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We use the assumption that the potential for the A-boson system can be written as a sum of pairwise acting
forces to decompose the wave function into Faddeev components that fulfill a Faddeev type equation. Expanding
these components in terms of potential harmonic (PH) polynomials and projecting on the potential basis for a
specific pair of particles results in a two-variable integro-differential equations suitable for A-boson bound-state
studies. The solution of the equation requires the evaluation of Jacobi polynomials P

α, β

K (x) and of the weight
function W (z) which give severe numerical problems for very large A. However, using appropriate limits for
A → ∞ we obtain a variant equation which depends only on the input two-body interaction, and the kernel in
the integral part has a simple analytic form. This equation can be readily applied to a variety of bosonic systems
such as microclusters of noble gasses. We employ it to obtain results for A ∈ (10–100) 87Rb atoms interacting
via interatomic interactions and confined by an externally applied trapping potential Vtrap(r). Our results are in
excellent agreement with those previously obtained using the potential harmonic expansion method (PHEM) and
the diffusion Monte Carlo (DMC) method.
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I. INTRODUCTION

Broadly speaking, the A-particle bound-state problem can
be solved using two families of approaches. The first is based
on the assumption that the potential can be written as a sum
of pairwise acting forces resulting in the wave function of the
system being written as a sum of amplitudes for the pairs and
fulfilling a Faddeev type equation; in the second family one
may use correlation functions and employ one of the numerous
variational approaches to solve the problem. In both types of
approaches three-body correlations can also be included.

The Faddeev approach, introduced in the early 1960s [1],
can be applied to systems up to A = 4 and it has been
extensively used during the last few decades to study bosonic as
well as fermionic systems in a rigorous way. Going beyond the
A = 4 system, however, is not at present practical within the
Faddeev scheme, as the resulting equations are too complicated
to solve and therefore one has no option but to consider instead
several assumptions and simplification such as clustering and
effective interactions. An alternative to the Faddeev scheme
is the use of the hyperspherical harmonics expansion method
(HHEM) [2,3], which converts the Schrödinger equation into
an infinite set of coupled second-order differential equations.
This method is, up to a certain extent, variational since one
has to truncate the expansion for numerical purposes and thus
one limits the Hilbert space of the wave function, leading to
an underestimate of the binding energy. It is therefore clear
that any alternative method that includes the two-body (and
three-body, if needed) correlations into account is welcome.

One such method in which the two-body correlations are
taken into account exactly is the integro-differential equation
approach (IDEA), valid for A-body systems suggested by
Fabre de la Ripelle and collaborators [4–6]. It is based on the
expansion of the Faddeev amplitudes into potential harmonics
(PH) [7,8] and it can be used in a straightforward manner to
calculate bound states of bosonic systems. The same procedure
to take correlations into account can be used in fermionic
systems, in which case spin (and isospin) is taken into account.

This, however, results in some modifications stemming from
spin-isospin projections (see, for example, Refs. [9,10]). The
IDEA method has been successfully applied in few-body
calculations [6,9], in realistic fermionic systems [10], in
unequal mass particle systems [11–14], as well as in model
calculations for the A = 16 system [15]. In all applications,
the binding energies obtained are in good agreement with other
results in the literature obtained by other methods.

When, however, the number of particles increases, the
number of degrees of freedom also increases and the numerical
complexity becomes intractable and one has no alternative but
to seek methods or simplifications of existing ones suitable
for handling many-body systems. The typical number of
atoms involved in Bose-Einstein condensation (BEC), for
example, is 103–106 [16], and consequently studies of the BEC
phenomenon are naturally based on quantum Monte Carlo type
methods, such as the diffusion Monte Carlo (DMC) [17,18],
the variational Monte Carlo (VMC) [19], and the practically
exact Green’s-function Monte Carlo (GFMC) [20] methods.

A different approach to Monte Carlo methods in studies of
BEC is the one employed by Das and collaborators [21–23],
and it is based directly on the PH expansion of the Faddeev
components resulting in a large system of differential equa-
tions. The scheme has been used to study the BEC phenomenon
for 87Rb atoms using repulsive interboson interactions. The
method requires the evaluation of Jacobi polynomials P

α, β

K (z),
where α = (D − 5)/2, β = 1/2 + �. D is the dimensionality
of the A-boson system, D = 3(A − 1), and z is an angular
variable. Furthermore, it requires the use of the so-called
weight function W (z) ≡ (1 − z)α(1 + z)β . It is clear that the
accuracy in calculating the relevant quantities suffers with
increasing A as the P

α, β

K (z) becomes highly oscillatory while
the W (z) has a spike similar to a δ function for z ∼ −1, which
is difficult to control numerically. As a result, the calculations
become cumbersome and practically uncontrollable beyond
certain A. A relevant discussion on this problem and how this
can, up to a certain extent, be addressed is given in Ref. [23].

1050-2947/2010/82(5)/053635(7) 053635-1 ©2010 The American Physical Society

http://dx.doi.org/10.1103/PhysRevA.82.053635


R. M. ADAM AND S. A. SOFIANOS PHYSICAL REVIEW A 82, 053635 (2010)

In the present work we also start by expanding the wave
function for the A-body system into Faddeev components,
which in turn are expanded in terms of PH. However, the
resulting differential equations, as used by Das and co-
workers [21–23], are first transformed into a single integro-
differential equation which depends on two variables only,
namely, the hyperradius r and an angular variable z, while
the corresponding kernel is expressed in terms of Jacobi
polynomials P

α, β

K (z), which also depend on α and the weight
function W (z). The aforementioned difficulties, however, can
be removed by obtaining appropriate limits for A → ∞. The
obtained equation is quite simple, and the kernel depends on
the much simpler associated Laguerre polynomials L

1/2
K which

are independent of α [24]. It can be even further transformed
to have an analytical form, which does not depend on any
polynomial, is independent of α, and only depends linearly on
the number of particles A. We stress here that our scheme takes
into account the two-body correlations exactly while three-
body correlations can also be included, as described in Ref. [5].

In what follows, we describe, in Sec. II, how one can obtain
from the IDEA the integro-differential equation suitable for a
large number of particles A. We then apply it, in Sec. III, to
obtain results: first for the hybrid nuclear model for the A = 16
particle system, where the particles are assumed to interact
via short-range strong forces of the Wigner type; second, we
apply it to 87Rb atoms for various A and the results obtained
are compared to those of the PHEM and DMC methods. Our
conclusions are summarized in Sec. IV.

II. FORMALISM

In describing a system of identical bosons under the
assumption that the interaction consists of a sum of pairwise

acting central potentials, the A-body wave function can be
written as a product of the harmonic polynomial H[Lm](x) of
minimal degree Lm characterized by the quantum numbers
[Lm] describing the state and a sum of two-body amplitudes:

�(x) = H[Lm](x)
∑

i<j�A

F (rij ,r), (1)

where x is the coordinate vector x = (x1,x2, . . . ,xA), rij =
xi − xj in terms of the particle coordinates xi , and r is the hy-
perradius, r = [2/A

∑
i<j�A r2

ij ]1/2. The two-body amplitudes
F (rij ,r) obey the Faddeev-type equation

[
T + A(A − 1)

2
V[Lm](r) − E

]
H[Lm](x) F (rij ,r)

= −[
V (rij ) − V

[Lm]
0 (r)

]
H[Lm](x)

∑
k<l�A

F (rkl,r). (2)

The hypercentral potential is the average potential V (rij ) taken
over the [Lm] state on the unit hypersphere r = 1 of surface
element d� in the D-dimensional space,

V
[Lm]

0 (r) =
∫

H ∗
[Lm](x)V (rij )H[Lm](x)d�∫ |H[Lm](x)|2 d�

. (3)

We note that for ground states, the pairs are in an S state
and the amplitude F is a function of rij = |xi − xj |, i.e., the
amplitudes are now written as F (rij ,r).

Letting

F (rij ,r) = P (z,r)/rLm+1, (4)

where Lm = Lm + (D − 3)/2 and z = 2r2
ij /r2 − 1, and pro-

jecting on the rij space, one gets the IDEA equation for an
A-particle system [5]:

−h̄2

m

[
∂2

∂r2
− Lm(Lm + 1)

r2
+ 4

r2
T (z) + A(A − 1)

2
V

[Lm]
0 (r) − E

]
P (z,r)

= −[
V (rij ) − V

[Lm]
0 (r)

] [
P (z,r) +

∫ +1

−1
F[Lm](z,z

′) P (z′,r) dz′
]

, (5)

where T (z) is the kinetic-energy term

T̂ (z) = 1

W[Lm](z)

∂

∂z
(1 − z2)W[Lm](z)

∂

∂z
(6)

and W[Lm](z) is the weight function which, for bosonic systems,
is given by

W[Lm](z) = (1 − z)α(1 + z)β, (7)

where α = (D − 5)/2 + Lm − 2�m and β = 1/2 + �m. The
kernel F[Lm](z,z′) is the projection function which is expressed
in terms of the Jacobi polynomials P

α,β

K (z),

F[Lm](z,z
′) = W[Lm](z

′)
∑
K

(
f 2

K − 1
)

hK

P
α,β

K (z)P α,β

K (z′). (8)

The normalization hK is given by

hK =
∫ +1

−1

[
P

α,β

K (z)
]2

W[Lm](z) dz, (9)

and the constant term f 2
K − 1 is given by

f 2
K − 1

= 2(A − 2)P α,β

K (−1/2) + [(A − 2)(A − 3)/2]P α,β

K (−1)

P
α,β

K (+1)
.

(10)

When the number of particles A is large, the calculations
with the above formalism becomes time consuming and
cumbersome. There are two main reasons for this, the first
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one being the evaluation of the Jacobi polynomials P
α,β

K , since
the value of α becomes huge and the polynomials are highly
oscillatory; the second reason stems from the behavior of the
weight function which for z → −1 is peaked close to 2α,

which gives rise to uncontrollable numerical problems.
In our approach we consider first the transformation

rij = rζ/
√

α (11)

with z = 2ζ 2/α − 1. It is noted that for � = 0, α = (D − 5)/
2 = [3(A − 1) − 5]/2, i.e., α ∼ 3A for large A. The purpose
of this transformation is twofold: first to obtain, for α → ∞,
the limit for the Jacobi polynomials P

α,β

K ,

P
α,β

K

(
2r2

ij /r2 − 1
) −→

α→∞ (−1)KL
1/2
K

(
αr2

ij /r2
)

≡ (−1)KL
1/2
K (ζ 2), (12)

where L
1/2
K are the Laguerre polynomials which are indepen-

dent of α, and second, to remove the troublesome term (1 − z)α

from the weight function, which now reads

W (z) = CW

2α+�+1/2

α1/2+�
ζ e−ζ 2

, (13)

where CW is the normalization constant for the weight
function. For � = 0

hK −→
α→∞

∫ √
α

0

[
L

1/2
K (ζ 2)

]2
e−ζ 2

ζ 2dζ

	 1

2

∫ ∞

0

[
L

1/2
K (x)

]2
e−x

√
x dx

= 1

2

	(K + 3/2)

K!
. (14)

In order to evaluate the kinetic-energy term T̂ P (z,r), we
consider first the factorization

P (ζ,r) = eζ 2/2

ζ
Q(ζ,r). (15)

Then

T̂ P = 1

W

∂

∂z
(1 − z2)W

∂

∂z
P (16)

≡ α

4

eζ 2/2

ζ

[
d2

dζ 2
+ 3 + 2�m − ζ 2 − 2�m

ζ 2

]
Q(ζ,r). (17)

Therefore, for bosons in the ground state where the harmonic
polynomials H[Lm] correspond to Lm = 0, �m = 0 [and thus
Lm ≡ L = (D − 3)/2], Eq. (5) becomes

h̄2

m

[
Hr + α

r2
Hζ + A(A − 1)

2
V0(r) − E

]
Q(ζ,r)

= −[V (rij ) − V0(r)]

×
[
Q(ζ,r) +

∫ √
α

0
FE(z,z′)Q(ζ ′,r)dζ ′

]
, (18)

where

Hr = − ∂2

∂r2
+ L(L + 1)

r2
(19)

and

Hζ = α

4

[
− ∂2

∂ζ 2
+ ζ 2 − 3

]
. (20)

The kernel FE is given by

FE(ζ,ζ ′) = ζe−ζ 2/2
∑
K

2 K!

	(K + 3/2)

× (
f 2

K − 1
)
L

1/2
K (ζ 2)L1/2

K (ζ ′2)ζ ′e−ζ ′2/2. (21)

We see that Eq. (18) is free from the δ-function type peak and,
apart from the easily evaluable constant f 2

K − 1, the kernel FE

does not depend on α.
Equation (18) can be even more simplified by noting that

∑
K

(
f 2

K − 1
) K!

	(K + 3/2)
L

1/2
K (ζ 2)L1/2

K (ζ ′2)

−→
α→∞ 2(A − 2)

∑
K

(
1

4

)K

L
1/2
K (ζ 2)L1/2

K (ζ ′2)/hK

− 2(A − 2)
1

4
L

1/2
1 (ζ 2)L1/2

1 (ζ ′2)/h1

− L
1/2
1 (ζ 2)L1/2

1 (ζ ′2)/h1 − 2A(A − 2)/h0

+ [A(A − 1)/2 − 1]/h0 (22)

and thus by making use of the relation [25]

∞∑
K=0

(
1

4

)K
K!

	(K + 3/2)
L

1/2
K (ζ 2)L1/2

K (ζ ′2)

= 4√
3π

e(ζ 2+ζ ′2)/3 sinh( 3
4ζ ζ ′)

ζ ζ ′ (23)

we obtain

h̄2

m

{
Hr + 4

r2
Hζ + A(A − 1)

2
V0(r) − E

}
Q(ζ,r)

= − [V (rij ) − V0(r)]

×
[
Q(ζ,r) +

∫ √
α

0
FI (ζ,ζ ′)Q(ζ ′,r)dζ ′

]
. (24)

The new form of the kernel FI is

FI (ζ,ζ ′) = 2(A − 2)√
3

×
{[

A− 3 − 2

3

(
ζ 2 − 3

2

)(
ζ ′2 − 3

2

)]
ζ ζ ′e−(ζ 2+ζ ′2)/2

+ 4√
3

[e−[5(ζ−ζ ′)+2ζ ζ ′]/6 − e−[5(ζ+ζ ′)−2ζ ζ ′]/6]

}
.

(25)

The kernel (25) has a simple form and its computation is
straightforward.

In the presence of a trapping potential Vtrap(r) which
depends on the hyperradius only, the modifications needed
are trivial and consist of replacing Hr by

Hr = − ∂2

∂r2
+ L(L + 1)

r2
+ Vtrap(r). (26)

053635-3



R. M. ADAM AND S. A. SOFIANOS PHYSICAL REVIEW A 82, 053635 (2010)

TABLE I. Comparison of the two terms T1 and T2 of f 2
K − 1 (see text) for K = 0, . . . ,7 for A = 20 and A = 1000.

A = 20 A = 1000

K T1 T2 f 2
K − 1 T1 T2 f 2

K − 1

0 36 153 189 1996.000 0000 497 503 499 499
1 7.5 −8.5 −1 497.500 0000 −498.500 0000 −1.000 0000
2 1.100 4464 0.758 9286 1.859 3750 123.501 8775 0.831 9426 124.333 8201
3 0.072 9391 −0.091 5948 −0.018 6557 30.534 5323 −0.001 9425 30.532 5898
4 −0.008 6754 0.013 7392 0.005 0638 7.518 5722 0.000 0058 7.518 5780
5 −0.001 6333 −0.002 4376 −0.004 0709 1.843 7195 −0.000 0000 1.843 7195
6 0.000 2636 0.000 4951 0.000 7588 0.450 2550 0.000 0000 0.450 2550
7 0.000 0479 −0.000 1125 −0.000 0646 0.109 5002 −0.000 0000 0.109 5002

The solution of the two-dimensional equations (18) and (24)
can be readily obtained. However, the Extreme Adiabatic
Approximation (EAA) can also be employed. In this case we
may write, as usual, Q(ζ,r) = Qλ(ζ,r)uλ(r) to obtain

h̄2

m

[
4

r2
Hζ + Uλ(r)

]
Qλ(ζ,r) = −

[
V

(
r√
α

ζ

)
− V0(r)

]

×
[
Qλ(ζ,r) +

∫ √
α

0
Fn(ζ,ζ ′)Qλ(ζ ′,r)dζ ′

]
, n = E, I

(27)

and

u
′′
λ(r) + [

k2
λ + Veff(r)

]
uλ(r) = 0, (28)

where the effective potential Veff is given by

Veff(r) = L(L + 1)

r2
+ A(A − 1)

2
V0(r) − Uλ(r) + Utrap(r).

(29)

In the above, λ corresponds to a specific eigenpotential Uλ(r)
having an eigenvalue k2

λ. It is noted that the hypercentral part
V0 can be omitted, especially when the two-body interaction is
repulsive, in which case the results are S projected. In this case,
no effects stemming from higher partial waves are included.
It is further noted that the L(L + 1)/r2 or the Vtrap(r) can be
included in the first equation (27) without affecting the final
results.

III. RESULTS

We first analyze the behavior of the term f 2
K − 1 as

α → ∞. In Table I we present the results for A = 20 and A =
1000 for the two terms, T1 = (A − 2)2P

α,1/2
K (−1/2)/P α,1/2

K (1)
and T2 = (A − 2)(A − 3)/2P

α,1/2
K (−1)/P α,1/2

K (1) for K =
0,1, . . . ,7. We see that both terms as well as the total term
f 2

K − 1 become very small as K increases. Consequently,
only few terms in the expansion (21) are required to achieved
convergence. Furthermore, the behavior of the second term
(only the K = 0,1 are significant for large α) justifies our
approximation (22).

We next present, in Fig. 1, the kernel FI (ζ,ζ ′) for A = 20
and A = 1000 particles. We see that, apart from the strength,
its shape and spread are not drastically changed and in both
cases the kernel becomes insignificant beyond ζ ∼ 4.

We employed Eq. (24) to obtain the bound-state solution
for the A = 16 particle system, in which the particles interact
via strong forces. The reason for this endeavor is twofold:
first, to compare the results obtained with our equation for
this model problem with those previously obtained by the
hyperspherical harmonics expansion method (HHEM) [3] and
by using the exact IDEA method; second, as our method
is based on the assumption of the dominance of two-body
correlations, to test the formalism in the case where the
correlations (especially the short-range ones) stem from strong
forces. This will allow us to evaluate and eventually apply our
approach to systems in which the particles interact via strong
nuclear forces such as a gas of α particles, which is a bosonic
system.

FIG. 1. (Color online) The kernel FI (ζ,ζ ) for A = 20 and A = 1000.

053635-4



INTEGRO-DIFFERENTIAL EQUATION FOR BOSE- . . . PHYSICAL REVIEW A 82, 053635 (2010)

Three types of potentials were employed for this purpose
that have different short-range characteristics. The first poten-
tial is the Volkov potential [26],

V (rij ) = v1 exp[−(rij /b1)2] + v2 exp[−(rij /b2)2], (30)

with v1 = −83.340 02 MeV, v2 = 144.843 41 MeV, b1 =
1.6 fm, and b2 = 0.82 fm, which has a soft repulsive core.
The second is the Afnan and Tang S3 potential [27],

V (rij ) =
5∑

i=1

vi exp
[−bir

2
ij

]
, (31)

the strengths vi being 1000.0, −163.345, −9.8025, −82.0,
and −11.5 MeV, while the bi are 3, 1.05, 0.6, 0.8, and 0.4
fm−2, respectively. The third potential is the more realistic
Malfliet-Tjon V potential (MT-V) employed in [28],

V (rij ) = v1

rij

exp[−b1rij ] + v2

rij

exp[−b2rij ], (32)

with v1 = −578.09 MeV fm, v2 = 1458.05 MeV fm, b1 =
1.55 fm−1, and b2 = 3.11 fm−1.

To obtain the solution of Eq. (24), we use the Galerkin
method and B splines to reduce the problem, as usual, to
an eigenvalue one. The results obtained using the analytic
expression (25) and designated as IDEA-I are given in Table II.
Despite the fact that the A = 16 case corresponds to a rather
small number of particles, the accuracy achieved by our
equation for strong nuclear forces is less than 1% of the exact
values obtained by solving the IDEA method [15] or by using
the HHEM [3]. The slightly higher deviation from the results
of the HHEM can be attributed to the slow convergence rate
of the hyperspherical harmonics expansion for the S3 [27]
potential, which has a practically repulsive hard core, and for
the Yukawa type MT-V [28] potentials.

We now turn our attention to the case where A bosons are
confined in a magnetic trap approximated by a spherically
symmetric harmonic oscillator potential,

Vtrap(r) =
A∑

i=1

1

2
mω2x2

i = 1

4
mωr2. (33)

In our calculations we use oscillator units (o.u.), in which the
energy and length are h̄ω and

√
h̄/mω, respectively, where

ω is the harmonic oscillator circular frequency. In these units
h̄2/m = 1.

As a first example we employ a Gaussian potential

V (rij ) = V0 exp
[−r2

ij

/
r2

0

]
(34)

with V0 = 3.1985 × 106 o.u. and r0 = 0.005 o.u. which
corresponds to the Joint Institute for Laboratory Astrophysics

TABLE II. Binding energies (in MeV) obtained for A = 16 with
short-range forces and by using the kernel (25).

Potential IDEA-I IDEA (exact) HHEM [3]

Volkov [26] 1643 1640
S3 [27] 1247 1246 1235
MT-V [28] 1377 1376 1363

TABLE III. Results (in o.u.) obtained with IDEA-E [Eq. (18)]
and IDEA-I [Eq. (24)] using the Gaussian potential (34).

A IDEA-E IDEA-I PHEM

3 6.009 6.009 4.500
5 7.758 7.758 7.505
10 15.003 15.003 15.034
15 22.501 22.501 22.567
20 30.000 30.001 30.107
25 37.501 37.501 37.654
30 45.009 45.001 45.207
35 52.509 52.501 52.768

(JILA) 87Rb experiment [29] with asc = 100 bohrs and trap
frequency ν = 200 Hz. The results obtained by employing the
kernel (21), designated as IDEA-E, and the the kernel (25) are
shown in Table III. The ground-state energy for A = 3 differs,
as expected, from the corresponding value obtained within the
PHEM [21] by 25%, and for A = 5 by 3.26%. For A = 10,
however, the agreement is already within 0.2%. Going beyond
A > 10, the differences from the results of PHEM are very
small and can be mainly attributed to the overall numerical
inaccuracies. It should be noted here that the binding energy
per particle is of the order of Eb/A ∼ 1.50. It should be further
noted that the IDEA-E and the IDEA-I results are, for all
practical purposes, identical and therefore we shall employ
from now on only the kernel (25).

As a second example we use the semirealistic potential

V (rij ) = V0 sech2(rij /r0). (35)

Following Das et al. [23] we use V0 = 1.818 47 × 109 o.u. and
r0 = 0.001 o.u. We present our results in Table IV and compare
them with those of the PHEM and of the DMC results of Blume
and Greene [30].

We endeavored to carry out calculations for up to A = 100,
where a very good agreement is achieved in all cases for
A � 10 with both the PHEM [23] and DMC [30] methods.
Going beyond A = 100 requires more refined calculations and
a rather exact solution of Eq. (24), the reason being that the
extreme adiabatic approximation gives rise to a multitude of
eigenpotentials Vλ(r) very close to each other and the results,
albeit not differing much, depend nevertheless on which
eigenpotential Vλ(r) is used. This is shown in Fig. 2, where
two effective potentials, Eq. (29), corresponding to λ = 1 and
λ = 20, are plotted for the case A = 500. This multitude of
eigenpotentials close to each other does not appear in the case
where forces having an attractive well are used.

TABLE IV. Same as Table III using the sech potential (35).

A IDEA-I PHEM [23] DMC [30]

10 15.143 15.1490 15.1539
20 30.625 30.6209 30.639
50 78.701 78.8704
100 165.038 164.907
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FIG. 2. (Color online) Two eigenpotentials Veff (r) corresponding
to λ = 1 and λ = 20 for A = 500.

IV. CONCLUSIONS

In conclusion, we obtained an integro-differential equation
describing bound states of a large number of bosons. This
has been achieved by using the transformation rij = rζ/

√
α

and by using the asymptotic form of the Jacobi polynomials
P

α, β

K (z), which for large A are approximated by the Laguerre
polynomials L

1/2
K (ζ ), which do not depend on α and thus

are easier to evaluate. Furthermore, the above transformation
simplifies the kinetic-energy term, the weight function, and
the corresponding projection function. As a result the integro-
diferential equation with a fully analytic and simple kernel can
be easily applied to A-body bosonic systems.

It should be stressed that the IDEA formalism is, up to a
certain extent, equivalent to the PHEM of Ref. [7] employed
by Das and collaborators [21–23]. In the PHEM one has to
solve a large number of differential equations, which in the
IDEA are transformed, with the help of potential harmonics,
into a single integro-differential equation. (Technical details
on this transformation can be found in Refs. [5] and [14].)
Therefore our equation can also be considered as a simplified
version not only of the IDEA method but of the widely used
PHEM as well. We note that the formalism takes the two-

body correlations into account in an exact way and that three-
body correlations can also be included, and thus it should be
accurate enough in describing large numbers of bound bosonic
systems.

We tested our equation by calculating the ground-state
binding energy of the model nuclear problem for the A = 16
system where the short-range nuclear force was of Wigner
type. The good agreement achieved, with the three different
type forces having a soft core, a hard core, and that of Yukawa
type, as compared to the results obtained using the IDEA and
the HHEM methods, implies that our equation can be safely
used to calculate binding energies of large number (A � 10)
particles interacting via strong forces.

Turning now to the case of Bose-Einstein condensates
consisting of A atoms trapped by an external field, we found
that our equation gives results which are in excellent agreement
with those of the PHEM and the diffusion Monte Carlo (DMC)
method, at least up to A = 100. Going beyond this number
requires improved numerical methods or a direct solution of
the equation as a two-variable integro-differential equation
without resorting to the EAA approximation, which gives rise
to a plethora of eigenpotentials that are very close to each
other. It is noted that when A increases, the centrifugal part
L(L + 1)/r2 becomes extremely large and extends outward,
while the interatomic potential is constant and restricted
to smaller distances. Therefore the main contribution in
the effective potential stems from the centrifugal and the
trapping potentials, which generate a harmonic oscillator-type
well which moves outward as the number of particles A

increases.
The overall good results obtained indicate that the derived

equation can be used in studies of bound A-boson systems as
an alternative to competing methods such as the variational
and hyperspherical harmonics methods. Our approximations
should become better with increasing A, i.e., for α → ∞.
However, to study their performance in particle systems with
A > 100 one must address first the aforementioned numerical
problems. Such work is under way.
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