
PHYSICAL REVIEW A 82, 053633 (2010)
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Ultracold three-component atomic Fermi gases in one dimension are expected to exhibit rich physics due
to the presence of trions and different pairing states. Quantum phase transitions from the trion state into a
paired phase and a normal Fermi liquid occur at zero temperature. We derive the analytical thermodynamics
of strongly attractive three-component one-dimensional fermions with SU(3) symmetry via the thermodynamic
Bethe ansatz method in unequal Zeeman splitting fields H1 and H2. We find explicitly that for low temperature
the system acts like either a two-component or a three-component Tomonaga-Luttinger liquid dependent on the
system parameters. The phase diagrams for the chemical potential and specific heat are presented for illustrative
values of the Zeeman splitting. We also demonstrate that crossover between different Tomonaga-Luttinger-
liquid phases exhibit singular behavior in specific heat and entropy as the temperature tends to zero. Beyond
Tomonaga-Luttinger-liquid physics, we obtain the equation of state which provides a precise description of
universal thermodynamics and quantum criticality in three-component, strongly attractive Fermi gases.
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I. INTRODUCTION

The ongoing experimental advances in realizing degenerate
quantum gases in low dimensions [1–6] offer a new and
compelling motivation for the further study of quantum many-
body systems via exact schemes such as the Bethe Ansatz
(BA) and low-energy effective field theory [7]. Reducing
the dimensionality in a quantum system can have striking
consequences. One-dimensional (1D) many-body systems
[7,8] possess unique many-body correlation effects which are
different from their higher dimensional counterparts. These
include the phenomena of spin-charge separation, universal
thermodynamics, and quantum criticality.

A recent scheme for mapping out physical properties
of homogeneous systems by using the inhomogeneity of
the trap [9] has been successfully applied to experimental
measurements on the thermodynamics of interacting fermions
with a wide range of tunable interactions [10,11]. Moreover,
further experimental advances with ultracold atoms allow the
exploration of three-component Fermi gases in the entire
parameter space of trions, dimers, and free atoms [12–14]. This
provides a promising opportunity to experimentally explore
universal thermodynamics and quantum critical behavior of
strongly interacting Fermi gases with high spin symmetries
in one dimension. In this context, the thermodynamics of
1D attractively interacting fermions [8] has been receiving
growing interest [15–18].

For spin-1/2 fermions with attractive interaction there are
three quantum phases at zero temperature: the fully paired
phase, which is a quasicondensate with zero polarization p,
the fully polarized (normal) phase with p = 1, and the
partially polarized (1D Fulde-Ferrell-Larkin-Ovchinnikov)
phase where 0 < p < 1 at zero temperature [15,19,20]. This
theoretical prediction of the phase diagram for 1D fermions
was recently confirmed experimentally by Hulet’s group at
Rice University [6]. In addition, it was recently proved [18] that

at low temperatures, the physics of the gapless phase belongs
to the universality class of a two-component Tomonaga-
Luttinger liquid (TLL). However, from a theoretical point of
view, understanding the thermodynamics of multicomponent
Fermi gases with higher spin symmetry imposes a number of
challenges [21–25].

For multicomponent interacting Fermi gases, the phase di-
agrams become more complicated in the presence of magnetic
fields due to the richer number of quantum phases. In contrast
to the two-component Fermi gas, [15,19,20] three-component
ultracold fermions give rise to quantum phase transitions from
a three-body bound state of “trions” into the BCS pairing
state and a normal Fermi liquid [26–35]. The zero-temperature
phase diagrams of the BA integrable 1D three-component
Fermi gas with SU(3) symmetry have been worked out from
the dressed energy equations [29,35]. It was found that Zeeman
splittings can drive transitions between exotic phases of trions,
bound pairs, a normal Fermi liquid, and mixtures of these
phases (see Fig. 1). It is thus very worthwhile to map out such
zero-temperature phase diagrams to the inhomogeneity of the
trap at finite temperatures.

In this paper, we investigate the finite-temperature ther-
modynamic properties of 1D three-component fermions with
unequal Zeeman splitting by means of the exact thermody-
namic Bethe ansatz (TBA) solution. We prove that at low
temperatures the system behaves like either a two-component
or a three-component TLL in certain regimes. Exact finite-
temperature phase diagrams are demonstrated for illustrative
values of the Zeeman splitting parameters. Quantum criticality
with respect to the specific heat and entropy as the temperature
tends to zero is discussed. The equation of state obtained
provides an exact description of the thermodynamics and
quantum critical behavior of three-component composite
fermions which can possibly be tested in experiments with
ultracold atoms.
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FIG. 1. (Color online) Phase transitions from states of trions into
(a) a normal Fermi liquid, (b) fully paired states, and (c) a mixture
of pairs and unpaired fermions. The transitions are induced by linear
(a) and nonlinear [(b) and (c)] Zeeman splitting. Ellipses denote
charge bound states.

This paper is set out as follows. In Sec. II, we present
the model and the exact BA solution. We also derive the
TBA equations for the thermodynamics. In Sec. III, we derive
the low-temperature thermodynamics by the Sommerfeld
expansion method. The universal multicomponent TLL phases
are identified. In Sec. IV, we present the equation of state in
terms of polylogarithm functions from which the quantum
phase diagrams can be mapped out. Concluding remarks are
given in Sec. V. The derivation of the TBA equations is
presented in detail in Appendix A. In Appendices B and C, the
iteration method is used to derive relevant results for the TBA
and the thermodynamics.

II. THE MODEL AND THE THERMODYNAMIC
BETHE ANSATZ SOLUTION

We consider a 1D system of N fermions of mass m

with spin-independent δ-function potential interaction that are
constrained to a line of length L with periodic boundary condi-
tions. The fermions can occupy three possible hyperfine levels
(|1〉, |2〉, and |3〉) with particle number N1, N2, and N3, respec-
tively. The system can be described by the Hamiltonian [36,37]

H0 = − h̄2

2m

N∑
i=1

∂2

∂x2
i

+ g1D

∑
1�i<j�N

δ(xi − xj ) + EZ, (1)

where we have included the Zeeman energy EZ =∑3
i=1 Niεi

Z(µi
B,B). The spin-independent contact interaction

g1D applies between fermions with different hyperfine states
so that the number of fermions in each spin state is conserved.
The intercomponent interaction g1D is positive for repulsive
interaction and negative for attractive interaction. For simplic-
ity, we define the interaction strengths as c = mg1D/h̄2 and
the dimensionless parameter γ = c/n, where n = N/L is the
linear density, and set h̄ = 2m = 1. Although these conditions
appear rather restrictive, it is possible to tune scattering lengths
between atoms in different low sublevels to form nearly

SU(3) degeneracy Fermi gases via broad Feshbach
resonances [12–14].

In Eq. (1), the Zeeman energy levels εi
Z are determined

by the magnetic moments µi
B and the magnetic field B. By

convention, particle numbers in each of the hyperfine states
satisfy the relation N1 � N2 � N3. Thus the particle numbers
of unpaired fermions, pairs, and trions are, respectively, given
by N1 = N1 − N2, N2 = N2 − N3, and N3 = N3 for the
attractive regime.

In order to simplify calculations in the study of population
imbalance, we rewrite the Zeeman energy as EZ = −H1N1 −
H2N2 + Nε̄, where the unequally spaced Zeeman splitting in
three hyperfine levels can be characterized by two independent
parameters, H1 = ε̄ − ε1

Z(µ1
B,B) and H2 = ε3

Z(µ3
B,B) − ε̄,

with ε̄ =∑3
i=1 εi

Z(µi
B,B)/3 the average Zeeman energy. Pure

Zeeman splitting (equally spaced splitting), i.e. H1 = H2,
leads to a smooth phase transition from trions into the normal
Fermi liquid. On the other hand, unequally spaced Zeeman
splitting can lead to quantum phase transitions from trions to
the fully paired phase and to a mixture of pairs and single
atoms (see Fig. 1).

The Hamiltonian (1) exhibits a symmetry of U(1) × SU(3),
where U(1) and SU(3) describe the charge and spin degrees
of freedom. This model was solved long ago by means of
the nested Bethe ansatz [36,37]. The energy eigenspectrum is
given in terms of the quasimomenta {kj } of the N fermions by

E =
N∑

j=1

k2
j (2)

which satisfy the BA equations [36,37]

eikj L =
M1∏
�=1

kj − �� + ic/2

kj − �� − ic/2
,

N∏
j=1

�� − kj + ic/2

�� − kj − ic/2
= −

M1∏
α=1

�� − �α + ic

�� − �α − ic

(3)

×
M2∏

m=1

�� − λm − ic/2

�� − λm + ic/2
,

M1∏
�=1

λm − �� + ic/2

λm − �� − ic/2
= −

M2∏
β=1

λm − λβ + ic

λm − λβ − ic
.

Here j = 1, . . . ,N , � = 1, . . . ,M1, and m = 1, . . . ,M2 with
quantum numbers M1 = N2 + N3 and M2 = N3. The param-
eters {��,λm} are the rapidities for the internal hyperfine spin
degree of freedom.

In the thermodynamic limit, N,L → ∞ with n finite, the
sets of solutions {kj }, {��}, and {λm} of the BA equations (3)
are of certain forms, as discussed in Appendix A. For
attractive interaction the quasimomenta {kj } can form two-
body and three-body charge-bound states, which give a natural
description of composite fermions, and can also be real [29,37].
However, the rapidities {��} and {λm} can form complex
spin strings characterizing the spin wave fluctuations at finite
temperatures.
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In the thermodynamic limit, the grand partition function
[8,38] Z = tr(e−H/T ) = e−G/T is given in terms of the Gibbs
free energy,

G = E − µN + EZ − T S

= E − µN − H1N1 − H2N2 − T S, (4)

where the chemical potential µ, the Zeeman energy EZ, and
the entropy S are given in terms of the densities of unpaired
fermions, charge-bound states, trions, and spin strings, which
are all subject to the BA equations (3). The equilibrium states
are determined by minimizing the Gibbs free energy, which
gives rise to a set of coupled nonlinear integral equations—the
TBA equations for the dressed energies εa(a = 1,2,3), which
are derived for this model in Appendix A, with final result

ε1(k) = k2 − µ − H1 + T a1 ∗ ln(1 + e−ε2/T )(k)

+ T a2 ∗ ln(1 + e−ε3/T )(k)

− T

∞∑
n=1

an ∗ ln
(
1 + ξ−1

n

)
(k),

ε2(k) = 2k2 − 1

2
c2 − 2µ − H2

+ T a1 ∗ ln(1 + e−ε1/T )(k)
(5)+ T a2 ∗ ln(1 + e−ε2/T )(k)

+ T (a1 + a3) ∗ ln(1 + e−ε3/T )(k)

− T

∞∑
n=1

an ∗ ln
(
1 + ζ−1

n

)
(k),

ε3(k) = 3k2 − 2c2 − 3µ + T a2 ∗ ln(1 + e−ε1/T )(k)

+ T (a1 + a3) ∗ ln(1 + e−ε2/T )(k)

+ T (a2 + a4) ∗ ln(1 + e−ε3/T )(k).

Here the quantity

am (x) = 1

2π

m |c|
(mc/2)2 + x2

(6)

and ∗ denotes the convolution,

(a ∗ b)(x) =
∫

a(x − y)b(y) dy. (7)

The spin string parameters ξn := σh
n /σn and ζn := τh

n /τn

associated with particle and hole densities of string length n

in � and λ parameter spaces satisfy the string TBA equations

ln ξn(�) = n(2H1 − H2)

T
+ an ∗ ln(1 + e−ε1/T )(�)

+
∑
m

Tmn ∗ ln
(
1 + ξ−1

m

)
(�)

−
∑
m

Smn ∗ ln
(
1 + ζ−1

m

)
(�),

(8)
ln ζn(λ) = n(2H2 − H1)

T
+ an ∗ ln

(
1 + e−ε2/T

)
(λ)

+
∑
m

Tmn ∗ ln
(
1 + ζ−1

m

)
(λ)

−
∑
m

Smn ∗ ln
(
1 + ξ−1

m

)
(λ).

The functions Tmn and Smn are as defined in Appendix A.

In the thermodynamic limit, the pressure p is defined in
terms of the Gibbs energy (4) by p ≡ −(∂G/∂L), which
includes three parts, p(1), p(2), and p(3), for the pressure of
unpaired fermions, pairs, and trions, respectively, where

p(a) = aT

2π

∫
dk ln(1 + e−εa (k)/T ). (9)

Here we have set the Boltzmann constant kB = 1.
The TBA equations (5) are expressed in terms of the dressed

energies ε1(k), ε2(k), and ε3(k) for unpaired fermions, pairs,
and trions, respectively. The dressed energies are seen to
depend not only on the chemical potential µ and the external
fields H1 and H2 but also on the interactions among themselves
as well as the spin fluctuations characterized by the spin strings
(8). We clearly see that spin fluctuations are ferromagnetically
coupled to the dressed energies for unpaired fermions and
pairs. There is no such spin fluctuation coupled to the dressed
energy of the spin-neutral trion states. The TBA equations
play the central role in the investigation of thermodynamic
properties of exactly solvable models at finite temperature.
They also provide a convenient formalism to analyze quantum
phase transitions and magnetic effects in the presence of
external fields at zero temperature [39].

III. UNIVERSAL TOMONAGA-LUTTINGER-LIQUID
PHASES

The TBA equations (5) and (8) involve an infinite number
of coupled nonlinear integral equations, which hinders access
to the thermodynamics from both the analytical and numerical
points of view. In the strong-coupling regime, the dressed
energies εa(k) with a = 1, 2, 3 marginally depend on each
other. The spin string contributions to thermal fluctuations
in the strong-coupling regime and at low temperatures, i.e.,
T � H1 and T � H2, are negligible. In this temperature
regime, the TBA equations (5) can be sorted as

εa(k) ≈ a k2 − A(a), a = 1, 2, 3, (10)

in terms of the dressed chemical potentials

A(1) = µ + H1 − 2

|c|p
(2) − 2

3|c|p
(3),

A(2) = 2µ + 1

2
c2 + H2 − 4

|c|p
(1) − 1

|c|p
(2) − 16

9|c|p
(3), (11)

A(3) = 3µ + 2c2 − 2

|c|p
(1) − 8

3|c|p
(2) − 1

|c|p
(3).

In this case we can directly calculate the pressure through (9),
with the result

p(a) =
√

a

π

∫ ∞

0

√
εadεa

1 + e(εa−A(a))/T
(12)

in terms of chemical potential µ, temperature T , and external
fields H1 and H2. Using Sommerfeld expansion, we obtain the
pressure p(a) at low temperatures,

p(a) ≈ 2

3

√
a

π2
(A(a))

3
2

[
1 + π2

8

(
T

A(a)

)2
]

. (13)

The fields H1 and H2 may drive the system into a number
of different phases. In order to extract the nature of the
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TLL physics from the low-temperature thermodynamics, we
first consider the phase in which trions, pairs, and unpaired
fermions coexist. In this coexisting phase, we can apply
Sommerfeld expansion under the condition that the effective
chemical potentials for trions, pairs, and unpaired fermions are
greater than the temperature scale. Iteration with the defining
relations

n = ∂p

∂µ
, n1 = ∂p

∂H1
, n2 = ∂p

∂H2
(14)

leads to explicit forms for the pressure:

p(1) ≈ 2n3
1π

2

3

{
1 + 12n2

|c| + 6n3

|c| + π2

4

(
T

n2
1π

2

)2

×
[

1 − 4n2

|c| − 2n3

|c|
]}

, (15)

p(2) ≈ n3
2π

2

3

{
1 + 6n1

|c| + 3n2

|c| + 8n3

|c| + π2

4

(
T

n2
2

2 π2

)2

×
[

1 − 2n1

|c| − n2

|c| − 8n3

3|c|
]}

, (16)

p(3) ≈ 2n3
3π

2

9

{
1 + 2n1

|c| + 16n2

3|c| + 3n3

|c| + π2

4

(
T

n2
3

3 π2

)2

×
[

1 − 2n1

3|c| − 16n2

9|c| − n3

|c|
]}

. (17)

The detailed derivation is given in Appendix B. For a fixed
total number of particles (i.e., n = n1 + 2n2 + 3n3), the free
energy can be written as

F = µn − p = µ(1)n1 + 2µ(2)n2 + 3µ(3)n3

−H1n1 − H2n2 − c2

2
n2 − 2c2n3 − p, (18)

where effective chemical potentials µ(a)s are given by

µ(1) = µ + H1, (19)

µ(2) = µ + 1
4c2 + 1

2H2, (20)

µ(3) = µ + 2
3c2. (21)

In order to see universal TLL physics, we calculate the
leading low-temperature corrections to the free energy F .
Substituting µ(a) and p(a) into (18), after some lengthy
calculation, we obtain the leading temperature correction to
the free energy,

F ≈ E0 − πT 2

6

(
1

v1
+ 1

v2
+ 1

v3

)
, (22)

where the ground-state energy is given by

E0 = −H1n1 − H2n2 − 1
2c2n2 − 2c2n3 (23)

and the velocities are

v1 ≈ 2n1π

(
1 + 8

|c|n2 + 4

|c|n3

)
,

v2 ≈ 4n2π

(
1 + 4

|c|n1 + 2

|c|n2 + 16

3|c|n3

)
, (24)

v3 ≈ 6n3π

(
1 + 4

3|c|n1 + 32

9|c|n2 + 2

|c|n3

)
.

The particle numbers n1, n2, and n3 of different bound states
can be obtained approximately by collecting terms up to order
1/|c| in the expressions for the effective chemical potentials
µ(a) in (19)–(21) at zero temperature,

µ(1) ≈ n2
1π

2

(
1 + 2

3|c|
n3

2

n2
1

+ 4

27|c|
n3

3

n2
1

+ 8

|c|n2 + 4

|c|n3

)
,

(25)

µ(2) ≈ n2
2

4
π2

(
1 + 16

3|c|
n3

1

n2
2

+ 64

81|c|
n3

3

n2
2

+ 4

|c|n1

+ 8

3|c|n2 + 16

3|c|n3

)
, (26)

µ(3) ≈ n2
3

9
π2

(
1 + 4

|c|
n3

1

n2
3

+ 8

3|c|
n3

2

n2
3

+ 4

3|c|n1

+ 32

9|c|n2 + 8

3|c|n3

)
. (27)

with the final result

n1 ≈
√

µ(1)

π

(
1 − 8

3π |c|
(µ(2))

3
2

µ(1)
− 2

π |c|
(µ(3))

3
2

µ(1)

× − 8

π |c|
√

µ(2) − 6

π |c|
√

µ(3)

)
, (28)

n2 ≈ 2
√

µ(2)

π

(
1 − 2

3π |c|
(µ(1))

3
2

µ(2)
− 8

3π |c|
(µ(3))

3
2

µ(2)

− 2

π |c|
√

µ(1) − 8

3π |c|
√

µ(2) − 8

π |c|
√

µ(3)

)
, (29)

n3 ≈ 3
√

µ(3)

π

(
1 − 2

9π |c|
(µ(1))

3
2

µ(3)
− 32

27π |c|
(µ(2))

3
2

µ(3)

− 2

3π |c|
√

µ(1) − 32

9π |c|
√

µ(2) − 4

π |c|
√

µ(3)

)
. (30)

This result shows that strongly attractive three-component
fermions behave like a three-component TLL for the coex-
isting phase of trions, pairs, and unpaired fermions at low
temperatures. Similarly, we can extract the finite-temperature
corrections to the free energy in other quantum phases. For
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example, in the coexisting phase of trions and pairs, we have
the same universal form

F ≈ E0 − πT 2

6

(
1

v2
+ 1

v3

)
, (31)

where the velocities v2 and v3 have the same expressions as
given in (24) with n1 = 0. In these equations, the free energy
and the thermodynamics are given in terms of the chemical
potential and the effective Zeeman fields H1 and H2. The
chemical potential is convenient for practical purposes in
experiments with cold atoms, where the chemical potential
is replaced by the harmonic potential µ = µ0 − 1

2mω2x2. The
relation between µ and total particle number n can be obtained
from (14).

Although there is no quantum phase transition in 1D
many-body systems at finite temperatures due to thermal
fluctuations, we shall show that the TLL phases persist for
nonzero temperatures, as noted in another context [40].

IV. THERMODYNAMICS AT LOW TEMPERATURES

For strong attraction (|γ | 	 1) three-atom and two-atom
charge-bound states can be stable under certain Zeeman fields.
The corresponding binding energies of the trions and pairs are
given by εt = h̄2c2/m and εb = h̄2c2/4m, respectively. At high
temperatures T ∼ εt ,εb, thermal fluctuations can break the
charge-bound states while spin fluctuations cannot be ignored.

However, such spin fluctuations coupled to the channels
of unpaired fermions and the spin-1 charge-bound pairs are
suppressed by large fields H1 and H2 at low temperatures. In
this regime, the spin string contributions to thermal fluctuations
can be asymptotically calculated from the TBA equations (5)
and (8) (see Appendix C).

We have

ε1(k) ≈ k2 − µ − H1 + 2

|c|p
(2) + 2

3|c|p
(3)

− T e−(2H1−H2)/T e−J1/T I0

(
J1

T

)
,

ε2(k) ≈ 2k2 − c2

2
− 2µ − H2 + 4

|c|p
(1) + 1

|c|p
(2)

+ 16

9|c|p
(3) − T e−(2H2−H1)/T e−J2/T I0

(
J2

T

)
,

ε3(k) ≈ 3k2 − 3µ − 2c2 + 2

|c|p
(1) + 8

3|c|p
(2) + 1

|c|p
(3),

(32)

where J1 = 2p1/|c| and J2 = p2/|c| effective spin-spin inter-
actions and

In(z) = 1

π

∫ π

0
ez cos θ cos(nθ ) dθ. (33)

We also see clearly that there is no such effective spin-spin
interaction for the spin-neutral trion bound state.

Using the formula (12), we can write the pressure p(a) in
terms of the polylogarithm function, i.e.,

p(a) = −
√

a

4π
T 3/2 Li3/2

(− eA(a)/T
)
, (34)

for a = 1, 2, 3, where the polylogarithm function is defined as

Li1+s(−ex) = − 1

�(s + 1)

∫ ∞

0

ksdk

ek−x + 1
. (35)

To leading order, the functions A(a) are

A(1) = µ + H1 − 2

|c|p
(2) − 2

3|c|p
(3)

+ T e−(2H1−H2)/T e−J1/T I0

(
J1

T

)
,

A(2) = 2µ + c2

2
+ H2 − 4

|c|p
(1) − 1

|c|p
(2) − 16

9|c|p
(3) (36)

+ T e−(2H2−H1)/T e−J2/T I0

(
J2

T

)
,

A(3) = 3µ + 2c2 − 2

|c|p
(1) − 8

3|c|p
(2) − 1

|c|p
(3).

We emphasize that the pressure given by (34) provides the
exact equation of state through iteration with (36). The
thermodynamics and critical behavior can thus be worked out
in a straightforward manner in terms of a special polylogarithm
function.

A. Phase diagram in the µ-H plane

We first consider quantum phases in the µ-H plane at low
temperatures. Although there is no quantum phase transition in
1D many-body systems at finite temperatures, the TLL leads to
a crossover from relativistic dispersion to nonrelativistic dis-
persion between different regimes, which may persist at some
nonzero temperatures [18,40]. The zero-temperature phase
diagrams for fixed total number of particles have been explored
earlier [29,35]. The phase diagrams in the µ-H plane from
which quantum criticality and the finite-temperature phase
diagrams can be mapped out are investigated here. At zero
temperature, the µ-H phase diagrams can be worked out either
from the dressed energy equations obtained from the TBA
equations (5) in the limit T → 0 or by converting the critical
fields in the H -n plane, which were found in [29], into the µ-H
plane or directly using the equation of state (34) with T → 0.

We first work out the phase diagram for equally spaced split-
ting (H1 = H2) at T = 0 through analyzing the band filling in
the dressed energy equations [29]. Here we find that the critical
field for the phase transition from the vacuum into the fully
trionic phase is µc � − 2

3c2. The critical field for the phase
transition from the fully trionic phase into the mixture of trions
and unpaired fermions is determined by the set of equations

µc � −H1 − 1

2π

∫ Q3

Q3

2|c|
c2 + λ2

ε3(λ) dλ,

ε3(λ) = 3λ2 − 2c2 − 3µ − 1

2π

∫ Q3

−Q3

[
2|c|

c2 + (λ − λ′)2

+ 4|c|
4c2 + (λ − λ′)2

]
ε3(λ′) dλ′,

Q3
2 = 2

3
c2 + µ + 1

6π

∫ Q3

−Q3

[
2|c|

c2 + λ2

+ 4|c|
4c2 + λ2

]
ε3(λ) dλ. (37)
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FIG. 2. (Color online) The µ-H phase di-
agrams at the temperature T = 0.001εb for
(a) pure Zeeman splitting and unequally spaced
Zeeman splitting (b), (c), and (d). V denotes the
vacuum phase, A denotes the unpaired fermion
phase, B denotes the paired phase, and C

denotes the trion phase. The phase boundaries
are determined by the equation of state (34)
and are consistent with the phase diagrams
determined via the dressed energy equations (see
the description in the text).

It seems to be very difficult to get a general expression
for µc from the condition (37), except in the strong- and
weak-coupling regimes. Nevertheless, we can extract the phase
boundary by numerical calculation for arbitrary strong interac-
tion. The critical field for the phase transition from the vacuum
into the fully polarized phase is given by µc � −H1. The
critical field for the phase transition from the fully polarized
phase into the mixed phase of trions and unpaired fermions is

µc � −2

3
c2 + 2|c|

3π

[
Q2

1 + c2

|c| arctan
Q1

|c| − Q1

]
, (38)

with the Fermi point Q1 = √
µ + H1. This phase diagram is

shown in Fig. 2(a).
The phase boundaries for nonlinear Zeeman splitting are

obtained in a similar fashion. Indeed we find that all zero-
temperature phase diagrams are consistent with the µ-H phase

diagrams which are directly plotted from the equation of
state (34) with the temperature T = 0.001εb (see Fig. 2). For
simplicity, we used A, B, and C to, respectively, denote the
phases of unpaired fermions, pairs, and trions. The phases
A + B, B + C, A + C, and A + B + C stand for a mixture of
corresponding phases.

The quantum phase segments in a harmonic trapping
potential can clearly be discerned from the phase diagrams
in Fig. 2. The phase diagram in Fig. 2(a) is for pure Zeeman
splitting (H1 = H2). The multicritical point in the phase
diagram in Fig. 2(a) is located at ( 4εb

3 , − 4εb

3 ) at T = 0. It may
persist for some nonzero temperatures due to the existence of
TLL phases. In a harmonic trapping potential, the mixture of
trions and unpaired atoms is at the center of the trap, whereas
the unpaired fermions are at the outer wings when the external
field H > 4εb/3. However, for H < 4εb/3 almost the whole

FIG. 3. (Color online) The specific heat cv

in the T -H1 plane for pure Zeeman splitting
with H1 = H2 and total density n fixed. An
asymmetric two-component TLL remains within
a regime below the line of squares in the region
Hc1 < H < Hc2. The TLL of spin-neutral trion
states and the TLL of unpaired fermionic atoms
lie below the left and right lines of triangles,
respectively.
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FIG. 4. (Color online) The specific heat cv

in the T -H2 plane for H2 = 2H1 with total
density n fixed. An asymmetric two-component
TLL remains within a regime below the line
of squares in the region Hc1 < H < Hc2. The
TLL of spin-neutral trions and the TLL of the
composite pairs lie below the left and right lines
of triangles, respectively.

cloud is the trion phase due to a large binding energy of trions.
The mixture of trions and unpaired fermions might lie in a
very narrow strip in the trapping center.

Quantum phase diagrams for unequally spaced splittings
are very intriguing. In the phase diagram shown in Fig. 2(d)
the Zeeman splitting parameters are H2 = 2H1. In this case, the
pair phase is energetically favored. From the dressed energy
equations we can find that the phase boundaries intersect at
( 10εb

12 , − 4εb

3 ) at T = 0. In a harmonic trapping potential, when
the external field H > 10εb

12 , the center of trap is a mixture
of trions and pairs whereas the outer wings are occupied by
pairs. However, for H < 10εb

12 , the mixture of trions and paired
fermions lie in a narrow strip in the trapping center. The trions
occupy the outer wings.

More subtle quantum phases can be tuned through non-
linear Zeeman splitting [see Figs. 2(b) and 2(c), where the

phase diagrams for the chemical potential are shown for the
illustrative field values H2 = 1.24H1 and H2 = 1.3H1]. The
mixture of trions, pairs, and unpaired fermions can occur in
a certain setting of Zeeman splitting among the three lowest
energy levels. The intersection points in the phase diagrams
can be easily determined through the equation of state (34) with
such settings, but it seems to be more difficult to analytically
determine the phase boundaries. These subtle quantum phases
can be mapped out through the new scheme proposed in [9]
from experimental data in trapped 1D Fermi gases. In order to
understand the nature of such quantum phases, we turn to the
examination of the specific heat in the T -H plane.

B. Specific heat and entropy

The thermodynamics of the system (1) can be analyt-
ically calculated through the equation of state (34). All

FIG. 5. (Color online) The specific heat cv

in the T -H1 plane for H2 = 1.2H1 with total
density n fixed. An asymmetric three-component
TLL remains within a regime below the line
of squares in the region Hc1 < H < Hc2. An
asymmetric two-component TLL remains within
a regime below the line of pink squares in the
region Hc2 < H < Hc3. A TLL of spin-neutral
trion states and a TLL of unpaired fermionic
atoms lie below the left and right lines of
triangles, respectively.
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FIG. 6. (Color online) Entropy per unit length
vs chemical potential with T/εb = 0.005 and
H2 = 1.3H1 for different H1/εb. The entropy
exhibits peaks in the phases of higher density
of states when the chemical potential passes the
critical points.

thermodynamic properties then follow analytically through the
general thermodynamic relations. According to the formula
for the specific heat cv = (∂2p/∂T 2)v , the phase diagrams as
revealed by cv in the T -H plane can be easily explored for
fixed total density. Here the specific heat cv is a function of T ,
µ, H1, and H2. Thus the full cv phase diagram would be four
dimensional. In order to observe the signatures of the TLL, we
take two-dimensional contour plots for the cv phase diagrams
for some illustrative values of Zeeman splitting associated with
Fig. 2.

For pure Zeeman splitting, the gapless phase is described
by a two-component TLL phase under a crossover temperature
(lines of squares in Fig. 3) which indicates a deviation from
the linear temperature-dependent specific heat

cv ≈ πT

3h̄

(
1

v1
+ 1

v3

)
. (39)

The trions and unpaired fermions can form an asymmetric
two-component TLL of composite fermions and single atoms
for temperatures below the lines of squares. However, the trion
phase C and unpaired fermions phase A form two different
single-component TLLs, which lie below the left and right
lines of triangles, respectively. In the single-component TLL
phase the other states are exponentially small and thus the
system is strongly correlated.

For unequally spaced Zeeman splitting (H2 = 2H1) the
zero-temperature phase diagram in Fig. 2(d) may persist for
finite T as long as the excitations are close to the Fermi points
of each Fermi sea.

From the low-temperature phase diagram of Fig. 4 we see
clearly that a two-component TLL of trions and pairs remains
in the regime B + C. The gapless phase is described by a
two-component TLL phase under a crossover temperature de-
lineated by a deviation from the linear temperature-dependent
specific heat

cv ≈ πT

3h̄

(
1

v2
+ 1

v3

)
. (40)

In this case a TLL of hard-core bosons of composite fermions
lies below the right line of triangles.

For unequally spaced Zeeman splitting (H2 = 1.2H1) the
three-component TLL (A + B + C) and two-component TLL
(A + B) phases may persist within certain regimes in the T -H
plane (see the lines of squares in Fig. 5).

Beyond the universal crossover temperatures one of the
excitations among the states of trions, pairs, and unpaired
fermions exhibits nonrelativistic dispersion.

In the three-component TLL phase, i.e., where trions, pairs,
and unpaired fermions coexist, the specific heat is given by the
linear relation

cv ≈ πT

3h̄

(
1

v1
+ 1

v2
+ 1

v3

)
. (41)

We see clearly that the equation of state (34) provides a precise
description of the thermodynamics and critical behavior of
composite fermions.

In Fig. 6, we demonstrate that the entropy exhibits a peak
as the driving parameter chemical potential varies across a
phase boundary in the µ-H plane [see Fig. 2(c)]. The entropy
curves are shown in Fig. 6 for the indicative values H1 =
1.2εb, 1.32εb, and H1 = 1.38εb. In this example, the chemical
potential thus varies across the different phase boundaries in
Fig. 2(c) at which the quantum phase transitions occur. The
entropy peaks in Fig. 6 are located in the phases with higher
density of states.

V. CONCLUSION

In conclusion, we have studied the thermodynamics of 1D
strongly attractive three-component fermions in the presence
of nonlinear Zeeman fields via the thermodynamic Bethe
ansatz solution. The pressure and free energy have been
analytically calculated in terms of the chemical potential µ,
temperature T , and Zeeman fields H1 and H2 for a parameter
regime T � εb, εt , H1,H2 and γ 	 1. Here εb and εt are the
binding energies for a bound pair and a trion, respectively. This
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FIG. 7. (Color online) Specific heat phase
diagram in the T -µ plane for equally spaced
Zeeman splitting with H1 = 1.36εb. The figure
shows how the phase diagram extends out from
the zero-temperature phase diagram.

physical regime covers the presently accessible experimental
parameter regime [6]. The universal thermodynamics of the
asymmetric two-component and three-component TLLs has
been identified at low temperatures. Beyond a certain crossover
temperature, at least one of the underlying dispersion relations
for the composite particles is no longer linear and exhibits rich
thermal excitations.

We have derived the equation of state (34) from which
quantum criticality and quantum phase transitions can be
mapped out. The equation of state provides the necessary
information to describe the quantum regime near quantum
critical points. The scaling functions and critical exponents
can be obtained from the equation of state following the
approach for the two-component model [41]. With regard to
the harmonic trapping of three-component fermions, quantum
criticality can be mapped out through the specific heat phase
diagram in the T -µ plane. For example, for equally spaced
Zeeman splitting with H1 = 1.36εb, the critical behavior of the
system can be conceived from the specific heat phase diagram
in the T -µ plane (see Fig. 7). Our results thus open the way for
further study of quantum criticality in 1D many-body systems
via their exact Bethe ansatz solution, in this case for systems
of three-component ultracold fermionic atoms.
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APPENDIX A: DERIVATION OF THE TBA EQUATIONS

For the 1D three-component fermion system we consider,
there are three kinds of states in the system, i.e., unpaired
fermions, pairs, and trions. In the thermodynamic limit and
at zero temperature, there are three kinds of quasimomenta
solutions to the BA equations (3). These are real {ki}, with
i = 1, . . . ,N1 for the unpaired fermions, complex roots {kl =
�� ± 1

2 i|c|}, with � = 1, . . . ,N2 for bound pairs, and three-
body bound states {km = λm ± i|c|, λm}, with m = 1, . . . ,N3

for trions.
For finite temperatures, there are also spin strings for spin

rapidities � and λ, which are characterized by the string-
hypothesis

�
n,β

j = �n
j − 1

2 (n + 1 − 2β)i, (A1)

λ
n,β

j = λn
j − 1

2 (n + 1 − 2β)i, (A2)

where n is the length of the string, j labels the number of strings
of length n, and �n

j and λn
j are the real parts of each � and λ

string. At finite temperatures, there are N ′
1 real quasimomenta

kj , N ′
2 real �j , and N ′

3 real λj . The number of �(n) strings is
M1n and the number of the λ(n) strings is M2n. These quantum
numbers satisfy the conditions

M1 = N ′
2 + 2N ′

3 +
∞∑

n=1

nM1n, (A3)

M2 = N ′
3 +

∞∑
n=1

nM2n. (A4)

Substituting these three sets of solutions into the BA
equations (3) gives

eikj L =
N ′

2∏
l=1

kj − �l + i|c|/2

kj − �l − i|c|/2

N ′
3∏

l=1

kj − λl + i|c|
kj − λl − i|c|

∞∏
n=1

M1n∏
l=1

kj − �n
l + in|c|/2

kj − �n
l − in|c|/2

(A5)
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for unpaired fermions and

e2i�j L =
N ′

2∏
l=1,l �=j

�j − �l + i|c|
�j − �l − i|c|

(
k

(1)
j − �j + i|c|/2

k
(1)
j − �j − i|c|/2

k
(2)
j − �j + i|c|/2

k
(2)
j − �j − i|c|/2

)
N ′

3∏
l=1

�j − λl + 3i|c|/2

�j − λl − 3i|c|/2

�j − λl + i|c|/2

�j − λl − i|c|/2

×
∞∏

n=1

M1n∏
l=1

n∏
β=1

�j − �
n,β

l + i|c|
�j − �

n,β

l − i|c|
(A6)

for paired fermions. Notice that Eq. (A6) has explicit singularities from the terms in the large parentheses. To overcome this, we
write the second term of (3) as

N ′
1∏

l=1,l �=j

�j − kl + i|c|/2

�j − kl − i|c|/2

(
k

(1)
j − �j − i|c|/2

k
(1)
j − �j + i|c|/2

k
(2)
j − �j − i|c|/2

k
(2)
j − �j + i|c|/2

)

=
∞∏

n=1

M1n∏
m=1

n∏
β=1

�j − �
n,β
m + i|c|

�j − �
n,β
m − i|c|

∞∏
n=1

M2n∏
m′=1

n∏
α=1

�j − λ
n,α
m′ − i|c|/2

�j − λ
n,α
m′ + i|c|/2

, (A7)

which shows the spin flipping of �n strings. Substituting (A7) back to (A6) gives the revised form

e2i�j L =
N ′

1∏
l=1

�j − kl + i|c|/2

�j − kl − i|c|/2

N ′
2∏

l=1

�j − �l + i|c|
�j − �l − i|c|

N ′
3∏

l=1

�j − λl + 3i|c|/2

�j − λl − 3i|c|/2

�j − λl + i|c|/2

�j − λl − i|c|/2

∞∏
n=1

M2n∏
l=1

�j − λn
l + in|c|/2

�j − λn
l − in|c|/2

(A8)

for pairs without singularities. Similarly, the equation for trions is

e3iλj L =
N ′

1∏
l=1

λj − kl + i|c|
λj − kl − i|c|

N ′
2∏

l=1

λj − �l + i|c|/2

λj − �l − i|c|/2

λj − �l + 3i|c|/2

λj − �l − 3i|c|/2

N ′
3∏

l=1

λj − λl + i|c|
λj − λl − i|c|

λj − λl + 2i|c|
λj − λl − 2i|c| . (A9)

The BA equations for the spin parts are

N ′
1∏

l=1

�m
j − kl − im|c|/2

�m
j − kl + im|c|/2

= −
∞∏

n=1

M1n∏
l=1

n∏
β=1

�m
j − �n

l + (m + n + 2 − 2β)i|c|/2

�m
j − �n

l − (m + n + 2 − 2β)i|c|/2

�m
j − �n

l + (m + n − 2β)i|c|/2

�m
j − �n

l − (m + n − 2β)i|c|/2

×
∞∏

n=1

M2n∏
l=1

n∏
β=1

�m
j − λn

l + (m + n + 1 − 2β)i|c|/2

�m
j − λn

l − (m + n + 1 − 2β)i|c|/2
, (A10)

N ′
2∏

l=1

λm
j − �l + im|c|/2

λm
j − �l − im|c|/2

= −
∞∏

n=1

M2n∏
l=1

n∏
β=1

λm
j − λn

l + (m + n + 2 − 2β)i|c|/2

λm
j − λn

l − (m + n + 2 − 2β)i|c|/2

λm
j − λn

l + (m + n − 2β)i|c|/2

λm
j − λn

l − (m + n − 2β)i|c|/2

×
∞∏

n=1

M1n∏
l=1

n∏
β=1

λm
j − �n

l + (m + n + 1 − 2β)i|c|/2

λm
j − �n

l − (m + n + 1 − 2β)i|c|/2
. (A11)

Defining the function θ (x) = 2 arctan x and taking the logarithm on both sides of this equations gives

kjL = 2πIj +
N ′

2∑
l=1

θ

(
kj − �l

|c′|
)

+
N ′

3∑
l=1

θ

(
kj − λl

2|c′|
)

+
∞∑

n=1

M1n∑
l=1

θ

(
kj − �n

l

n|c′|
)

, (A12)

2�jL = 2πJj +
N ′

1∑
l=1

θ

(
�j − kl

|c′|
)

+
N ′

2∑
l=1

θ

(
�j − �l

2|c′|
)

+
N ′

3∑
l=1

[
θ

(
�j − λl

3|c′|
)

+ θ

(
�j − λl

|c′|
)]

+
∞∑

n=1

M2n∑
l=1

θ

(
�j − λn

l

n|c′|
)

,

(A13)

3λjL = 2πKj +
N ′

1∑
l=1

θ

(
λj − kl

2|c′|
)

+
N ′

2∑
l=1

[
θ

(
λj − �l

|c′|
)

+ θ

(
λj − �l

3|c′|
)]

+
N ′

3∑
l=1

[
θ

(
λj − λl

2|c′|
)

+ θ

(
λj − λl

4|c′|
)]

, (A14)

N ′
1∑

l=1

θ

(
�m

j − kn
l

m|c′|
)

= 2πI
(n)
j +

∞∑
n=1

M1n∑
l=1

�mn

(
�m

j − �n
l

|c′|
)

−
∞∑

n=1

M2n∑
l=1

�mn

(
�m

j − λn
l

|c′|
)

, (A15)
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N ′
2∑

l=1

θ

(
λm

j − �n
l

m|c′|
)

= 2πJ
(n)
j +

∞∑
n=1

M2n∑
l=1

�mn

(
λm

j − λn
l

|c′|
)

−
∞∑

n=1

M1n∑
l=1

�mn

(
λm

j − �n
l

|c′|
)

. (A16)

Here c′ = c/2 with Ij , Jj , Kj , I
(n)
j , and J

(n)
j integers or half-odd-integers depending on the quantum numbers.

The functions �mn and �mn are defined by

�mn =
{

θm+n + 2θm+n−2 + · · · 2θ|m−n|+2 + θ|m−n|, for m �= n,

2θ2 + 2θ4 + · · · + 2θ2n−2 + θ2n, for m = n,

�mn =
{

θm+n−1 + θm+n−3 + · · · θ|m−n|+3 + θ|m−n|+1, for m �= n,

θ1 + θ3 + · · · + θ2n−3 + θ2n−1, for m = n.

Finally, we define the functions

h′(k) = kL −
N ′

2∑
l=1

θ

(
k − �l

|c′|
)

−
N ′

3∑
l=1

θ

(
k − λl

2|c′|
)

−
∞∑

n=1

M1n∑
l=1

θ

(
k − �n

l

n|c′|
)

, (A17)

j ′(�) = 2�L −
N ′

1∑
l=1

θ

(
� − kl

|c′|
)

−
N ′

2∑
l=1

θ

(
� − �l

2|c′|
)

−
N ′

3∑
l=1

[
θ

(
� − λl

3|c′|
)

+ θ

(
� − λl

|c′|
)]

−
∞∑

n=1

M2n∑
l=1

θ

(
� − λn

l

n|c′|
)

, (A18)

k′(λ) = 3λL −
N ′

1∑
l=1

θ

(
λ − kl

2|c′|
)

−
N ′

2∑
l=1

[
θ

(
λ − �l

|c′|
)

+ θ

(
λ − �l

3|c′|
)]

−
N ′

3∑
l=1

[
θ

(
λ − λl

2|c′|
)

+ θ

(
λ − λl

4|c′|
)]

(A19)

and

jm(�m) =
N ′

1∑
l=1

θ

(
�m − kn

l

m|c′|
)

−
∞∑

n=1

M1n∑
l=1

�mn

(
�m − �n

l

|c′|
)

+
∞∑

n=1

M2n∑
l=1

�mn

(
�m − λn

l

|c′|
)

, (A20)

km(λm) =
N ′

1∑
l=1

θ

(
λm − �n

l

m|c′|
)

−
∞∑

n=1

M2n∑
l=1

�mn

(
λm − λn

l

|c′|
)

+
∞∑

n=1

M1n∑
l=1

�mn

(
λm − �n

l

|c′|
)

. (A21)

In the thermodynamic limit, we then define

dh′(k)

dk
= 2π

[
ρ1(k) + ρh

1 (k)
]
, (A22)

dj ′(�)

d�
= 2π

[
ρ2(�) + ρh

2 (�)
]
, (A23)

dk′(λ)

dk
= 2π

[
ρ3(λ) + ρh

3 (λ)
]
, (A24)

djn(�n)

d�n
= 2π

[
σn(�n) + σh

n (�n)
]
, (A25)

dkn(λn)

dλn
= 2π

[
τn(λn) + τh

n (λn)
]
, (A26)

where ρi and ρh
i for i = 1,2,3 are particle and hole densities

in k space, and σn, σh
n and τn, τh

n are particle densities
and hole densities for strings with length n in � space
and λ space.

Thus we have the integral equations

1

2π
= ρ1 + ρh

1 + a1 ∗ ρ2 + a2 ∗ ρ3 +
∑

n

an ∗ σn, (A27)

1

π
= ρ2 + ρh

2 + a1 ∗ ρ1 + a2 ∗ ρ2 + (a1 + a3) ∗ ρ3

+
∑

n

an ∗ τn, (A28)

3

2π
= ρ3 + ρh

3 + a2 ∗ ρ1 + (a1 + a3) ∗ ρ2 + (a2 + a4) ∗ ρ3

(A29)

for the particle and hole densities and

an ∗ ρ1 = σn + σh
n +

∑
m

Tmn ∗ σm −
∑
m

Smn ∗ τm,

(A30)

an ∗ ρ2 = τn + τh
n +

∑
m

Tmn ∗ τm −
∑
m

Smn ∗ σm.

(A31)
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where the functions Tmn and Smn are defined as

Tmn =
{
am+n + 2am+n−2 + · · · 2a|m−n|+2 + a|m−n|, for m �= n,

2a2 + 2a4 + · · · + 2a2n−2 + a2n, for m = n,

and

Smn =
{
am+n−1 + am+n−3 + · · · a|m−n|+3 + a|m−n|+1, for m �= n,

a1 + a3 + · · · + a2n−3 + a2n−1, for m = n.

The energy per unit length can now be written as

E/L =
∫

k2ρ1(k) dk +
∫ (

2k2 − c2

2

)
ρ2(k) dk

+
∫

(3k2 − 2c2)ρ3(k) dk. (A32)

The total particle number and magnetic numbers are

N/L =
∫

[ρ1(k) + 2ρ2(k) + 3ρ3(k)] dk, (A33)

M1/L =
∫

ρ2(k) dk + 2
∫

ρ3(k) dk +
∑

n

n

∫
σn(�n) d�n,

(A34)

M2/L =
∫

ρ3(k) dk +
∑

n

n

∫
τn(λn) dλn. (A35)

The entropy per unit length is

S/L =
∫ [(

ρ1 + ρh
1

)
ln
(
ρ1 + ρh

1

)− ρ1 ln ρ1 − ρh
1 ln ρ1

]h
dk

+
∫ [(

ρ2 + ρh
2

)
ln
(
ρ2 + ρh

2

)− ρ2 ln ρ2 − ρh
2 ln ρ2

]h
dk

+
∫ [(

ρ3 + ρh
3

)
ln
(
ρ3 + ρh

3

)− ρ3 ln ρ3 − ρh
3 ln ρ3

]h
dk

+
∑

n

∫ [(
σn + σh

n

)
ln
(
σn + σh

n

)− σn ln ρ1σn

− σh
n ln σn

]h
dk +

∑
n

∫ [(
σn + σh

n

)
ln
(
σn + σh

n

)
−σn ln ρ1σn − σh

n ln σn

]h
dk, (A36)

where ln n! ≈ n ln n has been used.
The Gibbs energy (4) per unit length is

G/L =
∫

k2ρ1 dk +
∫ (

2k2 − c2

2

)
ρ2 dk

+
∫

(3k2 − 2c2)ρ3 dk − µ

∫
(ρ1 + 2ρ2 + 3ρ3) dk

−H1

∫ (
ρ1 − 2

∑
n

nσn +
∑

n

nτn

)
dk − H2

×
∫ (

ρ2 +
∑

n

nσn − 2
∑

n

nτn

)
dk − T S. (A37)

Finally, the TBA equations follow by taking the variation of
equation (A37) and setting it equal to zero (i.e., δG/L = 0).
In this way

ln η1 = (k2 − µ − H1)/T + a1 ∗ ln
(
1 + η−1

2

)
+ a2 ∗ ln

(
1 + η−1

3

)−
∞∑

n=1

an ∗ ln
(
1 + ξ−1

n

)
, (A38)

ln η2 =
(

2�2 − 1

2
c2 − 2µ − H2

)/
T + a1 ∗ ln

(
1 + η−1

1

)
+ a2 ∗ ln

(
1 + η−1

2

)+ (a1 + a3) ∗ ln
(
1 + η−1

3

)
−

∞∑
n=1

an ∗ ln
(
1 + ζ−1

n

)
, (A39)

ln η3 = 3λ2 − 2c2 − 3µ

T
+ a2 ∗ ln

(
1 + η−1

1

)
+ (a1 + a3) ∗ ln

(
1 + η−1

2

)+ (a2 + a4) ∗ ln
(
1 + η−1

3

)
(A40)

and

ln ξn = n(2H1 − H2)/T + an ∗ ln
(
1 + e−ε1/T

)
+
∑
m

Tmn ∗ ln
(
1 + ξ−1

m

)−
∑
m

Smn ∗ ln
(
1 + ζ−1

m

)
,

(A41)

ln ζn = n(2H2 − H1)/T + an ∗ ln
(
1 + e−ε2/T

)
+
∑
m

Tmn ∗ ln
(
1 + ζ−1

m

)−
∑
m

Smn ∗ ln
(
1 + ξ−1

m

)
,

(A42)

in which we define ηi = ρh
i /ρi (i = 1,2,3), ξn = σh

n /σn, and
ζn = τh

n /τn. The TBA equations (A38)–(A42) can be written
in the form (5) with εi = T ln ηa (a = 1,2,3).

APPENDIX B: DETAILS OF THE SOMMERFELD
EXPANSION

In this Appendix, we show that accurate expressions for
µ and p can be obtained by iteration after Sommerfeld
expansion. We first use Eq. (11) to rewrite the pressure (13) in
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the form

p(1) ≈ 2

3π
(µ(1))3/2

[
1 + π2

8

(
T

A(1)

)2
]

×
(

1 − 2p(2)

|c|µ(1)
− 2p(3)

3|c|µ(1)

)3/2

, (B1)

p(2) ≈ 2
√

2

3π
(2µ(2))3/2

[
1 + π2

8

(
T

A(2)

)2
]

×
(

1 − 2p(1)

|c|µ(2)
− p(2)

2|c|µ(2)
− 8p(3)

9|c|µ(2)

)3/2

, (B2)

p(3) ≈ 2
√

3

3π
(3µ(3))3/2

[
1 + π2

8

(
T

A(3)

)2
]

×
(

1 − 2p(1)

3|c|µ(3)
− 8p(2)

9|c|µ(3)
− p(3)

3|c|µ(3)

)3/2

. (B3)

We can extract explicit analytic results appropriate for
the strong-coupling regime |c| 	 1 from these equations by
iteration and neglecting higher order terms. Making use of
Eqs. (14) and n = n1 + 2n2 + 3n3, we obtain expressions for
n, n1, n2, and n3. After a lengthy calculation, we then obtain
µ(1), µ(2), and µ(3) in terms of n1, n2, and n3, namely,

µ(1) ≈ n2
1π

2

{
1 + 16

3|c|π
(µ(2))3/2

µ(1)

[
1 + π2

8

(
T

A(2)

)2
]

+ 4

|c|π
(µ(3))3/2

µ(1)

[
1 + π2

8

(
T

A(3)

)2
]

+16

|c|

√
µ(2)

π

[
1 − π2

24

(
T

A(2)

)2
]

+ 12

|c|

√
µ(3)

π

[
1 − π2

24

(
T

A(3)

)2
]}

×
[

1 + π2

12

(
T

A(1)

)2
]

, (B4)

µ(2) ≈ n2
2

4
π2

{
1 + 4

3|c|π
(µ(1))3/2

µ(2)

[
1 + π2

8

(
T

A(1)

)2
]

+ 16

3|c|π
√

µ(2) + 16

3|c|π
(µ(3))3/2

µ(2)

[
1 + π2

8

(
T

A(3)

)2
]

+ 4

|c|

√
µ(1)

π

[
1 − π2

24

(
T

A(1)

)2
]

+ 16

|c|

√
µ(3)

π

[
1 − π2

24

(
T

A(3)

)2
]}

×
[

1 + π2

12

(
T

A(2)

)2
]

, (B5)

µ(3) ≈ n2
3

9
π2

{
1 + 4

9|c|π
(µ(1))3/2

µ(3)

[
1 + π2

8

(
T

A(1)

)2
]

+ 64

27|c|π
(µ(2))3/2

µ(3)

[
1 + π2

8

(
T

A(2)

)2
]

+ 8

|c|π
√

µ(3)

+ 4

3|c|

√
µ(1)

π

[
1 − π2

24

(
T

A(1)

)2
]

+ 64

9|c|

√
µ(2)

π

×
[

1 − π2

24

(
T

A(2)

)2
]}[

1 + π2

12

(
T

A(2)

)2
]

. (B6)

Substituting (B4)–(B6) and (13) into (11) and keeping terms
to order 1/|c| gives the explicit form for A(a):

A(1) ≈ n2
1π

2

(
1 + 8

|c|n2 + 4

|c|n3

)
, (B7)

A(2) ≈ n2
2

2
π2

(
1 + 4

|c|n1 + 2

|c|n2 + 16

3|c|n3

)
, (B8)

A(3) ≈ n2
3

3
π2

(
1 + 4

3|c|n1 + 32

9|c|n2 + 2

|c|n3

)
. (B9)

The explicit form for µ(a) without A(a) terms can also be
obtained as

µ(1) ≈ n2
1π

2

⎧⎨
⎩π2

6

(
T

n2
1π

2

)2

+ 2

3|c|
n3

2

n2
1

⎡
⎣1 + π2

4

(
T

n2
2

2 π2

)2
⎤
⎦

+ 4

27|c|
n3

3

n2
1

⎡
⎣1 + π2

4

(
T

n2
3

3 π2

)2
⎤
⎦

+
[

1 + 8

|c|n2 + 4

|c|n3

][
1 − π2

12

(
T

n2
1π

2

)2
]⎫⎬
⎭ ,

(B10)

µ(2) ≈ n2
2

4
π2

⎧⎨
⎩π2

6

(
T

n2
2

2

)2

+ 16

3|c|
n3

1

n2
2

[
1 + π2

4

(
T

n2
1π

2

)2
]

+ 64

81|c|
n3

3

n2
2

⎡
⎣1 + π2

4

(
T

n2
3

3

)2
⎤
⎦+ 8

3|c|n2

+
[

1 + 4

|c|n1 + 16

3|c|n3

]⎡⎣1 − π2

12

(
T

n2
2

2

)2
⎤
⎦
⎫⎬
⎭ ,

(B11)

µ(3) ≈ n2
3

9
π2

⎧⎨
⎩π2

6

(
T

n2
3

3 π2

)2

+ 4

|c|
n3

1

n2
3

[
1 + π2

4

(
T

n2
1π

2

)2
]

+ 8

3|c|
n3

2

n2
3

⎡
⎣1 + π2

4

(
T

n2
2

2

)2
⎤
⎦+ 8

3|c|n3

+
[

1 + 4

3|c|n1 + 32

9|c|n2

]⎡⎣1 + π2

12

(
T

n2
3

3 π2

)2
⎤
⎦
⎫⎬
⎭ .

(B12)
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Substituting all of these equations back into (B1)–(B3) and ne-
glecting higher order terms gives the pressure p given in (17).

APPENDIX C: DRESSED ENERGY EQUATIONS AT LOW
TEMPERATURE

For the strongly attractive regime, the TBA equations (5)
can be expanded as

ε1(k) ≈ k2 − µ − H1 + 2

|c|p
(2) + 2

3|c|p
(3)

− T
∑

n

∫
an

(
2k

c
− k′

)
ln(1 + ξ−1) dk′, (C1)

ε2(k) ≈ 2k2 − 2µ − c2

2
− H2 + 4

|c|p
(1) + 1

|c|p
(2) + 16

9|c|p
(3)

− T
∑

n

∫
an

(
2k

c
− k′

)
ln(1 + ζ−1) dk′, (C2)

ε3(k) ≈ 3k2 − 3µ − 2c2 + 2

|c|p
(1) + 8

3|c|p
(2) + 1

|c|p
(3),

(C3)

with

ln ξn(�) = n(2H1 − H2)

T
+ 2πJ1

T
an(�)

+
∑
m

Tmn ∗ ln
(
1 + ξ−1

m

)
−
∑
m

Smn ∗ ln
(
1 + ζ−1

m

)
, (C4)

ln ζn(λ) = n(2H2 − H1)

T
+ 2πJ2

T
an(�)

+
∑
m

Tmn ∗ ln
(
1 + ζ−1

m

)

−
∑
m

Smn ∗ ln
(
1 + ξ−1

m

)
. (C5)

Here J1 = 2p1/|c|, J2 = p2/|c|, and the function an(k) has
the new form

an(k) = 1

2π

2n

k2 + n2
. (C6)

Compared with Eq. (10), the last terms of (C1) and (C2)
are string terms for spin waves of unpaired fermions and pairs,
respectively. From ln ξ and ln ζ , we have

ξn(�) ≈ en(2H1−H2)/T e2πJ1a1(�)/T e
∑

m Tmn∗ξ−1
m e−∑m Smn∗ζ−1

m ,

(C7)

ζn(λ) ≈ en(2H2−H1)/T e2πJ2a2(λ)/T e
∑

m Tmn∗ζ−1
m e−∑m Smn∗ξ−1

m .

(C8)

Neglecting higher order correction terms we finally arrive at
the dressed energy equations (32). The pressure can readily
be written in terms of the polylogarithm function using (32)
and (12).
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