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Advanced Jones calculus for the classification of periodic metamaterials
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By relying on an advanced Jones calculus, we analyze the polarization properties of light upon propagation
through metamaterial slabs in a comprehensive manner. Based on symmetry considerations, we show that all
periodic metamaterials may be divided into five different classes only. It is shown that each class differently
affects the polarization of the transmitted light and sustains different eigenmodes. We show how to deduce these
five classes from symmetry considerations and provide a simple algorithm that can be applied to decide to which
class a given metamaterial belongs by measuring only the transmitted intensities.
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I. INTRODUCTION

Metamaterials (MM) provide a large variety of unprece-
dented optical properties. Whereas at first, properties such as
a dispersive permeability were at the focus of interest [1–3],
the range of properties to be intentionally affected by suitably
chosen MMs has significantly increased. Increasingly more
complex [4–8] structures and most notably chiral [9–15] and
quasiplanar [16–18] chiral structures have attracted a great deal
of attention due to their polarization selective optical response
and their potential to implement functional devices with
unprecedented applications such as, e.g., broadband polarizers
for circular light [19]. Moreover, from a scientific point of
view, such complex MMs permit us to observe unexpected
and counterintuitive effects such as asymmetric transmission
for circularly [20–23] or even for linearly polarized light [24].

Recent studies have shown that the assignment of effective
material parameters is doubtful in many cases [25,26] and
generally requires the assumption of complex constitutive
relations [27–29]. Thus a more suitable target function to be
tailored by an appropriate MM design is the optical response
itself. This optical response is completely involved in the re-
sponse functions, such as complex reflection and transmission
coefficients, for a given input illumination. This paradigm
change reflects that for an actual application a certain value of
some effective material coefficient is of minor importance, as
long as the sample exhibits the desired optical response.

The response, in particular in transmission, can then be
easily described by transmittances and polarization ellipses,
averaged polarization rotation, and polarization conversion
[9,14,30]. These phenomenological quantities can be com-
pletely determined from the frequency-dependent Jones matrix
[31] that relates the complex amplitudes of the incident to the
transmitted field. We will call this Jones matrix throughout
the manuscript the T matrix, since it fully describes how
light is transmitted through a metamaterial slab. This 2 ×
2 matrix comprises, in general, four different complex and
dispersive quantities, reflecting the spectral properties of the
MM. The associated Jones calculus can be applied to describe
the transmission of an arbitrarily polarized incident plane
wave through a MM slab if only the zeroth-order Bloch
mode emerges. This holds for MMs composed of periodically
arranged subwavelength unit cells, and we will assume this
throughout the manuscript. For the sake of simplicity we also
assume that the structures are symmetrically embedded. We

assume that all materials are linear and reciprocal, i.e., exclud-
ing Faraday media. No further restrictions on the symmetry
of the unit cells and the generally complex permittivity of the
constituting materials are necessary.

With this work we intend to introduce a classification of
periodic metamaterials based on their symmetry properties
and to link them to their specific T matrix. We will show that
all metamaterials can be divided into only five distinct classes,
each having an individual form of the T matrix and specific
eigenstates. Each of these five classes leads to very specific
transmission characteristics directly linked to the symmetry
of the structure. Therefore, this investigation provides a
useful tool to analyze the optical response of complex MMs,
and it may serve as a guide to identifying designs for a
desired polarization response. Although for fabricated MM the
geometry is usually known, the application of combinatorial
approaches to explore new MM geometries in the near future
requires such a tool to classify the properties of MMs.

The paper is structured as follows. In Sec. II we present
the necessary fundamentals to handle the generally complex
valued T matrices and derive general expressions for the
eigenpolarizations. In Sec. III we derive the form of the T

matrix for the most relevant symmetry classes. In Sec. IV
we provide examples of metamaterials for these symmetry
classes and discuss briefly their optical behavior. In Sec. V a
comprehensive tabular overview is given to summarize the
results, and we present a simple scheme to classify MM
samples without having a priori knowledge in terms of the
presented formalism by measured transmittances only.

II. BASIC THEORY

It is assumed that the MM slab is illuminated by a plane
wave propagating in the positive z direction

Ei(r,t) =
(

ix

iy

)
ei(kz−ωt),

with ω being its frequency, k = ω/c
√

ε(ω) the wave vector,
and the complex amplitudes ix and iy describing the state of
polarization. The transmitted field is then given by

Et (r,t) =
(

tx

ty

)
ei(kz−ωt),
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FIG. 1. (Color online) Schematic of the geometry. (a) and (b)
show the sample from opposite sides with F and B indicating the
front and back side, respectively.

where we have assumed that the medium is sandwiched
between a medium characterized by the permittivity ε(ω).
A sketch of the geometry is depicted in Fig. 1. The unit
cells are periodically arranged in the x and y directions
without restriction to a particular lattice. We assume coherent,
monochromatic plane waves in order to use a generalized Jones
calculus instead of the Mueller calculus necessary for incoher-
ent light [32,33]. The Jones calculus is said to be generalized
since we allow for arbitrary complex Jones matrices which we
will call T matrices (transmission matrices).

The T matrix connects the generally complex amplitudes
of the incident and the transmitted field:

(
tx

ty

)
=

(
Txx Txy

Tyx Tyy

) (
ix

iy

)
=

(
A B

C D

) (
ix

iy

)
= T̂ f

(
ix

iy

)
,

(1)

where for convenience we have replaced the entries Tij by
A,B,C,D, which form the actual T matrix. In the following
few sections we will discuss some generic properties of this
T matrix.

A. Directional-dependent properties

In the last term of Eq. (1), the T matrix superscript f
designates propagation in the forward direction. Of course,
the choice of forward (f) and backward (b) propagation is
arbitrary. Thus T̂ b describes the transmission matrix for light
propagating through the structure rotated by 180◦ with respect
to the x axis, where the choice of x or y is arbitrary.

Since only reciprocal media are considered, we have

T̂ b =
(

A −C

−B D

)
, (2)

where the minus sign in the off-diagonal elements accounts
for the rotation of the system looking from the back side
[34]. Therefore, the complex matrix T̂ f already contains all
information necessary to determine light transmission for
arbitrarily polarized incident light from both main illumination
directions. Its is important to stress that this relation between
T̂ f and T̂ b is in general only valid for this particular base where
the coordinate axis from the back side are given by replacing
those of the front side by xb = ±xf , yb = ∓yf . The actual sign
depends on the definition of the rotation of the system.

B. Change of the base

For analytical as well as experimental concerns, it is useful
to have at hand the transmission matrix in an arbitrary not
necessarily orthogonal base. Let the vectors ī and t̄ denote
the incident and transmitted light in a certain base. Then the
incident and transmitted light in the Cartesian base is given
by i = �̂ ī and t = �̂t̄, respectively, with �̂ being the change
of the basis matrix. Hence, the T matrix for this new base is
given by

t = T̂ i → t̄ = �̂−1T̂ �̂ ī = T̂new ī =
(

T11 T12

T21 T22

) (
ī1

ī2

)
. (3)

All representations of the system are completely equivalent, of
course. A transformation of practical importance is the change
from the Cartesian base to the circular base. Then the change
of basis matrix reads as

�̂ = 1√
2

(
1 1

i −i

)
,

where the columns of the �̂ matrix are the new eigenstates.
The T matrix for circular states is then given by

T̂ f
circ =

(
T++ T+−
T−+ T−−

)

= 1

2

(
[A + D + i(B − C)] [A − D − i(B + C)]

[A − D + i(B + C)] [A + D − i(B − C)]

)
,

(4)

connecting the amplitudes of circularly polarized incident and
transmitted light:

(
t+
t−

)
= T f

circ

(
i+
i−

)
,

By using Eqs. (2) and (4) it becomes obvious that the T matrix
for backward propagation is given by

T̂ b
circ =

(
T++ −T−+

−T+− T−−

)
. (5)

Note that the matrix T̂ b in an arbitrary base is not simply given
by Eq. (2), i.e., by interchanging the negative off-diagonal
elements, but by applying the corresponding change of basis
matrix �̂ to T̂ f and T̂ b in the linear base individually.

C. Asymmetric transmission

Although not having discussed any symmetry property at
all, we want to discuss at this point the special effect of
asymmetric transmission, which has attracted considerable
interest due to its counterintuitive occurrence, and discuss
peculiarities related to a change of the base. The difference of
the T matrices for opposite propagation directions is the key
to that asymmetric transmission. By asymmetric transmission
�, we understand the difference in the modulus of the total
transmission between forward and backward propagation (see
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Fig. 1) for a certain base vector, e.g., i = i1e1:

� = ∣∣T f
11

∣∣2 + ∣∣T f
21

∣∣2 − ∣∣T b
11

∣∣2 − ∣∣T b
21

∣∣2
.

This quantity obviously depends on the chosen base; e.g., for
a linear state coinciding with the coordinate axis, we have
(i = ixex)

�lin = |C|2 − |B|2,
whereas in the circular base we have (i = i+e+)

�circ = |T−+|2 − |T+−|2 �= �lin

in general. This dependency on the base is exploited, e.g.,
in [20,21] where asymmetric transmission for circularly
polarized light is observed without asymmetric transmission
for linearly polarized light. Hence, the only proper choice
is a linear base with base vectors parallel to the principal
coordinate axes. Only in this base can we distinguish asym-
metric transmission due to the structure from asymmetric
transmission due to the chosen base.

D. Eigenpolarizations

To characterize the different structures, it is useful to
determine the eigenstates of the polarization because they
are uniquely related to the symmetry. Therefore, a simple
eigenvalue problem has to be solved:(

A B

C D

) (
ix

iy

)
= κ

(
ix

iy

)
, (6)

with the eigenvalue κ . By solving these equations we obtain

κ1,2 = 1
2 [(A + D) ±

√
(A − D)2 + 4BC], (7)

where κ1,2 gives the complex transmission for the eigenstates.
The eigenpolarizations are then given by simply inserting κ1,2

into Eq. (6) and solving for ix and iy . The eigenbasis in matrix
form can be written as

�̂ =
(

1 1
κ1−A

B
κ2−A

B

)
, (8)

with

i1 =
(

1
κ1−A

B

)
, i2 =

(
1

κ2−A
B

)
, (9)

where the eigenvectors are not yet normalized. It is important
to note that the eigenbasis depends in general on the frequency
due to the dispersive behavior of the transmission. Only
for highly symmetric structures is the eigenbasis frequency
independent, as will be shown later. With the use of the
characteristic polynomial of Eq. (6) the matrix �̂ can be
rewritten as

�̂ =
(

1 κ2−D
C

κ1−A
B

1

)
=

(
1 − X

2C
X
2B

1

)
, (10)

with X = −(A − D) +
√

(A − D)2 + 4BC. Note that the ma-
trices �̂ in Eqs. (8) and (10) are different, but both are
denoted simply by �̂ not to confuse the reader with additional
indices. They are only a concatenation of eigenvectors that are
determined up to an arbitrary complex factor. The matrix �̂

becomes unique as soon as the eigenvectors are normalized.
The fractions in Eq. (10) are complex numbers, hence we can
express the eigenbasis as

�̂ =
(

1 1

R1e
iϕ1 1

R2
e−iϕ2

)
, (11)

with

R1e
iϕ1 = X

2B
, R2e

iϕ2 = − X

2C
. (12)

The eigenvectors are obviously orthogonal only if

R1 = R2 and ϕ1 + ϕ2 = (2n + 1)π, with n ∈ Z.

This is only the case for linear, circular, and a special class
of elliptical polarization. In all other cases the eigenstates are
nonorthogonal [35–37]. Note that systems with orthogonal
eigenstates are sometimes termed homogeneous systems,
whereas systems with nonorthogonal states are termed inho-
mogeneous ones [38].

Once the eigenstates are derived, the transmission matrix
can be determined within this eigenbase by applying the
transformation (3). The corresponding T matrix is then
diagonal. Nevertheless, using the T matrix in the eigenbase
is only appropriate and convenient if the eigenstates are
orthogonal and frequency independent.

The five different classes of periodic metamaterials that
can be distinguished are closely related to their eigenstates.
These five possible sets of eigenstates are linear, circular, and
elliptic ones, and the elliptic ones can be further separated into
corotating, counterrotating, and general elliptic states with no
fixed relation between φ1 and φ2. Later we will show how the
symmetry class determines the respective eigenstate.

III. SYMMETRY CONSIDERATIONS

By the symmetry considerations in the next sections, we
will show how the symmetry properties of the structure affect
the symmetry of the T matrix. The arising T matrices can
be reduced to five principal forms where in general a larger
number of distinct matrices is possible by rotating the structure
by an arbitrary angle with respect to the z axis. On the
other hand, such rotations can be used to remove redundant
information. Rotation by an angle ϕ is accomplished by
applying the following matrix operation:

Dϕ =
(

cos(ϕ) sin(ϕ)

− sin(ϕ) cos(ϕ)

)
→ T̂new = D−1

ϕ T̂ Dϕ, (13)

resulting in the new T matrix T̂new of the rotated sample.
Note that the eigenvalues of the rotated system are invariant
to this operation and are uniquely related to the principal
symmetry. The actual form of the matrices and the derived,
redundant matrices will be given later in Sec. IV to keep this
part consistent.

In general, all complex components of the T matrix are
different if the metamaterial does not exhibit any reflection
or rotational symmetry. If such type of symmetry exists, the
components of the T matrix must reflect that. We will therefore
briefly discuss various symmetries and their corresponding
impacts on the T matrices.
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If the metamaterial is mirror-symmetric with respect to the
xz plane, the T matrix for the structure reflected at that plane
is identical to the original one. Therefore we have

Mx =
(

1 0

0 −1

)
: M−1

x T̂ fMx =
(

A −B

−C D

)
= T̂ f

→ T̂ f =
(

A 0

0 D

)
(14)

with Mx being the reflection matrix with respect to the x axis.
So any structure that obeys that symmetry may be obviously
described by a diagonal T matrix.

If the metamaterial is mirror-symmetric with respect to the
yz plane, we have

My =
(−1 0

0 1

)
: M−1

y T̂ fMy =
(

A −B

−C D

)
= T̂ f

→ T̂ f =
(

A 0

0 D

)
. (15)

Hence, if there exists any mirror plane parallel to the z

axis, the T matrix is diagonal provided that the mirror plane
coincides with the x or y axes, respectively. In such a
system the eigenstates of the polarization are obviously linear
states.

If the structure is C2-symmetric with respect to the z axis,
we have

Dπ =
(−1 0

0 −1

)
: D−1

π T̂ fDπ =
(

A B

C D

)
≡ T̂ f .

(16)

Hence rotating any structure by 180◦ with respect to the z axis
does not change the response at all. Even if the structure does
not have any further symmetry it fulfills that relation.

If the structure is C3-symmetric with respect to the z axis,
we have

→ T̂ f =
(

A B

−B A

)
. (17)

However, that symmetry is almost never met without additional
metamaterial mirror symmetries, but it is given here for
completeness.

If the structure is C4-symmetric with respect to the z axis,
we have

Dπ
2

=
(

0 1

−1 0

)
: D−1

π
2

T̂ fDπ
2

=
(

D −C

−B A

)
= T̂ f

→ T̂ f =
(

A B

−B A

)
. (18)

Hence the structure is insensitive to linearly polarized light
of any state. If there is an additional mirror symmetry with
respect to a plane parallel or perpendicular to the z axis, the
off-diagonal elements will vanish, resulting in a completely
polarization-independent structure. Otherwise the eigenstates
will be circularly polarized, as will be shown later in
detail.

Further important conclusions can be drawn by investigat-
ing the possible mirror symmetries with respect to a plane
perpendicular to the z axis. If the structure possesses this type

of symmetry, the reflected structure is the same as seen from
the back side:

M−1
x T̂ fMx =

(
A −B

−C D

)
=

(
A −C

−B D

)
= T̂ b

→ T̂ f =
(

A B

B D

)
, (19)

i.e., the off-diagonal elements are identical. If the system
possesses a center of inversion, the matrix has also this form,
because inversion is equivalent to applying a reflection and a
subsequent rotation by π , where the latter does not change the
response, as shown in Eq. (16).

By comparison with Eq. (18) it is obvious that the T

matrix will have the form T̂ f = diag{A,A} if the structure
is additionally C4-symmetric with respect to the z axis.

That important relation [Eq. (19)] is valid for all truly
two-dimensional (planar) structures and all structures that
possess any mirror plane perpendicular to a coordinate axis,
i.e., achiral structures. In general, any substrate will break
this symmetry [16,17,39], but usually the substrate effect is
negligible compared to the effect of anisotropy [23].

Most important for our investigations are structures that
cannot be mapped onto their mirror image by proper rotations.
Those structures are called chiral. In general, the components
of the T matrix for those structures are all different. In the
context of the basic geometry analyzed here, there exist only
two exceptions. The first one has already been discussed within
the context of Eq. (18). The second one is a C2 symmetry with
respect to the x or y axis. For this type of symmetry, the
structure is identical from both sides, hence

T̂ f = T̂ b =
(

A B

−B D

)
. (20)

IV. EXAMPLES AND CLASSIFICATION

To understand the usefulness of the approach presented,
we will discuss the different symmetry classes for simple
examples. The metaatoms exemplarily shown in the following
are assumed to be periodically arranged in x and y directions.
Importantly, the symmetry constraints applied to the unit cell
have to be consistent with the symmetry of the lattice. That
is crucial since, e.g., even an achiral metaatom can result
in a chiral structure by proper arrangement on a periodic
lattice [40].

A. Simple anisotropic media

The most significant symmetry is that of reflection sym-
metry with respect to the xz or yz plane or both. As already
explained within the context of Eqs. (14) and (15), the T

matrix is then diagonal. The eigenvalues are simply κ1 = A

and κ2 = D. The eigenstates are linear states parallel and
orthogonal to the mirror plane, respectively. Only a dichroitic
behavior will be obtained, and no polarization rotation occurs
for light being parallel or orthogonal to the mirror planes. If the
coordinate system is not aligned parallel to the mirror plane,
the T matrix for that system will have off-diagonal elements,

053811-4



ADVANCED JONES CALCULUS FOR THE . . . PHYSICAL REVIEW A 82, 053811 (2010)

FIG. 2. (Color online) Examples for simple anisotropic (a) and
(b) and simple chiral (c) metaatoms. The structures are located in
the xy plane with light impinging normally to the structure in the z

direction. The black dashed lines indicate the mirror planes and the
rotation axis, respectively. (a) Split-ring resonator with mirror plane
parallel to the y axis. (b) L-shaped particle with identical arms with
mirror plane 45◦ inclined. (c) Cross on substrate with C4 rotational
symmetry with respect to the z axis. The square-shaped substrate
indicates the arrangement on a square lattice, necessary for the C4

of the entire system. Such an arrangement gives rise to so-called
structural chirality, although the particle itself is achiral.

which disappear after a proper rotation. The most general form
of the T matrix for systems with linear eigenstates is

T̂ f =
(

A B

B D

)
,

but in this case the components A, B, and D are not
independent but connected by trigonometric functions, as is
clear by explicitly evaluating Eq. (13) for a diagonal matrix.

An example for such a metamaterial is shown in Fig. 2(a).
Other examples are the fishnet [41] and its variations [42], cut
wire pairs [43], and similar structures. In Fig. 2(b) we show a
special example of a structure with a symmetry plane which is
45◦ inclined with respect to both the x and y axes. In this case
the T matrix has the form

T̂ f =
(

A B

B A

)
.

The eigenstates are linearly orthogonal polarized, hence a
rotation by an angle ϕ = 45◦ leads to a diagonal form:

T̂ f
new = D−1

π
4

T̂ fDπ
4

=
(

A′ 0

0 D′

)
=

(
A + B 0

0 A − B

)
.

A similar structure obeying the same relations is that published
in [6]. There, the unit cell consisting of four split-ring
resonators has no rotational symmetry. But reflecting the
structure at a plane diagonal to the given unit cell leads to
a structure that is shifted by half a period in the x or y

direction. Due to the invariance of the optical response for
periodic systems to any translation, this mirror plane leads in
fact to linearly polarized eigenstates. Therefore, rotating the
structure by 45◦ results in a diagonal T matrix.

B. Simple chiral media

The second important group are those structures exhibiting
C4 symmetry but without any additional reflection symmetry.
The T matrix is then given by Eq. (18). Since these matrices

are invariant to an arbitrary rotation Dϕ , Eq. (18) is already
the most general form of the T matrix in a linear orthogonal
base for such systems. The T matrix in the circular base is
then diagonal:

T f
circ =

(
T++ 0

0 T−−

)
=

(
A + iB 0

0 A − iB

)
.

Obviously the eigenpolarizations are circular states, since the
T matrix is diagonal and the eigenvalues are simply κ1 = A +
iB and κ2 = A − iB. The y components of the eigenvectors
[Eq. (9)] are iy,1,2 = ±i, i.e., frequency independent. At such
systems all effects related to circular dichroism are observable,
whereas emphasis is put on the fact that circular dichroism is
in general accompanied by a difference in the phase advance
for right-(rcp) and left-circularly polarized (lcp) light due to
causality; i.e., the real and imaginary parts of the wave number
for rcp and lcp differ in general [44].

The difference T++ − T−− = 2iB is given by the off-
diagonal elements in the linear polarization representation
and specifies the optical rotation power. Systems obeying
that symmetry are prototypical optically active materials.
Examples are gammadions (also called swastikas) [similar to
the cross in Fig. 2(c)] and C4 spirals. Note that the influence
of the substrate is important for planar structures [17,39]
where the chirality and hence the optical rotatory power is
a result of the substrate only.

C. Generalized anisotropic media

The third group consists of those systems that have a mirror
symmetry perpendicular to the z axis or a center of inversion
and at most a C2 symmetry with respect to the z axis. From the
latter one, we know that it has no influence on the transmission
matrix [Eq. (16)]. Examples are given in Fig. 3. The only
necessary symmetry is the reflection symmetry perpendicular
to the z axis without any further restrictions. Hence, there is
no preferable alignment in the xy plane, and the basic form of
the T matrix is unaffected by any rotation with respect to the
z axis.

FIG. 3. (Color online) Examples for generalized anisotropic
metaatoms. The metaatoms are located in the xy plane with light
impinging normally to the structure in the z direction. The black
dashed lines indicate the mirror planes in (a) and (b), and the black
cross in (c) is a center of inversion symmetry. (a) A planar L-shaped
metaatom with different arms. (b) A planar S-shaped metaatom with
a C2 symmetry with respect to the z axis. (c) A three-dimensional
metaatom made of L-shaped particles with a center of inversion.
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For those systems the T matrices in the linear and circular
representation are given by

T f =
(

A B

B D

)
,

T f
circ = 1

2

(
A + D A − D + 2iB

A − D − 2iB A + D

)
,

hence the eigenstates are neither linearly nor circularly
polarized states.

Since we have T++ = T−−, there is no polarization rotation
due to chirality. In fact, it can be shown that the averaged
polarization rotation accounting for chirality vanishes in such
systems [45]. The off-diagonal elements in the circular basis
are different, hence the polarization conversion from left- to
right-hand polarized light and vice versa is different.

The difference in conversion is again given by the off-
diagonal elements in the linear basis T+− − T−+ = 2iB. This
difference is also the source of the asymmetric transmission
for circularly polarized light. Assuming (+)-polarized incident
light, the total transmission τ in the forward direction is
τ f = |T++|2 + |T−+|2, whereas for the backward direction we
have τ b = |T++|2 + |T+−|2 due to Eq. (19). Therefore, the
difference in the total transmission is determined by B. For
(−)-polarized incident light, the results are identical. Note
that there is no asymmetric transmission for linearly polarized
light, because T̂ f is symmetric.

It is important to note that the moduli of the off-diagonal
elements are in general in the order of those of the diagonal
elements (10−1). Hence the asymmetric transmission can
become quite large. As already indicated, any substrate will
break the mirror symmetry in the z direction, resulting in
B �= C, |B − C| 	 |B|, and B ≈ C. As this difference due to
the small effect of the substrate is very weak (typically 10−3),
it is often neglected and hardly measurable compared to the
asymmetric transmission effect.

The eigenstates for such an achiral system are elliptical,
corotating states, as discussed e.g., in [46]. The effects of
light propagating through such structures can be understood in
terms of the concept of elliptical dichroism [47]. By using Eqs.
(11) and (12) and B = C, they can be expressed in normalized
form as

i1 = 1√
1 + R2

(
1

Reiϕ

)
, i2 = R√

1 + R2

(
1

− 1
R
e−iϕ

)
.

They are only orthogonal for ϕ = nπ with n ∈ N leading to
linear eigenstates.

Note that planar structures with that symmetry can be
described by an effective permittivity tensor independent of the
wave vector, i.e., without magnetoelectric coupling [48]. That
is why we call this group generalized anisotropic structures.

The most general form is again obtained by applying a
rotation by an arbitrary angle ϕ, leading to

T̂ f
new = D−1

ϕ T̂ fDϕ =
(

A′ B ′

B ′ D′

)
,

hence the general form is invariant since no preferred align-
ment exists.

D. Generalized chiral media

The fourth group consists of chiral structures that have an
additional C2 symmetry with respect to the x or y axis. The T

matrix obeys the form

T f =
(

A B

−B D

)
,

T f
circ = 1

2

(
A + D + 2iB A − D

A − D A + D − 2iB

)
, (21)

hence there is no difference in the polarization conversion
and hence no asymmetric transmission for neither linearly nor
circularly polarized light. Furthermore there is obviously no
asymmetric transmission in any base, since the structure is
identical from both sides when the axis of rotation coincides
with the x or y axis.

But there is a difference in the quantity T++ − T−− = 2iB

determining the optical rotation power typical for chiral struc-
tures. In contrast to the second group, there is an additional
anisotropy (A �= D), hence the eigenstates are not circular but
elliptically counterrotating. Again, by using Eqs. (11) and (12)
and C = −B, they can be expressed in normalized form as

i1 = 1√
1 + R2

(
1

Reiϕ

)
, i2 = R√

1 + R2

(
1

1
R
e−iϕ

)
.

They are only orthogonal if ϕ = π
2 + nπ with n ∈ N leading

to circular counterpropagating eigenstates typical for chiral
structures. That is why we term this group generalized chiral
structures.

Typical examples are shown in Figs. 4(a) and 4(b). Another
important example are three-dimensional spirals [49–53] with
N
2 whorls aligned along the z axis. Spirals with integer whorls
are clearly identical for both propagation directions, whereas
spirals with half-integer whorls are identical after rotation by
π around the z axis, keeping the response unaffected.

Note that for an arbitrary rotation Dϕ , all matrix elements
are different, hence the symmetry axis must be aligned with
a principal coordinate axis to achieve the form of Eq. (21). In

FIG. 4. (Color online) Examples for generalized chiral
metaatoms (a) and (b) and a no-symmetry metaatom (c). The
structures are located in the xy plane with light impinging normally to
the structure in the z direction. The black dashed lines indicate the axes
of rotational symmetry in (a) and (b), which show three-dimensional
structures made of two L-shaped particles with C2 symmetry with
respect to the x or y axis, respectively. They are identical for forward
and backward propagation. (c) A three-dimensional structure made
of an L-shaped particle and an I-shaped particle with no symmetry at
all.
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TABLE I. (Color online) Overview of possible symmetries, typical metaatoms, the corresponding T matrices, and their eigenstates of the
polarization. For every symmetry group, only a single example is shown. Other possible symmetries resulting in the same type of T matrices
are given in brackets. Here Mij designates mirror symmetry with respect to the ij plane, and Cn,i means n-fold rotational symmetry with
respect to the i axis.

Symmetry Examples T matrix Eigenstates

Mxz (Myz) T = ( A 0
0 D

)
Linear

C4,z (C3,z) T = ( A B

−B A

)
Circular

Mxy (C2,z, inversion symmetry) T = ( A B

B D

)
Elliptic, corotating

C2,y (C2,x) T = ( A B

−B D

)
Elliptic, counterrotating

No symmetry (C2,z) T = ( A B

C D

)
Elliptic

particular if the system is rotated by 45◦ the T matrix has the
form

T f =
(

A′ B ′

C ′ A′

)
.

Nevertheless, if the eigenvectors of the arbitrarily oriented
system are elliptically counterrotating, the convenient form of
Eq. (21) can be achieved by a proper alignment of the system.

E. Arbitrary complex media

The fifth and last group are chiral structures without any
symmetry. A simple example is shown in Fig. 4(c). Here all
elements of the T matrices in the linear as well as in the circular
base are different:

T f =
(

A B

C D

)
. (22)

It is impossible to achieve |B| = |C| by a proper rotation.
Therefore, independent of the base, asymmetric transmission
occurs always and in particular also for linearly polarized light.
All effects of generalized anisotropy as well as generalized
chirality can be observed. The normalized eigenvectors can be
expressed as

i1 = 1√
1 + R2

1

(
1

R1e
iϕ1

)
, i2 = R2√

1 + R2
2

(
1

1
R2

e−iϕ2

)
,

whereas R1(ω) �= R2(ω) and ϕ1(ω) �= ϕ2(ω). The eigenstates
are strongly dependent on the actual value of the components

of T̂ and are simply elliptical, whereas no principal rotation
direction is assignable. Linear as well as elliptical counter-
and corotating states and combinations of them with no fixed
phase relation can be found in general.

An example of such a structure is investigated in detail both
numerically and experimentally in [24].

V. SUMMARY

A summarizing overview of possible structures and the
corresponding basic forms of the T matrices are shown in
Table I. Once the general form of the T matrix is known,
all effects regarding the observable polarization phenomena
can be fully deduced. Based on our investigations it is easy
to provide an algorithm to determine the general form of the
T matrix for an unknown sample by measuring transmitted
intensities with the help of linear polarizers only.

A possible approach can be as follows:
(1) Use linearly polarized light and measure the orthogo-

nally polarized output while rotating the sample. If the output
vanishes for every rotation angle, the medium is polarization
independent, i.e., a simple isotropic medium. If the output
vanishes for some rotation angles and this angle is independent
of the wavelength, the structure is simple anisotropic. If no
such rotation angle can be found there is obviously no mirror
plane parallel to the z axis.

(2) If the transmitted intensity is independent of the rotation
of the sample for both co- and cross-polarized light, the
eigenstates are circularly polarized and the structure is simple
chiral.
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(3) If both aforementioned procedures do not provide a
positive results, the structure is more complex and the mea-
surements become more difficult, too. To distinguish between
the remaining possible forms, it is necessary to measure the
off-diagonal entries of the T matrix simultaneously. If these
off-diagonal elements are identical for a fixed wavelength and
a fixed rotation angle independent of their particular choice,
the structure is generalized anisotropic. If the off-diagonal
elements are identical only for a fixed rotation angle but for
every wavelength, the structure is generalized chiral. In all
other cases, we have A �= B �= C �= D.

By using circularly polarized light, a similar scheme can be
obtained; however, it would require circular analyzers as well.

VI. CONCLUSION

Taking advantage of symmetry considerations we have
analyzed the potential of various MMs to affect the polarization
state of light upon transmission. By focusing the attention
on any optical response that is directly accessible in an
experiment, the properties of MMs may become so involved
that the establishment of valid constitutive relation may be
beyond what is possible for structures with an ever increasing

complexity. We have explicitly shown that all MMs belong
to one of five different classes; each being characterized by
certain relations that connect the entries of the T matrix and
each class is able to support specific polarization phenomena.
The sub-wavelength nature of MMs is the only requirement
for these considerations. Moreover, the symmetry operations
applied to the metaatoms have to be consistent with the
symmetry of the lattice and it is required that the MM is
sandwiched between identical media. Nonetheless, we have
explicitly listed all relevant structures where a violation of this
assumption causes deviations. To foster practical application of
this classification we have finally provided a protocol useful
to reveal the underlying symmetry of an unknown MM and
its T matrix from far-field measurements of the transmitted
intensities only. Once it is identified, all the achievable
optical properties that affect the state of polarization are fully
disclosed.

ACKNOWLEDGMENTS

We acknowledge financial support from the German Fed-
eral Ministry of Education and Research (Metamat and PhoNa)
and from the Thuringian State Government (MeMa).

[1] S. Linden, C. Enkrich, M. Wegener, J. Zhou, T. Koschny, and
C. M. Soukoulis, Science 306, 1351 (2004).

[2] C. Enkrich, M. Wegener, S. Linden, S. Burger, L. Zschiedrich,
F. Schmidt, J. F. Zhou, Th. Koschny, and C. M. Soukoulis, Phys.
Rev. Lett. 95, 203901 (2005).

[3] C. M. Soukoulis, S. Linden, and M. Wegener, Science 315, 47
(2007).

[4] W. J. Padilla, M. T. Aronsson, C. Highstrete, Mark Lee, A. J.
Taylor, and R. D. Averitt, Phys. Rev. B 75, 041102(R) (2007).

[5] C. M. Bingham, H. Tao, X. Liu, R. D. Averitt, X. Zhang, and
W. J. Padilla, Opt. Express 16, 18565 (2008).

[6] M. Decker, S. Linden, and M. Wegener, Opt. Lett. 34, 1579
(2009).

[7] N. Liu, H. Liu, S. Zhu, and H. Giessen, Nat. Phot. 3, 157 (2009).
[8] H. Liu, J. X. Cao, S. N. Zhu, N. Liu, R. Ameling, and H. Giessen,

Phys. Rev. B 81, 241403 (2010).
[9] A. V. Rogacheva, V. A. Fedotov, A. S. Schwanecke, and N. I.

Zheludev, Phys. Rev. Lett. 97, 177401 (2006).
[10] S. Zhang, Y.-S. Park, J. Li, X. Lu, W. Zhang, and X. Zhang,

Phys. Rev. Lett. 102, 023901 (2009).
[11] E. Plum, J. Zhou, J. Dong, V. A. Fedotov, T. Koschny, C. M.

Soukoulis, and N. I. Zheludev, Phys. Rev. B 79, 035407 (2009).
[12] J. Zhou, J. Dong, B. Wang, T. Koschny, M. Kafesaki, and C. M.

Soukoulis, Phys. Rev. B 79, 121104(R) (2009).
[13] B. Wang, J. Zhou, T. Koschny, M. Kafesaki, and C. M.

Soukoulis, J. Opt. A: Pure Appl. Opt. 11, 114003 (2009).
[14] C. Rockstuhl, C. Menzel, T. Paul, and F. Lederer, Phys. Rev. B

79, 035321 (2009).
[15] Yuqian Ye and Sailing He, Appl. Phys. Lett. 96, 203501 (2010).
[16] B. Bai, Y. Svirko, J. Turunen, and T. Vallius, Phys. Rev. A 76,

023811 (2007).
[17] C. Menzel, C. Rockstuhl, T. Paul, and F. Lederer, Appl. Phys.

Lett. 93, 233106 (2008).
[18] K. Jefimovs et al., Microelectron. Eng. 78-79, 448 (2005).

[19] J. K. Gansel, M. Thiel, M. S. Rill, M. Decker, K. Bade, V. Saile,
G. v. Freymann, S. Linden, and M. Wegener, Science 325, 1513
(2009).

[20] V. A. Fedotov, P. L. Mladyonov, S. L. Prosvirnin, A. V.
Rogacheva, Y. Chen, and N. I. Zheludev, Phys. Rev. Lett. 97,
167401 (2006).

[21] V. A. Fedotov, A. S. Schwanecke, N. I. Zheludev, V. V.
Khardikov, and S. L. Prosvirnin, Nano Lett. 7, 1996 (2007).

[22] A. S. Schwanecke, V. A. Fedotov, V. V. Khardikov, S. L.
Prosvirnin, Y. Chen, and N. I. Zheludev, Nano Lett. 8, 2940
(2008).

[23] R. Singh, E. Plum, C. Menzel, C. Rockstuhl, A. K. Azad, R. A.
Cheville, F. Lederer, W. Zhang, and N. I. Zheludev, Phys. Rev.
B 80, 153104 (2009).

[24] C. Menzel, C. Helgert, C. Rockstuhl, E. B. Kley,
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