 (cold atom regime), while for the second
and third cases it is in the order of the atom-field coupling
energy (intermediate regime). These values of α give initial
velocities of 3.9, 27, and 43 cm/s, respectively. Note that at
time t = 0 we have /µ = 10−3/

√
α and p/(h̄k) = 1/π ,

where p = h̄/(2) is the standard deviation of momentum
at t = 0. Hence, the chosen values correspond to an atom
initially very well localized in position (but not so much
in momentum) which is slowly advancing from a region
where the atom-field interaction is negligible toward the region
where the cavity field is strongest. Also, for each of the
aforementioned values of α we made numerical simulations
for three different values of the detuning: δL = 0, ± g0/16,
with the latter corresponding to one third of the spontaneous
emission rate for the experiments described in Ref. [29].

V. RESULTS

We now turn to discuss the results of the numerical simu-
lations. In the following we will take the phrase probability
of being transmitted through the cavity field to mean the
probability to find the atom in the interval (4w0/

√
2, + ∞)

once it has left the interaction region, that is, where the
atom-field coupling has non-negligible values. We will take
it to be the region centered at zero between −4 and +4
standard deviations of the Gaussian mode function in Eq. (29),
−4w0/

√
2 � z � 4w0/

√
2. Similarly, we will take the phrase

probability of being reflected by the cavity field to mean the
probability to find the atom in the interval (−∞, − 4w0/

√
2)

once it has left the interaction region. Leaving the interaction
region is measured by the expected value of the position
operator Z when there is nonzero detuning and by the
quantities

〈ψ±0(t)|Z|ψ±0(t)〉
〈ψ±0(t)|ψ±0(t)〉 , (33)

when the system is in resonance. These can be interpreted as
the expected value of the position of the particle that moves
under the repulsive (attractive) potential when the plus (minus)
sign is used. Evidently, these quantities depend on the structure
of the wave packet.

For small values of the initial mean kinetic energy K0

and certain values of the effective length of the interaction
region Leff , the asymptotic properties of the system, such as
probability of emission and transmission through the cavity
field, exhibit high sensibility in these parameters. These
effects are associated in the literature to tunneling resonances
[5,21,28]. Several of the assertions found to be valid outside
the transmission-resonance regime do not hold there. In the
next three subsections, we describe the evolution of the system
outside that regime. We will group the results according to the
sign of the detuning δL = ωL − ωA. Transmission resonances
will be treated in a fourth subsection.

A. Zero detuning outside the transmission-resonance regime

As expected, the atom’s probability of being transmitted
through the cavity field increases as the velocity rises. Our
numerical simulations show that for the initial velocities v =
3.9, 27, and 43 cm/s the atom has respective transmission
probabilities of 50, 51.4, and 84%. Note that in the case of
the second initial velocity, the additional 1.4 to 50% in the
transmission probability is due to tunneling of |ψ+0(t)〉 through
the repulsive potential V0(R), since the initial mean kinetic
energy of the atom is half the height h̄g0 of the potential
barrier [see Eqs. (31) and (32) and the paragraph that follows
them]. Analogously, in the case of the third initial velocity, the
missing 16 to 100% in the transmission probability is due to
reflection of |ψ+0(t)〉 by the repulsive potential V0(R), since
the initial mean kinetic energy of the atom is (1/4)h̄g0 higher
than the height h̄g0 of the potential barrier.

In the cold regime, the structure of the wave packets
ψ±0(z,t) is Gaussian-like for sufficiently long times for both
the reflected and transmitted matter waves; Fig. 1(c). As for the
corresponding position probability density function (PPDF),
it has the structure of two quasi-Gaussian functions; Fig. 1(f).
The numerical results show that, when the atom leaves the
interaction region, the uncertainty in momentum recovers its
initial value both for ψ+0(z,t) and for ψ−0(z,t), while their
position uncertainty increases linearly in time although it is
smaller than for a freely evolving wave packet.

In the intermediate regime, for the velocities v = 27 and
43 cm/s the uncertainties in momentum are asymptotically
constant for both ψ+0(z,t) and ψ−0(z,t) but larger than their
initial value. Also, the transmitted asymptotic packages are
quasi-Gaussian [Figs. 1(i) and 1(o)]. The part of the center-
of-mass wave function that moves in an attractive potential
ψ−0(z,t) is transmitted with a simple Gaussian-like structure,
while ψ+0(z,t) evolves with a very rich structure. As illustrated
in Figs. 1(i) and 1(o) for velocities v = 27 and 43 cm/s,
ψ+0(z,t) is divided into transmitted and reflected wave packets.
The maximum of the transmitted part of ψ+0(z,t) for v =
27 cm/s [Fig. 1(i)] is evidently located at a farther position than
the maximum of ψ−0(z,t), although it has a lower amplitude.
That is the essence of the so-called precursors which have
been widely discussed in the optics context [30]. The PPDF
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FIG. 1. (Color online) Evolution of the imag-
inary parts Im[ψ+0(z,t)] (black solid line) and
Im[ψ−0(z,t)] (red dotted line) of the wave packets
ψ±0(z,t) and the position probability density
functions (PPDF) ρ(z,t) for zero detuning. The
first two rows refer to the initial velocity v =
3.9 cm/s, the third and fourth rows to v =
27 cm/s, and the fifth and sixth rows to v =
43 cm/s. [(l) and (r)]A close-up of the reflected
part of the PPDF is included. Time appears in
units of 2π/g0 and the mode function u(z) (blue
dashedline) is drawn in all figures.

for the intermediate regime consists of an essentially Gaussian
transmitted part and a reflected part that resembles a train
of quasi-Gaussian packets, i.e., it has an echolike structure
[Figs. 1(l) and 1(r)]. Observing the detailed time evolution
of the PPDF [31], it is found that a Gaussian-like structure
for the PPDF is preserved until the expected value of the
position of the atom is approximately at the center of the

interaction region, after which it splits into a part that continues
to traverse the cavity and another part that is reflected, as
illustrated in Figs. 1(k) and 1(q). The echo structure comes
about as a result of the interference between a portion of
the wave packet ψ+0(z,t) that is still advancing toward
the center of the interaction region and another part of it
that moves in the opposite direction. Furthermore, the echo
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FIG. 2. (Color online) The probability of finding the atom in the
excited state at time t for the initial velocities v = 3.9 (black dash-dot
line), 27 (blue dashed line), and 43 (red solid line) cm/s for zero
detuning. Rabi-like oscillations are observable just for the highest
velocity as can be observed in the close-up shown in the inside figure.
Time appears in units of 2π/g0.

structure is preserved well outside the interaction region in the
intermediate regime.

We will now discuss the rest of the evaluated properties. As
can be seen from Fig. 2, the probability to find the atom in the
excited state Pe(t) contrasts sharply with that obtained when
the center-of-mass motion is not quantized. In resonance, the
latter exhibits the well-known Rabi oscillations which have
been ingeniously used in the preparation of predetermined
quantum states of the internal atomic degrees of freedom and
the cavity field (see, e.g., Ref. [22]). Meanwhile, when the
center-of-mass motion requires a quantized description, the
Rabi oscillations tend to disappear. For the smallest initial
velocity, they disappear completely and the probability of
emission is always less than 1 (Fig. 2). This can be explained
easily by looking at Eq. (9) and Fig. 1(b). Since |ψ+0(t)〉
evolves under the repulsive potential and |ψ−0(t)〉 evolves
under the attractive potential, the first is quickly reflected [see
the times in Figs. 1(a)–1(c)] while the second is transmitted
through the cavity field. Therefore, the overlap between
|ψ+0(t)〉 and |ψ−0(t)〉 rapidly goes to zero and there is no
chance for oscillations as the probability of finding the atom in
the excited state rapidly reaches a stationary value of 1/2. This
phenomenon is also observed for the higher initial velocities,

but small oscillations start to appear as |ψ+0(t)〉 penetrates
the barrier further and is mostly transmitted as occurs for
the highest reported velocity [Fig. 1]. This also makes the
overlap 〈ψ+0(t)|ψ−0(t)〉 persist longer, but the delay between
|ψ+0(t)〉 and |ψ−0(t)〉 ultimately decreases it to negligible
values. The delay can be measured by the difference between
the expectation values of the position for |ψ+0(t)〉 and |ψ−0(t)〉,
Eq. (33). The small oscillations exhibited mostly in the case
with the highest initial velocity appear to be the onset of the
aforementioned Rabi oscillations.

The expected values of the atomic inversion and photon
number, Eq. (10), as well as the linear entropy between the
internal and center-of-mass degrees of freedom, Eq. (12),
can be obtained directly from Pe(t). On the other hand,
entanglement between the internal atom degrees of freedom
and the cavity field is also highly affected by the quantization of
the center-of-mass motion. As illustrated in Fig. 3(a), as soon
as the atom enters the interaction region the entanglement
of formation between the internal atom degrees of freedom
and the cavity field grows to a large value and then rapidly
becomes negligible [see the times in Figs. 1 and 3(a)]. On the
other hand, if the center-of-mass motion is treated classically
and there is zero detuning [22], the latter presents many
oscillations between zero and 1 corresponding to the cases
where the atom is in the ground or excited state and when the
atom-field system is in the states | ± ,0〉, respectively. This can
easily be understood if we refer to Eqs. (15) and (16). For the
configuration under consideration we have for any time t

〈ψ+0(t)|ψ+0(t)〉 = 〈ψ−0(t)|ψ−0(t)〉 = 1
2 . (34)

Then, using Eqs. (15) and (16), it can be shown that the
concurrence C(t) approaches the value zero as soon as the
overlap between |ψ+0(t)〉 and |ψ−0(t)〉 becomes negligible.
Hence, the entanglement of formation takes the value of zero
and there is no entanglement between the internal atom degrees
of freedom and the cavity field.

As illustrated in Fig. 3, the reduced density operators
ρc.m.(t) and ρF (t) rapidly acquire a maximum-mixed state
structure (see the times in Figs. 1 and 3). This can be explained
by taking a glance at Eqs. (11) and (12). Using Eq. (34) it is
seen that Sc.m.

L (t) and SF
L (t) take on their maximum values as
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FIG. 3. (Color online) (a) Entanglement of formation between the internal atom degrees of freedom and the cavity field; (b) linear entropy
for the internal atom degrees of freedom and the cavity field; (c) linear entropy for the center of mass and internal atom degrees of freedom.
Results are shown for zero detuning and initial velocities v = 3.9 (black dash-dot line), 27 (blue dashed line), and 43 (red solid line) cm/s.
Time is in units of 2π/g0.

053815-7
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FIG. 4. (Color online) The first row illus-
trates the evolution of the imaginary parts
Im[ψ+0(z,t)] (black solid line) and Im[ψ−0(z,t)]
(red dotted line) of the wave packets ψ±0(z,t) for
blue detuning, δL = g0/16. The initial velocity is
v = 3.9 cm/s and the initial state is the same as
in Fig. 1(a). The real parts behave similarly. The
second row illustrates the evolution of the PPDF
for the same initial velocity and state used in
Fig. 1(d). Time appears in units of 2π/g0 and the
mode function u(z) (blue-dashed line) is drawn
in all figures.

soon as the overlap between |ψ+0(t)〉 and |ψ−0(t)〉 becomes
negligible.

As we will now show, the consequence of the aforemen-
tioned asymptotic zero entanglement of formation and nonzero
linear entropies is that the system exhibits not only tripartite
entanglement but also genuine tripartite entanglement [32].
This means that given a tripartite pure state, all of its bipartite
reductions yield mixtures of separable pure states. The best
known example of this is the Greenberger-Horne-Zeilinger
(GHZ) system [32].

Consider an initial state of the form

|ψ0〉 = |ψc.m.〉 (c1|e,n〉 + c2|g,n + 1〉) , (35)

with |c1|2 + |c2|2 = 1, c1c2 = 0, and 〈ψc.m.|ψc.m.〉 = 1. Then
it is easily seen that whenever 〈ψ+n(t)|ψ−n(t)〉 = 0, the
reduced density operators for the internal atom plus field
(int + F ), center of mass plus internal atom (c.m. + int) and
center of mass plus field (c.m. + F ) degrees of freedom are,
respectively:

ρint+F (t) = 1
2 |e〉〈e| ⊗ |n〉〈n| + 1

2 |g〉〈g| ⊗ |n + 1〉〈n + 1|
(36)

ρc.m.+int(t) = 1
2P+(t) ⊗ |e〉〈e| + 1

2P−(t) ⊗ |g〉〈g|, (37)

ρc.m.+F (t) = 1
2P+(t) ⊗ |n〉〈n| + 1

2P−(t) ⊗ |n + 1〉〈n + 1|,
(38)

where P±(t) are density operators defined by

P±(t) = [|ψ+n(t)〉 ± |ψ−n(t)〉][〈ψ+n(t)| ± 〈ψ−n(t)|]. (39)

Note that (36) is a separable maximum mixed state, since its
linear entropy takes on its largest value of 1/2. Furthermore,

(37) and (38) are also separable mixed states since P±(t) rep-
resent orthogonal pure states. Therefore, the system exhibits
genuine tripartite entanglement. This is precisely the case we
have at hand with n = 0.

It is important to note that many of the phenomena
described, e.g., the disappearance of the Rabi oscillations and
the existence of genuine tripartite entanglement, rely on two
things: an initial state of the form (35) and 〈ψ+n(t)|ψ−n(t)〉 = 0
for the time interval of interest. Therefore it is a phenomenon
that would be observed for positive mode functions u(r) and
in one to three dimensions as long as the two aforementioned
conditions are satisfied.

B. Blue detuning outside the transmission-resonance regime

The wave-packet dynamics in the case of blue detuning
exhibit interesting features that may be unseen in approximate
treatments (Fig. 4). For all initial mean momenta, ψ+0(z,t)
decreases its amplitude and almost disappears inside the
interaction region while ψ−0(z,t) increases accordingly, an
effect due to the coupled equations that describe them. Later,
as the wave packets exit the interaction region, ψ+0(z,t)
reappears so that asymptotically ψ+0(z,t) = ψ−0(z,t), an
equality obtained numerically and expected from analytical
considerations given below. In all numerical simulations we
performed, the wave packets and the position probability
density function eventually become quasi-Gaussian (Fig. 4),
and the expected values of the momentum and its un-
certainty are asymptotically found to approach their initial
values.

For blue detuning, if one uses the SCAA presented in
Sec. III, it is expected that the atom is transmitted through
the cavity field for all initial momenta. The reason for this is
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FIG. 5. (Color online) The probability of finding the atom in the excited state for blue detuning, δL = g0/16. Each part of the figure
illustrates the result obtained when the center-of-mass motion is quantized (red solid line), treated in the semiclassical adiabatic approximation
(blue dash-dot line), or, finally, follows the classical trajectory z = vt + µ, where v is the initial velocity and µ the initial position (black
dashed line). Results are shown for initial velocities (a) v = 3.9, (b) 27, and (c) 43 cm/s. Time is in units of 2π/g0.

that the atom moves under the attractive potential E−0(z) with
an energy E = (1/2)Mv2 + E−0(µ) larger than the maximum
height of E−0(z); see Eqs. (19)–(24) and the definition of µ

and v in Sec. IV. This turns out to be the case also in the exact
quantum treatment outside the transmission-resonance regime
(analyzed in Sec. VD), since the probability of transmission
results 100% for detunings such as δL = g0/16. Nevertheless,
the SCAA is actually not strictly valid, because as the
atom wave packets evolve their spatial extension becomes
comparable to the size of the interaction region (Fig. 4), and
the SCAA does not take into account this position dispersion.
Consequently, the breakdown of that approximation reveals
itself in the position probability density function (Fig. 4), and
the quantitative predictions for the probability to find the atom
in the excited state Pe(t) (Fig. 5). Nevertheless, the SCAA
does reproduce the inverted bell-like structure of Pe(t) that
becomes unity outside the interaction region and takes its
minimum value when the expected value of the position of the
atom is approximately at the center of the interaction region

(Figs. 5 and 6). These figures also illustrate the results when
the approximation z = vt + µ is taken.

In the exact quantum treatment the asymptotic behavior of
the linear entropies and the entanglement of formation (Fig. 7)
is easily understood using the following argument. Consider a
density operator of the form (8). If the probability of finding
the atom in the excited state Pe(t) is 1 and

〈ψ+n(t)|ψ+n(t)〉 = 〈ψ−n(t)|ψ−n(t)〉 = 1
2 , (40)

then, using the Cauchy-Schwarz inequality, necessarily
|ψ+n(t)〉 = |ψ−n(t)〉. From this it is easy to conclude that the
whole system is in the following product state:

ρ(t) = 2|ψ+n(t)〉〈ψ+n(t)| ⊗ |e〉〈e| ⊗ |n〉〈n|. (41)

We note that this is precisely the case we have at hand,
since Pe(t) = 1 and Eq. (40) is satisfied [Fig. 7(c)]. Inside the
interaction region, the structure of the linear entropy between
the internal atom and field degrees of freedom is understood

0 500 1000 1500 2000

−2

0

2

4

6

t   (units of 2 π /g
0
)

〈 Z
 〉 

(t
) 

  (
µ 

m
)

(a)

0 100 200 300 400 500

−2

0

2

4

6

t   (units of 2 π /g
0
)

〈  Z
 〉  

(t
) 

  (
µ 

m
)

(b)

0 500 1000 1500 2000
0

0.5

1

1.5

t   (units of 2 π /g
0
)

∆ 
Z

 (
t)

   
(µ

 m
)

(c)

FIG. 6. (Color online) For blue detuning, δL = g0/16, (a) illustrates the expected value of the position of the atom when the center-of-mass
motion is quantized with the initial velocity v = 3.9 cm/s (red solid line). Results for the adiabatic (blue dashed line) and z = vt + µ (black
dash-dot line) treatments of the center-of-mass motion are also shown. (b) The expected values of the position of the atom with the initial
velocity v = 27 cm/s for the fully quantum treatment (blue dash-dot line) and for the SCAA (black dashed line). Also shown is 〈Z〉 for the
initial velocity 43 cm/s resulting from the full quantum treatment (red solid line) and for the SCAA (black dotted line). The horizontal dotted
lines indicate the limits of the interaction region. (c) The standard deviation of the position of the atom when the center-of-mass motion is
quantized with the initial velocities v = 3.9 cm/s (black dash-dot line), 27 cm/s (blue dashed line), and 43 cm/s (red solid line). In all figures
time is in units of 2π/g0.
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FIG. 7. (Color online) For blue detuning,
δL = g0/16, (a) and (d) illustrate the evolution
of the entanglement of formation and the linear
entropy between the internal atom and field de-
grees of freedom, respectively. (b) The evolution
of the linear entropy between the center-of-mass
and internal atom degrees of freedom; it is exactly
the same for the center-of-mass and field degrees
of freedom. [(a), (b), and (d)] Results for initial
velocities v = 3.9 cm/s (black dash-dot line),
27 cm/s (blue dashed line), and 43 cm/s (red solid
line). (c) The evolution of the square of the norm
of the wave functions ψ+0(z,t) (red solid line)
and ψ−0(z,t) (blue dash-dot line), the modulus of
the overlap |〈ψ+0(z,t)|ψ−0(z,t)〉| (black dashed
line), and the linear entropy between the internal
atom and field degrees of freedom (blue dotted
line) for the largest initial velocity v = 43 cm/s.
Time appears in units of 2π/g0.

by using Eq. (11) and Fig. 7(c). For the other velocities the
graphics are similar.

If one uses the semiclassical adiabatic approximation, one
expects that the system asymptotically has the atom in the
excited state and the cavity field with zero photons. This
is due to the fact that the system follows adiabatically the
corresponding state, Eqs. (20) and (24). Therefore, one expects
that the system is found asymptotically in a pure separable
state. Although this does happen asymptotically in the exact
quantum treatment outside the transmission-resonance regime
(Fig. 7) the SCAA cannot describe quantitatively what happens
inside the interaction region. The reason is that the SCAA is
not strictly valid, as analyzed in the preceding paragraphs.

By writing the exact wave functions in terms of the
states given by Eq. (26) one can obtain an estimate of the
validity of the quantum adiabatic approximation (QAA). In
this way, it is observed that for δL = g0/16 the exact wave
function has always a dominant contribution of the state
|1,n,z〉 determined by the position dependent function φ1(z,t),
Eq. (25). As a consequence, the QAA should be a good
approximation in this case. Nevertheless, it was also noted
that the QAA cannot reproduce all the effects, for instance, the
norm of φ2(z,t) changes its value by more than 100% inside
the cavity when using the exact quantum treatment while it
would remain constant in the QAA. Note that using directly
the states ψ±n(z,t) in the exact quantum treatment allows a
straightforward reading of some properties as the atom transits
the cavity, while the space dependence of the states |j,n,z〉
(j = 1,2) along with time and space dependence of φj (z,t)
may make it less transparent.

C. Red detuning outside the transmission-resonance regime

The wave packets for red detuning ψ±0(z,t) exhibit similar
dynamics to the case of ψ+0(z,t) with zero detuning, especially

at the cold regime. In fact, in that regime and for sufficiently
long times, the structure of all the wave packets is similar to
that illustrated for the imaginary part of ψ+0(z,t) in Fig. 1(c),
and the corresponding PPDF is essentially Gaussian. In the
intermediate regime ψ±0(z,t) are divided into transmitted
and reflected wave packets for the velocities v = 27 and 43
cm/s very similarly to ψ+0(z,t) in Figs. 1(i) and 1(o). The
reflected parts of both the wave packets and the corresponding
position probability density functions resemble a train of
quasi-Gaussian packets, i.e., they have an echolike structure
very much like that shown in the mentioned figures.

Using the SCAA we find that the atom moves under the
repulsive potential E+0(z) with an energy E = (1/2)Mv2 +
E+0(µ), see Eqs. (19)–(24) and the definition of µ and
v in Sec. IV. Therefore, we would expect that the atom
should always be reflected as long as E is smaller than the
maximum height (h̄/2)(

√
δL

2 + 4g0
2 − |δL|) of E+0(z). On

the other hand, the atom should always be transmitted if E is
larger than this height. For δL = −g0/16 the aforementioned
maximum height of E+0(z) is equal to 0.97 ∗ h̄g0. Hence, the
SCAA predicts that the atom will be reflected for the initial
mean velocities v = 3.9,27 cm/s and that the atom will be
transmitted for the initial mean velocity v = 43 cm/s (see
Sec. IV for the corresponding initial mean kinetic energies
in terms of h̄g0). Our numerical simulations show that there
is significant deviation with this behavior in the intermediate
regime due to the quantum treatment of the center-of-mass
motion for red detunings. For δL = −g0/16 and velocities
v = 3.9, 27, and 43 cm/s, the atom has respective probabilities
of 100, 96.4, and 30% of being reflected by the cavity field.
The result for the largest velocity is specially different from
that predicted by the SCAA. The difference with the SCAA
and its breakdown is mainly due, as in the blue detuning case,
to the large dispersion in position and momentum that results
when the center-of-mass motion is quantized. Also, a source
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FIG. 8. (Color online) the probability of finding the atom in the excited state for red detuning, δL = −g0/16. Each part of the figure
illustrates the result obtained when the center-of-mass motion is quantized (red solid line), treated in the semiclassical adiabatic approximation
(blue dash-dot line), or, finally, follows the classical trajectory z = vt + µ, where v is the initial velocity and µ the initial position (black dashed
line). µ is equal to the initial mean position of the atom in the quantum treatment. Results are shown for initial velocities (a) v = 3.9 cm/s,
(b) 27 cm/s, and (c) 43 cm/s. Time is in units of 2π/g0.

of differences with the SCAA for the v = 27 cm/s case is that
|ψ+0(t)〉 has large-enough kinetic energy to tunnel appreciably
through the repulsive potential Vn(R), although this statement
should be taken with care because we are dealing with coupled
differential equations, Eq. (28).

Asymptotically the semiclassical adiabatic approximation
gives the correct value for the probability to find the atom in
the excited state outside the transmission-resonance regime
(Fig. 8). When the atom is in the interaction region the SCAA
also gives a good qualitative (but not quantitative) approxima-
tion to the exact quantum treatment for the smallest velocities
studied, which is not the case for the z = vt + µ treatment.
The SCAA reproduces the inverted bell-like structure of Pe(t)
which takes on its minimum value approximately when the
expected value of the position of the atom is near the center
of the interaction region (Figs. 8 and 9). Also note that there
is considerable difference between the SCAA and the exact
quantum treatment in the structure of the probability to find

the atom in the excited state for the case of the highest velocity,
since the reflection due to the width in momentum of the wave
packet is much more relevant in this case.

In the exact quantum treatment the asymptotic behavior
of the linear entropies and the entanglement of formation is
easily understood using the same argument as in the blue
detuning case, and the structure of Sc.m.

L (t) when the atom
is in the interaction region can be understood by observing
Fig. 10(c).

As in the blue detuning case, if one uses the semiclassical
adiabatic approximation, one expects that the system asymp-
totically has the atom in the excited state and the cavity-field
with zero photons. Therefore, the system should be found
asymptotically in a pure separable state. Although this does
happen asymptotically in the exact quantum treatment, the
SCAA is not strictly valid and cannot describe quantitatively
what happens inside the interaction region, as illustrated in
Fig. (10) for δL = −g0/16.
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FIG. 9. (Color online) For red detuning, δL = −g0/16, (a) the expected value of the position of the atom when the initial velocity is v = 3.9
cm/s for a full quantum treatment (red solid line), for the SCAA (blue-dashed), and for the z = vt + µ treatment of the center-of-mass motion
(black dash-dot line) (µ is equal to the initial mean position of the atom in the quantum treatment). (b) The expected values of the position
of the atom with the initial velocity v = 27 cm/s for the full quantum treatment (blue dash-dot line) and for the SCAA (black dashed line).
It also shows 〈Z〉 for the initial velocity 43 cm/s resulting from the full quantum treatment (red solid line) and for SCAA (black dotted
line). The horizontal dotted lines indicate the limits of the interaction region. (c) The standard deviation of the position of the atom when the
center-of-mass motion is quantized with the initial velocities v = 3.9 cm/s (black dash-dot line), 27 cm/s (blue dashed line), and 43 cm/s (red
solid line). In all figures time is in units of 2π/g0.
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FIG. 10. (Color online) For red detuning,
δL = −g0/16, (a) and (d) illustrate the evolution
of the entanglement of formation and the linear
entropy between the internal atom and field de-
grees of freedom, respectively. (b) The evolution
of the linear entropy between the center-of-mass
and internal atom degrees of freedom, it is exactly
the same for the center-of-mass and field degrees
of freedom. [(a), (b), and (d)] Results for initial
velocities v = 3.9 cm/s (black dash-dot line), 27
cm/s (blue dashed line), and 43 cm/s (red solid
line). (c) The evolution of the square of the norm
of the wave functions ψ+0(z,t) (red solid line)
and ψ−0(z,t) (blue dash-dot line), the modulus of
the overlap |〈ψ+0(z,t)|ψ−0(z,t)〉| (black dashed
line), and the linear entropy between the internal
atom and field degrees of freedom (blue dotted
line) for the largest initial velocity v = 43 cm/s.
Time appears in units of 2π/g0.

D. Transmission-resonance regime

For δL ≡ ωL − ωA = 0, stationary states of the model
Hamiltonian (1) with very low energy with respect to the
atom-field coupling energy h̄g0 exhibit resonances in some
properties for certain values of the length L of the atom-field
interaction region [5,21,28]. The precise conditions for the
occurrence of these resonances depend greatly on the mode
function u(z) considered. Exact analytic expressions for the
conditions necessary to have resonances in the probability of
emission have been found for the mesa u(z) = θ (z)θ (L − z) (θ
is the Heaviside function) and u(z) = sech2(z/L) profiles [5],
and they relate the de Broglie wavelength of the stationary state
to L. The Gaussian mode has been treated numerically and the
resonances for the probability of emission were studied for
the particular value of the energy E = h̄g0/100 as a function
of the waist w0 of the Gaussian mode in Ref. [28]. In the
cases we have treated in previous sections the aforementioned
resonances and their effects have not been observed even
though we studied the case when the initial mean kinetic
energy was precisely K0 = h̄g0/100. The reason for this is
that we took a standard deviation of the Gaussian mode
of w0/

√
2 = 10−6/

√
2 m, and much smaller values of this

quantity are needed in order to observe them at this energy,
Ref. [28].

In this section we will study the properties of the CQED
system at the transmission-resonance regime with fixed initial
mean kinetic energy, K0 = h̄g0/100, and initial standard
deviation of position  = 10−8 m, w0 variable, and the rest
of the parameters as before. We have chosen these values for
K0 and  to compare and build on Refs. [21] and [28]. Note,
however, that smaller values of K0 and larger values of 

can also yield transmission resonances; the main point is that
resonances are observed for w0 smaller than , as realized
in Ref. [21] when dealing with an initial Gaussian wave
packet.

It is important to delve a bit more into the parameters we
used in the numerical simulation in order to understand some
of the results. Since we took K0 = h̄g0/100 as the expected
value of the kinetic energy of the atom at time t = 0, the
initial mean momentum of the atom is p0 = 10

√
2Mh̄g0 with

M = 1.4 × 10−25 kg as the mass of the atom. Therefore, the
initial relative standard deviation in momentum is

p

p0
= 5



√
h̄

2Mg0
= 0.94, (42)

because the standard deviation in position at time t = 0 was
taken as  = 10−8 m and we are dealing with minimum
uncertainty wave packets, Eqs. (31) and (32). Furthermore,
the relative standard deviation in position was taken as

0.05 � 

|µ| � 3.5, (43)

since the expected value of position at time t = 0 was taken
as µ = −4w0/

√
2 and the waist w0 of the Gaussian mode was

varied from 10−9 m to 7 × 10−8 m. As a consequence, the wave
packets at time t = 0 are not well localized in momentum, and
they pass from not being well localized in position to being
well localized in position as w0 increases. As will be discussed
below, the large relative standard deviation in momentum can
lead to an attenuation of the resonances.

Figure 11(a) presents the probability T (w0) for the atom
to be transmitted through the cavity field as a function of the
Gaussian mode waist w0 for the three values of the detuning
considered above. The numerical simulation was stopped after
a time tf = 21w0

√
M/K0 which corresponds to three times

the classical transit time of the interval (−7w0/
√

2,7w0/
√

2)

by a free atom with kinetic energy K0. In the figure it can be
observed that T (w0) differs dramatically from the results of the
previous sections. When there is zero detuning (δL = 0) T (w0)
is always less than 0.5 and oscillates with decreasing amplitude
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FIG. 11. (Color online) (a) The probability T (w0) that the atom is transmitted through the cavity field, (b) the probability of finding the atom
inside the interaction region (−4w0/

√
2,4w0/

√
2), and (c) the probability of emission (equal to 1 minus the probability of finding the atom in the

excite state), all as a function of the Gaussian mode waist w0 at time tf = 21w0
√

M/K0 for the initial mean kinetic energy K0 = h̄g0/100. Blue
dashed lines correspond to a detuning δL = g0/16 > 0, black solid lines correspond to zero detuning, and red dashed-dotted lines correspond
to a detuning δL = −g0/16 < 0. The waist w0 is in nanometers.

as w0 increases so there are certain values of w0 where T (w0)
shows maxima. These are the transmission resonances alluded
to in the paragraphs above. The differences with previous
sections are due to the fact that both the repulsive potential
Vn(R) associated with |ψ+n(t)〉 and the attractive potential
−Vn(R) associated with |ψ−n(t)〉 are very narrow, as measured
by the waist w0, in comparison to the width  of the wave
packets. As a consequence of this, there is great tunneling by
|ψ+n(t)〉 and large reflection by |ψ−n(t)〉. On the other hand, in
previous sections the waist w0 of the potential was much larger
than the width  and, hence, the aforementioned tunneling and
reflection were negligible for this initial mean kinetic energy.
Taking a look at Figure 11(a), one can see that the resonances
start to disappear and T (w0) slowly tends to the value of 1/2
reported in previous sections as w0 becomes larger than .

When there is blue detuning (δL > 0) the atom is reflected
with greater probability when w0 <∼ 2, except at the values
of w0 where the aforementioned resonances occur. These are
now slightly shifted and more pronounced in comparison to
the case of zero detuning. Also note that T (w0) tends slowly
to the value of 1 of previous sections. The case of red detuning
(δL < 0) shows that the atom has considerable probability
to be transmitted through the cavity field, especially at the
resonances that, although present, are now less pronounced
and disappear very rapidly. Observe that T (w0) rapidly tends
to the stationary value of 0 of previous sections as w0 becomes
larger than . The behavior of T (w0) indicates a complete
breakdown of the semiclassical adiabatic approximation, since
it predicts that the atom will always be transmitted for blue
detuning and always be reflected for red detuning. The reason
for this is that now the quantum effects of tunneling and
reflection mentioned in the previous paragraph in the coupled
equations (28) are very large.

The results for the probability T (w0) of the atom to be
transmitted through the cavity field as a function of the
Gaussian mode waist w0 in the cases of zero and red detunings
can be compared with those of Ref. [21]. Our results agree with
the structure of T (w0) presented in that reference but differ
quantitatively in the case of zero detuning. Reference [21]
presents resonances that do reach the value of 1/2 and T (w0)
reaches the stationary value of 1/2 more rapidly. The reason
for this difference is explained in the following paragraph.

Figure 11(b) illustrates the probability to find the atom
inside the interaction region (−4w0/

√
2,4w0/

√
2) at time tf =

21w0
√

M/K0. It is interesting that this trapping probability is
not negligible for long times such as tf , although it tends to
zero as w0 increases. This effect partially accounts for T (w0)
not reaching a value of 1/2 at the transmission resonances.
The other factor, which is also related to this non-negligible
trapping probability, resides in the different initial conditions
used in Ref. [21]. Of particular importance is the relative
standard deviation in momentum, since our wave packets
are not well localized in momentum [see Eq. (43)] and the
wave packets taken in Ref. [21] have p/p0 = 1/3 with
p the standard deviation in momentum and p0 the mean
momentum, both at time t = 0. Therefore, a large relative
standard deviation in momentum can lead to an attenuation
of the transmission resonances. A similar effect was found in
Ref. [21], were it was realized that larger widths in momentum
tend to attenuate and smear out variations and resonances for
T (w0) in the mesa function and sech2 function profiles for zero
detuning interactions.

Figure 11(c) illustrates the probability of emission
Pem(w0) = 1 − Pe(w0). Resonances are clearly marked for
the zero detuning case (δL = 0) and they are still present,
although not so pronounced, for blue detuning (δL > 0). The
red detuning case (δL < 0) has marked resonances when w0

is smaller than , but they rapidly disappear as  becomes
larger than w0. The differences with the results of the previous
sections can be understood by taking a look at Eq. (9). In the
regime that we are now discussing, the real part of the overlap
〈ψ+n(t)|ψ−n(t)〉 is now large, since, as discussed above,
|ψ−n(t)〉 is considerably reflected and |ψ+n(t)〉 is considerably
transmitted. Finally, note that for all values of the studied
detunings Pe(w0) slowly tends to the corresponding values of
previous sections as w0 becomes larger than .

These results using an initial minimum-uncertainty wave
packet to describe the center-of-mass motion can be compared
with those using stationary states with defined energy to
describe the system. In Ref. [28] the probability of emission is
reported for a Gaussian profile, stationary states with energy
K0, and values of w0 that correspond to the region between
0 and 43 (nm) in our setup. For these stationary states the
resonances in the probability of emission always reach a
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FIG. 12. (Color online) [(a), (b), and (c)] Respectively, the linear entropy of the center-of-mass density operator, the linear entropy of the
field density operator, and the entanglement of formation of the density operator of the internal atom and field degrees of freedom as a function
of the Gaussian mode waist w0 at time tf = 21w0

√
M/K0 for the initial mean kinetic energy K0 = h̄g0/100. The linear entropy of the internal

atom degrees of freedom is the same as in (b) [see Eq. (12) and the paragraph below it]. In the interval from 40 to 70 nm, the entanglement of
formation for all values of the detuning decreases to zero (not shown for purposes of better illustration in the region presented). Blue dashed
lines correspond to a detuning where δL = g0/16, black solid lines correspond to zero detuning, and red dashed-dotted lines correspond to a
detuning where δL = −g0/16. The waist w0 is in nanometers.

maximum value of 1/2, decrease in amplitude as the w0

increases, and nearly acquire the stationary value of 1/2
when w0 = 43 (nm). Our results show that for Gaussian wave
packets such as ours the probability of emission is always
less than 1/2 and tends to the stationary value of 1/2 much
more slowly. Similarly to T (w0), this difference can be due to
position and momentum widths of the initial wave packet [see
Eqs. (42) and (43)], which can be expressed as a superposition
of stationary states that in general would not all be resonant at
the same w0 of the Gaussian profile. The effect of the widths is
present in the probability of emission by means of the overlap
〈ψ+n(t)|ψ−n(t)〉, Eq. (9).

Figures 12(a) and 12(b) present the linear entropies of the
density operators of the center-of-mass and field degrees of
freedom as a function of w0, respectively (remember that
the linear entropy of the density operator of the internal
atom degrees of freedom is the same as that of the field
degrees of freedom). Since these quantities depend greatly
on the overlap 〈ψ+n(t)|ψ−n(t)〉 and on the probability to find
the atom in the excited state [see Eqs. (11) and (12)], they
can be highly affected by the now relevant quantum effects
of tunneling and reflection explained above. When there is
zero detuning (δL = 0) resonant effects are sharply marked
and the reduced state tends to a maximum mixed state as
w0 becomes larger. When there is red detuning (δL < 0) the
oscillatory behavior of the linear entropies is less pronounced
and disappears rapidly for increasing w0. In this case the
reduced states first tend to maximum mixed states and finally
asymptotically approach pure states as w0 becomes larger. The
case of blue detuning (δL > 0) exhibits a smaller oscillatory
behavior that persists for higher values of w0, a result that
is in accordance with the behavior exhibited by Pem(w0)
[Fig. 11(c)]. Also, for blue detuning the linear entropies
tend to zero as w0 increases. Hence, the results of previous
sections are recovered for the three values of the detuning
presented as w0 becomes larger than the width  of the wave
packets.

Figure 12(c) shows the entanglement of formation EF

between the internal atom and field degrees of freedom as a

function of w0. This quantity is also determined by Pe(w0) and
the overlap 〈ψ+n(t)|ψ−n(t)〉 as can be seen in Eqs. (13)–(17).
It can be observed that EF has a complex structure and is zero
just for a discrete set of w0. Therefore, the internal atom and
field degrees of freedom are entangled for the three values
of the detuning considered. This situation contrasts greatly
with the results of previous sections, since it was found that
these degrees of freedom were not entangled asymptotically
for the three values of the detuning. Other consequences of
these new results in this transmission-resonance regime is that
the system does not exhibit genuine tripartite entanglement
for the zero detuning case and the system is not in a
product state when detuning differs from zero. Nevertheless,
note that the results of the previous sections are again
recovered as w0 becomes larger than the width  of the wave
packets.

VI. CONCLUSIONS

In this article we studied the temporal evolution of a
two-level atom with its center-of-mass motion quantized in
one dimension and interacting with a single-mode quantum
cavity field with a Gaussian profile. The initial internal state
was taken to be the excited atomic state with no photons
inside the cavity, while the initial center-of-mass state was
described by a minimum-uncertainty Gaussian wave packet.
As a consequence, the natural basis describes the particle as a
superposition of the wave packets ψ±n(z,t).

In the first part, the center-of-mass motion of the atom
had an initial standard deviation of position much smaller
than the waist of the Gaussian cavity field, and hence the
system was outside the transmission-resonance regime. The
analysis was performed for various values of the detuning
between the atomic transition and the cavity-field frequen-
cies and for various values of the initial mean velocities
of the matter waves. The wave packets ψ±n(z,t) and the
corresponding position probability density functions evolve so
that asymptotically they may preserve Gaussian structures or
exhibit precursors and echolike forms. It was explicitly shown
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that, in the cold and intermediate regimes, the probability
of emission and the entanglement present in the system
differ greatly to the case where the center-of-mass motion
is treated as z = vt + µ or within the semiclassical adiabatic
approximation.

In the case of zero detuning and outside the transmission-
resonance regime, we observed that in the cold regime the
probability of emission does not exhibit the well-known Rabi
oscillations is always less than 1 and takes on the final value
of 1/2 once the atom leaves the interaction region. The onset
of Rabi-like oscillations was also observed for a high-enough
initial mean kinetic energy. It was also shown that in the cold
and intermediate regimes, the system as a whole presents
genuine tripartite entanglement, a totally different behavior
from the classical case because the internal atom degrees of
freedom and the field are in a maximum mixed separable state.
Note that unlike GHZ states, in this case tripartite entanglement
involves discrete and continuous degrees of freedom.

In the case of detuning on the order of g0 and outside
of the transmission-resonance regime, our exact treatment
showed that for blue detuning the atom is always transmitted
through the cavity field, while in the case of red detuning
the atom can still be reflected considerably even when its
initial kinetic energy is slightly larger than the atom-field
coupling energy. In both cases the atom leaves the cavity in the
excited state, and the whole system is in a product state such
that |ψ+n(t)〉 = |ψ−n(t)〉. It is noteworthy that the temporal
evolution of ψ±n(z,t) in the case of blue detuning showed
that ψ+n(z,t) almost disappears completely when the atom is
found with almost certainty inside the interaction region and
later reappears once the atom has left it. In spite of this the
semiclassic adiabatic approximation gives the correct result
for the asymptotic values of various properties of the system,
except for transmission probabilities in the case where there is
red detuning and the initial mean kinetic energy of the atom is
slightly higher than the atom-field coupling energy.

In the second part of this article we studied the properties
of the system in the so-called transmission-resonance regime.
For the initial state considered with a small-enough initial
mean kinetic energy, the relation between the following two
parameters determine if the system is in this regime: the waist
w0 of the Gaussian mode and the width  of the initial
Gaussian wave packets describing the center-of-mass motion.
If w0 is smaller or comparable to , then the system is in
the aforementioned regime (for a small-enough initial mean
kinetic energy) and many properties take values that differ
greatly from those presented in the first part of the article. Our
results show how these quantities recover the corresponding
values of the first part as w0 increases and becomes larger
than . The origin of the differences lies in the overlap
〈ψ+n(t)|ψ−n(t)〉, since most properties of the system depend
on it and its value depends on how w0 is compared to .

While this overlap may be zero when w0 is much larger than
, this is not the case by far when w0 <∼ . In the latter case
quantum effects of tunneling and reflection respectively by
effective repulsive and attractive potentials become dominant.
It is noteworthy that for long times there is a non-neglibible
probability of finding the atom in the interaction region, a
property that disappears as w0 gradually becomes larger than
. It is also very important to note that a large relative standard
deviation in momentum can lead to a considerable attenuation
of the resonances for the probability of transmission through
the cavity field and the probability of emission for all values
of the detuning.

It was also found that many properties are greatly affected
by the detuning δL between the cavity-field frequency and
the atomic transition frequency. When δL = 0, the oscillations
tend to be less pronounced and disappear more rapidly
when compared to the case where δL = 0, especially for
the case where δL < 0. This behavior was found for all
properties of the system, except for the probability of being
transmitted through the cavity field in the case of δL > 0 and
for the entanglement of formation for δL = 0. The former
exhibits sharper oscillations with greater amplitude and the
latter exhibits wilder oscillations. The dependence of the von
Neumann entropy and the probability of being transmitted
through the cavity field on the detuning had already been
presented for the case where δL < 0 in Ref. [21] and the results
of that article agree with ours.

In the transmission-resonance regime, the entanglement
and degree of mixedness are greatly affected for all values
of the detuning. There is no genuine tripartite entanglement
for δL = 0 in this regime except for a discrete number of
values of w0, and the system is no longer asymptotically in a
product state for δL = 0. This is due to the fact that the internal
atom and field degrees of freedom are now entangled for all
values of the detuning. Furthermore, all bipartite reductions
of the state of the system are now no longer maximally
mixed. It is important to emphasize that the genuine tripartite
entanglement for δL = 0 and the product states for δL = 0 are
recovered as w0 increases and becomes larger than .

We expect the results reported in this article to be qualita-
tively valid also for other field modes that have a Gaussian-like
structure such as the sech2 function. This is not the case for
potentials that have discontinuities such as the mesa profile,
since it has already been realized that the discontinuities
are a source of very different dynamics [21]. Also, a very
important factor that needs analysis is dissipation, which may
alter greatly the evolution of the center-of-mass motion [2]
unless proper values of the atom-field couplings are achieved.
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T. Esslinger, Nature (London) 450, 269 (2007).
[12] Y. Colombe, T. Steinmetz, G. Dubois, F. Linke, D. Hunger, and

J. Reichel, Nature (London) 450, 272 (2007).
[13] S. Gupta, K. L. Moore, K. W. Murch, and D. M. Stamper-Kurn,

Phys. Rev. Lett. 99, 213601 (2007).
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