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Phase estimation without a priori phase knowledge in the presence of loss
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We find the optimal scheme for quantum phase estimation in the presence of loss when no a priori knowledge
on the estimated phase is available. We prove analytically an explicit lower bound on estimation uncertainty,
which shows that, as a function of the number of probes, quantum precision enhancement amounts at most to a
constant factor improvement over classical strategies.
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I. INTRODUCTION

Owing to highly promising predictions of the theory of pre-
cise quantum measurements and parameter estimation, as well
as significant progress in quantum state engineering, the task of
phase shift determination has recently been readdressed both
theoretically and experimentally [1–11]. In classical systems
the precision of the estimated phase scales with the amount of
available resources as 1/

√
N, the so-called standard quantum

limit (SQL), or as it is more commonly referred to, the “shot
noise.” Traditionally, N denotes the number of independent
measuring probes, repetitions, or copies of a system. The
potential precision boost offered by quantum mechanics stems
from the possibility of preparing N copies of a system in a
highly entangled state, which is particularly sensitive to the
variations of the estimated parameter [1–3]. In ideal scenarios,
these states yield phase estimation precision that scales as 1/N

and is referred to as the Heisenberg limit (HL).
Environmentally induced decoherence, however, signifi-

cantly affects the performance of entanglement-based quantum
strategies [12–21], with photon loss being its most relevant
source in optical implementations. The need to balance the
phase sensitivity and robustness against losses results in states
performing better than the SQL yet falling short of the HL
[18,19]. Other approaches that try to mimic the quantum-
enhanced strategies using the multiple-pass technique [8] are
even more susceptible to losses and cannot compete with
the optimally designed entangled states [22]. Despite the
quantitative improvement of precision offered by quantum
states in the presence of loss, the problem of whether in the
asymptotic regime N → ∞ quantum states offer better than
SQL scaling, i.e., c/Nα with α > 1/2, has yet to be solved.

In this paper we solve the problem of optimal phase
estimation in the presence of loss with no a priori knowledge,
and prove analytically that, even for arbitrarily small loss,
quantum enhancement does not offer better than c/

√
N scaling

for N → ∞, and the only gain over classical strategies is a
smaller multiplicative constant c. It should be emphasized that
the proof contains the most general description of a quantum
measurement, hence its conclusions are valid also for adaptive
schemes (see Appendix C), which are especially interesting
from a practical point of view [23,24].

II. MODEL

Two approaches to phase estimation are typically pursued.
In the first, which we refer to as the local approach, a
measurement scheme is devised, which offers the highest

sensitivity to phase deviations from an a priori known value,
ϕ = ϕ0. This is achieved by finding a strategy that maximizes
the quantum Fisher information, FQ, which defines the lower
bound on the precision of the estimated phase through δϕ �
1/

√
FQ [25–28]. The optimal states have been found both for

lossless [1,2] [the N-particle path-entangled (so-called N00N)
state] and more realistic lossy scenarios [18,19].

The second approach, which we will pursue in this paper
and will refer to as the global approach, assumes no a
priori knowledge about the phase, so that ϕ is equiprobably
distributed over the [0,2π ) region.

We consider a general pure N -photon two-mode state [29],

|ψin〉 =
N∑

n=0

αn|n,N − n〉, (1)

which is fed into an interferometer with a relative phase delay
ϕ (see Fig. 1). Apart from acquiring the phase via the unitary
Uϕ = e−iϕa†a , the state experiences losses modeled by two
beam splitters with power transmissions ηa and ηb [30]. The
output state then takes the form ρout(ϕ) = UϕρoutU

†
ϕ , where

ρout =
N∑

la=0

N−la∑
lb=0

|φla,lb 〉〈φla,lb |, (2)

with subnormalized conditional states corresponding to la and
lb photons lost in arms a and b, respectively,

|φla,lb 〉 =
N−lb∑
n=la

αnβ
la,lb
n |n − la,N − n − lb〉, (3)

where

βla,lb
n =

√
Bn

la
(ηa)BN−n

lb
(ηb), Bn

l (η) =
(

n

l

)
(1 − η)lηn−l .

(4)

Keeping the reasoning most general, the information regarding
ϕ is extracted via a measurement on ρout(ϕ) described by a
positive operator valued measure (POVM), {Mr},

∑
r Mr =

1. The outcome r is observed with a probability p (r|ϕ) =
Tr {ρout(ϕ)Mr}, and the estimated phase inferred from it is
defined by an estimator ϕ̃ (r). The optimization procedure with
respect to a given cost function C(ϕ,ϕ̃) amounts to finding the
state |ψ〉, the measurement {Mr}, and the estimator ϕ̃ (r) that
minimize the cost function averaged over a flat a priori phase
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FIG. 1. Phase estimation setup. Channel a acquires a phase ϕ

relative to channel b. Losses are modeled by two beam splitters with
power transmissions ηa and ηb.

distribution,

〈C〉 =
∫

dϕ

2π

∑
r

p (r|ϕ) C(ϕ,ϕ̃(r)). (5)

Let C(ϕ,ϕ̃) = C(ϕ − ϕ̃) = ∑∞
n=−∞ cne

in(ϕ−ϕ̃) be an arbitrary
real symmetric cost function (cn = c−n � 0 for n �= 0), re-
specting the cyclic nature of ϕ [26,31].

III. OPTIMIZATION

Thanks to the flat a priori phase distribution, the problem
has a symmetry with respect to an arbitrary phase shift Uϕ .
The search for the optimal measurement strategy may be
restricted to the class of covariant POVMs {Mϕ̃} [26,31,32]
parametrized by a continuous parameter ϕ̃: Mϕ̃ = Uϕ̃
U

†
ϕ̃ ,

where 
 is a positive semidefinite operator satisfying the
POVM completeness constraint

∫
dϕ̃

2π
Uϕ
U †

ϕ = 1. With the
above substitution, the average cost function simplifies to

〈C〉 =
∫

dϕ

2π
Tr {ρout (ϕ) 
} C(ϕ), (6)

and 〈C〉 has to be minimized only over the choice of the input
state |ψ〉in and the seed operator 
.

In order to find the optimal 
, one can rewrite
Eq. (2) in the form ρout = ⊕N

N ′=0 ρN ′
out, with ρN ′

out =∑N−N ′
la=0 |φla,N−N ′−la 〉〈φla,N−N ′−la |, which reveals the block

structure with respect to the total number of surviving
photons N ′. Therefore, without loss of generality, we may
impose an analogous block structure on the seed operator,

 = ⊕N

N ′=0 
N ′
. Physically, such a block structure implies

that a nondemolition photon number measurement had been
performed at the output, before any further phase measure-
ments had taken place. Following the reasoning presented
in Refs. [26] and [31], it can be shown that, without losing
optimality, the input state parameters αn can be chosen to be
real, in which case the optimal seed operator 
N ′

opt = |eN ′ 〉 〈eN ′ |,
where |eN ′ 〉 = ∑N ′

n=0 |n,N ′ − n〉 (see Appendix A).
In what follows, we choose the cost function C(ϕ − ϕ̃) =

4 sin2 ϕ−ϕ̃

2 (c0 = 2,c1 = c−1 = −1), and denote its average

by δ̃2ϕ, as it is the simplest cost function approximating the
variance for narrow distributions [3].

Performing the integration in Eq. (6), the average cost
function reads

δ̃2ϕ = 2 − α†Aα, (7)

where nonzero elements of the matrix A read

An−1,n = An,n−1 =
n,N−n∑
la ,lb=0

βla,lb
n β

la,lb
n−1 . (8)

FIG. 2. Log-log plot of optimal phase estimation uncertainty as
a function of the number of photons used for three different levels of
loss (equal in both arms): η = 1 (solid line), η = 0.8 (dashed line),
η = 0.6 (dotted line). The white area in the middle of the picture
corresponds to 1/N < δϕ < 1/

√
N . Gray lines represent asymptotic

bounds given by Eq. (12) for η = 0.8 and η = 0.6. The inset depicts
the structure of the optimal states for the three levels of loss for
N = 100.

Hence, the minimal cost equals δ̃2ϕ = 2 − λmax, where λmax is
the maximal eigenvalue of the matrix A, and the corresponding
eigenvector provides the optimal input state parameters α.

A. Numerical solution

Numerical results of the above eigenvalue problem are
presented in Fig. 2. The black lines depict the phase estimation
uncertainty δϕ of the optimal quantum strategy plotted as
a function of N for ηa = ηb ∈ {0.6,0.8,1}. In the absence
of loss, the optimal quantum curve tends to the Heisenberg
scaling, whereas, when losses are present, the curve flattens
significantly with increasing N . The inset depicts the form
of the optimal state. With an increasing degree of loss, the
distribution of αn for the optimal state becomes more peaked

as compared with the lossless case, αn =
√

2
N+2 sin[ (n+1)π

N+2 ]
[3]. This behavior can be intuitively understood in a similar
fashion as in the local approach [18,19], where the N00N

states with only two nonzero coefficients α0 and αN are most
sensitive to the phase shift but extremely vulnerable to loss.
In the presence of loss, larger weights need to be ascribed
to intermediate coefficients in order to preserve quantum
superposition even after some photons are lost. The same
effect of increasing weights of intermediate coefficients at the
expense of marginal coefficients is also present in the global
approach.

B. Asymptotic bounds

We now present the main result of the paper. Numerical
results presented above and the ones obtained within the local
approach [18,19] indicate that, in the presence of loss, the
phase estimation uncertainty δϕ departs from the HL and
asymptotically approaches c/

√
N . Until now, however, an

analytical proof of the above conjecture was missing.
Let us first derive an upper bound on the maximal

eigenvalue λmax of matrix A in Eq. (7). Without loss of
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generality, we assume that ηa � ηb. Clearly, setting ηb =
1 can only improve our estimation; hence λmax increases.
For ηa = η < 1, ηb = 1, the nonzero matrix elements read
An,n−1 = ∑n

l=0

√
Bn

l (η)Bn−1
l (η).

Recall that for an arbitrary normalized vector v, v†Av �
λmax. Let α be the eigenvector corresponding to λmax: α†Aα =
λmax. The fact that all matrix elements of A are non-negative
implies ∀ n αn � 0.

Let us now define a matrix A′, such that all nonzero
entries of A are replaced by the maximum matrix element
A↑ = maxn{An,n−1} = AN,N−1. Since αn � 0 and A′

n,m �
An,m � 0, we can write

λmax = α†Aα � α†A′α � λ′
max, (9)

where λ′
max is the maximal eigenvalue of A′. λ′

max can
be found analytically by noting the following recurrence
relation for the characteristic polynomial of A′: det�n+1 =
−λ det �n − A↑2 det �n−1, where � = A′ − λ1, while �n

are (n + 1) × (n + 1) submatrices of �. The solution of the
recurrence relation reads det(�) = DN+1(−λ,A↑2), where
Dn(x,a2) = an sin[(n+1)arccos( x

2a
)]

sin[arccos( −x
2a

)]
is the Dickson polynomial [33]

of the nth order. The largest eigenvalue corresponds to the
largest root of det(�), λ′

max = 2A↑cos[ π
(N+2) ].

We can finally write explicitly the lower bound on the
variance as

δ̃2ϕ � 2

[
1 − cos

(
π

N + 2

) N∑
l=0

√
BN

l (η)BN−1
l (η)

]
. (10)

Expanding the above formula in the limit N → ∞ we get

δ̃2ϕ � 1 − η

4ηN
+ O

(
1

N2

)
, (11)

which proves that, for η < 1, δϕ scales as c/
√

N .
A tighter bound can be analogously derived for the case

ηa = ηb = η by noting that maxn{An,n−1} = A� N
2 �,� N

2 �−1. In
the limit N → ∞ we get

δ̃2ϕ � 1 − η

ηN
+ O

(
1

N2

)
. (12)

C. Optimal classical strategy

For the sake of comparison, we also derive the optimal
classical phase estimation strategy, in which a coherent state
with a mean photon number N is sent to an initial beam splitter
of transmissivity τin, whose output feeds paths a and b of
the interferometer. We assume no additional external phase
reference, and hence the state is effectively a mixture of terms
with a different total photon number. The optimal seed POVM
is

⊕∞
N ′=0 
N ′

opt, yielding

δ̃2ϕ = 2 − 2B [Nηaτin]B [Nηb (1 − τin)]

N
√

ηaτinηb (1 − τin)
, (13)

where B(x) = e−x
∑∞

n=0
xn

n!

√
n is the Bell polynomial of order

1/2. For strong beams (N → ∞) up to the first order in 1/N ,

δ̃2ϕ ≈ ( 1
τinηa

+ 1
(1−τin)ηb

)/4N and is minimized for the choice

τin = 1/(1 + √
ηa/ηb),

δ̃2ϕ ≈ 1

4N

(
1√
ηa

+ 1√
ηb

)2

, (14)

which is exactly the same formula as for the optimal classical
strategy in the local approach [19].

IV. CONCLUSIONS

Results presented in this paper indicate that, while quantum-
enhanced protocols provide a quantitative boost in the preci-
sion of estimates, the presence of loss unavoidably causes the
precision scaling to become classical in the limit of a large
number of resources N . The asymptotic gain of quantum-
enhanced protocols amounts to just a smaller multiplicative
constant c in the scaling law c/

√
N . Comparing Eq. (14) (with

ηa = η, ηb = 1) with the bound given in Eq. (11), we may
conclude that asymptotically quantum-enhanced protocols
provide at most a factor of

lim
N→∞

δϕclassical

δϕquantum
�

√
1 + √

η

1 − √
η

(15)

decrease in the uncertainty of estimation. In the case ηa = ηb =
η, using a tighter bound equation (12), the above factor reads
1/

√
1 − η. We conjecture that the fact that losses necessarily

turn the HL into c/
√

N is a general feature of all quantum
estimation problems, such as estimation of direction, Cartesian
frames, etc.

Note added. Recently, analogous conclusions were pre-
sented within the complementary local approach [34].
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APPENDIX A: OPTIMAL MEASUREMENT

Substituting the output state ρout = ⊕N
N ′=0 ρN ′

out and the
seed operator 
 = ⊕N

N ′=0 
N ′
into Eq. (6), we get an explicit

formula for the average cost function:

〈C〉 =
N∑

N ′=0

N−N ′∑
la=0

N ′+la∑
n,m=la

Cnmβla,lb
n βla,lb

m α∗
nαm
N ′

n−la ,m−la
, (A1)

where lb = N − N ′ − la , Cnm = ∫
dϕ

2π
C(ϕ)ei(n−m)ϕ , and


N ′
n′,m′ = 〈n′,N ′ − n′|
N ′ |m′,N ′ − m′〉. The completeness

constraint
∫

dϕ̃

2π
Uϕ
U †

ϕ = 1 implies that 
N ′
n′n′ = 1. Therefore,

if restricted to m = n terms, the sum (A1) reduces to a constant
c0 = C00. Changing the summation order, we can rewrite
Eq. (A1) as

〈C〉 − c0 =
N∑

n,m=0
n �=m

min(n,m)∑
la=0

N−max(n,m)∑
lb=0

Cnmβla,lb
n βla,lb

m

×α∗
nαm


N−la−lb
n−la ,m−la

. (A2)
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Now, as for all n �= m cost coefficients Cnm � 0, we get the
following lower bound on the average cost:

〈C〉 − c0 �
N∑

n,m=0
n �=m

min(n,m)∑
la=0

N−max(n,m)∑
lb=0

Cnmβla,lb
n βla,lb

m

× |α∗
n||αm|∣∣
la+lb

n−la ,m−la

∣∣ (A3)

�
N∑

n,m=0
n �=m

min(n,m)∑
la=0

N−max(n,m)∑
lb=0

Cnmβla,lb
n βla,lb

m |α∗
n||αm|.

(A4)

The first inequality is saturated by choosing the input state’s
and seed operator’s coefficients to be real. The second in-
equality follows from 
N ′

n′,m′ �
√


N ′
m′,m′
N ′

n′,n′ = 1, which is a
consequence of positive semidefiniteness of 
N ′

and the com-
pleteness constraint. Both inequalities are saturated for 
N ′

opt =
|eN ′ 〉〈eN ′ |, where |eN ′ 〉 = ∑N ′

n=0 |n,N ′ − n〉. This proves the
optimality of the measurement considered in this paper.

APPENDIX B: DISTINGUISHABILITY OF PHOTONS

If photons traveling through the interferometer are distin-
guishable, e.g., they are prepared in different time bins, the
dimension of the Hilbert space needed to describe the state of
N photons is 2N , as opposed to N + 1 for the indistinguishable
case. In fact, the indistinguishable case may be considered as a
restriction of the former space to its fully symmetric subspace.
We prove in the following that considering distinguishable
photons is of no use, since the optimality can always be attained
within the class of states belonging to the fully symmetric
(bosonic) subspace. Let

|ψN 〉 =
1N∑

n=0N

αn|n〉 (B1)

be a general state of N distinguishable photons traveling
through the interferometer, where the sum runs over all N -bit
sequences n, with |n〉 = |n1〉 ⊗ · · · |nN 〉, where |ni〉 = |1〉
(|0〉) denotes a photon in the ith time bin, propagating in the
a (b) arm of the interferometer, respectively.

By taking loss into account, we additionally need to track
the time slots in which photons were lost. We define a binary
string la = la,1la,2 · · · la,N , with 1’s representing the time bins
in which the photon was lost in arm a and similarly lb for the
arm b. The general seed operator has a block diagonal structure
with respect to different patterns of surviving photons: 
 =⊕1N

N ′=0N 
N ′
, where 1’s in the binary string N ′ denote the time

bins in which photons were successfully transmitted. Formally,
using bitwise subtraction, we can write N ′ = 1 − la − lb.

We write in a basis 
N ′ = ∑1N ′

n′,m′=0N ′ 
N ′
n′,m′ |n′〉〈m′|, where

n′ stands for a string with N ′ bits placed at positions
corresponding to 1’s in N ′ with the complementary positions
left empty (neither 0 nor 1). In order to simplify the notation,
for any binary sequence x, we denote by x = |x| the number
of 1’s in the sequence. Moreover, we use a notation x \ y for a
binary string x with empty entries at positions corresponding
to 1’s in y.

Adapting Eq. (A2) to the distinguishable photon case, we
get

〈C〉 − c0 =
1∑

n,m=0
n �=m

min(n,m)∑
la=0

1−max(n,m)∑
lb=0

Cnmγ la,lb
n γ la lb

m

×α∗
nαm


1−(la+lb)
n\(la+lb),m\(la+lb), (B2)

where min and max should be understood as bitwise op-
erations, γ la,lb

n = √
(1 − ηa)la ηn−la

a (1 − ηb)lbηN−n−lb
b , and for

simplicity we put 0 = 0N , 1 = 1N .
We now split the sums over l i into a sum over li (number

of 1’s in l i) and the sum over permutation of 1’s within l i . We
proceed analogously for summations over n (m), obtaining

〈C〉− c0 =
N∑

n,m=0
n �=m

min(n,m)∑
la=0

N−max(n,m)∑
lb=0

Cnmγ la,lb
n γ la lb

m

=
1∑

n=0
|n|=n

1∑
m=0

|m|=m

α∗
nαm

min(n,m)∑
la=0

|la |=la

1−max(n,m)∑
lb=0

|lb |=lb



1−(la+lb)
n\(la+lb),m\(la+lb).

(B3)

In order to proceed further, let us for the moment specialize
to the lossless case ηa = ηb = 1, where the above formula
simplifies to

〈C〉 − c0 =
N∑

n,m=0
n �=m

Cnm

1∑
n=0
|n|=n

1∑
m=0

|m|=m

α∗
nαm
1

n,m. (B4)


 needs to be a positive semidefinite operator, and by
the completeness constraint 
m,n = δm,n, whenever n = m.
Because diagonal blocks of 
 (corresponding to n = m) are
proportional to identity, it implies that none of the off-diagonal
blocks of 
 (corresponding to n �= m) can have a singular value
of larger than 1. This can be proven as follows. Let us assume
that for a certain block (m,n) (n �= m), the largest singular
value λ > 1, and let |vm〉,|wn〉 be the normalized left and right
singular vectors corresponding to a singular value λ, |vm| = m,
|wn| = n. Defining |z〉 = |vm〉 − |wn〉, we calculate

〈z|
|z〉 = 〈vn|
|vn〉 + 〈wm|
|wm〉 − 2Re〈vn|
|wm〉
= 2(1 − λ) < 0, (B5)

which contradicts the positivity semidefiniteness of 
.
Because all singular values of any (n,m) block of

 are smaller than 1, the following inequality holds:∑1

n=0
|n|=n

∑1
m=0

|m|=m

α∗
nαm
n,m � α∗

nαm, αn =
√∑1

n=0
|n|=n

|αn|2. This

leads to a bound on the cost function in the lossless case,

〈C〉 − c0 �
N∑

n,m=0
n �=m

Cnmαnα
∗
m, (B6)

proving that one can achieve optimality by restricting oneself
to indistinguishable photons.

Returning to Eq. (B4), we see that we can apply a similar
argumentation making use of positive semidefiniteness of
the 


(la ,lb)
m,n = ∑min(n,m)

la=0
|la |=la

∑1−max(n,m)
lb=0

|lb |=lb



1−(la+lb)
m\(la+lb),n\(la+lb) opera-

tor. We notice that the completeness constraint again implies

053804-4



PHASE ESTIMATION WITHOUT A PRIORI PHASE . . . PHYSICAL REVIEW A 82, 053804 (2010)

a block structure of 
(la ,lb) with respect to m = |m|,n = |n|,
with diagonal elements of diagonal blocks (n,n) now being∑n

la=0
|la |=la

∑1−n
lb=0

|lb |=lb

1 = ( n

la
)(N−n

lb
). This implies that the maximum

singular value of any (m,n) block of 
(la ,lb) is constrained by
( min(n,m)

la
)(N−max(n,m)

lb
). As a result, we obtain the following

bound:

〈C〉 − c0 �
N∑

n,m=0
n �=m

min(n,m)∑
la=0

N−max(n,m)∑
lb=0

Cnmγ la,lb
n

× γ lalb
m

(
min(n,m)

la

)(
N − max(n,m)

lb

)
|αn||α∗

m|

�
N∑

n,m=0
n �=m

min(n,m)∑
la=0

N−max(n,m)∑
lb=0

Cnmγ la,lb
n γ la lb

m

×
√(

n

la

)(
m

la

)(
N − n

lb

)(
N − m

lb

)
|αn||α∗

m|.

(B7)

Recalling that βla,lb
n =

√
( n

la
)(N−n

lb
)γ la,lb

n , it is evident that
the above equation is identical to Eq. (A4), which was
obtained for the indistinguishable case. This completes the

proof that the optimal estimation is indeed achievable using
indistinguishable photons.

APPENDIX C: ADAPTIVE MEASUREMENT SCHEMES

Let us describe a general structure of adaptive measurement
schemes performed on N subsystems. Let {�(1)

i1
} be a POVM

performed on the first copy. Depending on the measurement
result i1, a POVM {�(2)

i2
(i1)} is performed on the second

copy. In general, a POVM performed on the kth copy
{�(k)

ik
(i1, . . . ,ik−1)} depends on all previous measurement re-

sults. The adaptive measurement mathematically corresponds
to a POVM:

�i = �i1,...,iN = �
(1)
i1

⊗ · · · ⊗ �
(N)
iN

(i1, . . . ,iN−1), (C1)

where �i can be treated as a single global POVM with
measurement results indexed by i . This shows that, for distin-
guishable subsystems, optimization of estimation strategy over
global POVMs covers also the case of adaptive measurements.
Moreover, we have proved in Appendix B that the optimal
phase estimation can be realized using indistinguishable
subsystems. Therefore, the bounds derived in this paper, which
assume a global POVM on indistinguishable photons, indeed
hold also for all adaptive measurement strategies.
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KOŁODYŃSKI AND DEMKOWICZ-DOBRZAŃSKI PHYSICAL REVIEW A 82, 053804 (2010)

[30] In particular experimental setups, ηa and ηb may represent
accumulated preparation, transmission, and detection loss. For
example, in a Mach-Zehnder setup with detector efficiencies ξ ,
it is possible to formally commute detectors efficiency inside the
interferometer, and set η′

a = ηaξ , η′
b = ηbξ .

[31] G. Chiribella, G. M. D’Ariano, and M. F. Sacchi, Phys. Rev. A
72, 042338 (2005).

[32] S. D. Bartlett, T. Rudolph, and R. W. Spekkens, Rev. Mod. Phys.
79, 555 (2007).

[33] M. D. Neusel and L. Smith, Invariant Theory of Finite
Groups (American Mathematical Society, Providence, RI,
2001).

[34] S. Knysh, V. N. Smelyanskiy, and G. A. Durkin, e-print
arXiv:1006.1645.

053804-6

http://dx.doi.org/10.1103/PhysRevA.72.042338
http://dx.doi.org/10.1103/PhysRevA.72.042338
http://dx.doi.org/10.1103/RevModPhys.79.555
http://dx.doi.org/10.1103/RevModPhys.79.555
http://arXiv.org/abs/arXiv:1006.1645

