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Phase transition to Bose-Einstein condensation for a bosonic gas confined in a combined trap
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We present a study of phase transition to macroscopic superfluidity for an ultracold bosonic gas confined in
a combined trap formed by a one-dimensional optical lattice and a harmonic potential, focusing on the critical
temperature of this system and the interference patterns of the Bose gas released from the combined trap. Based
on a semiclassical energy spectrum, we develop an analytic approximation for the critical temperature Tc, and
compare the analytic results with that obtained by numerical computations. For finite temperatures below Tc, we
calculate the interference patterns for both the normal gas and the superfluid gas. The total interference pattern
shows a feature of “peak on a peak.” As a comparison, we also present the experimentally observed interference
patterns of 87Rb atoms released from a one-dimensional optical lattice system in accord with our theoretical
model. Our observations are consistent with the theoretical results.
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I. INTRODUCTION

Bosonic atoms confined in optical lattices have proved
to be a unique laboratory for investigating quantum phase
transitions from superfluids to Mott insulators [1–3]. The
momentum distribution of a lattice system can be mapped
out directly by the interference pattern of the atomic cloud
after a ballistic expansion over a time of flight (TOF).
The emergence of macroscopic bosonic superfluid is usually
identified by the appearance of interference peaks. However,
recent theoretical works [4,5] for homogeneous gases in
a three-dimensional (3D) lattice showed that this criterion
of macroscopic superfluidity is not reliable since even a
normal gas can have sharp interference peaks. The underlying
physical picture is that a lattice system at finite temperatures
possesses a “V-shaped” phase diagram [4–6] which includes
a normal gas region between the Mott Insulator and the
superfluid. The true signature of macroscopic superfluidity
is the δ-function momentum peaks with nearly unit visibility
[4]. Below critical temperature, the coexistence of superfluid
and normal gas in the homogeneous lattice system should
give rise to an interference pattern having a feature of
“peak on a peak” [5]. The new criterion of macroscopic
superfluidity makes it necessary to further investigate the phase
transition of bosonic atoms in an optical lattice, particularly
for the characteristics associated with the critical tempera-
ture and interference patterns. Experimental investigations
are also required for comparison with relevant theoretical
models.

There have been a few theoretical works [7–9] considering
the translationally invariant (uniform) lattices. However, in a
realistic experiment, an optical lattice is always accompanied
by harmonic confinement in all dimensions, arising from the
focused Gaussian laser beams and/or an external magnetic trap.
A bosonic gas is, therefore, never spatially uniform over the lat-
tice range. Wild et al. [10] have examined the critical tempera-
ture of the interacting bosons in a one-dimensional (1D) lattice
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with additional harmonic confinement. Ramakumar et al. [11]
have investigated the condensate fraction and specific heat of
noninteracting bosons in 1D, two-dimensional (2D), and 3D
lattices in the presence of harmonic potentials. Based on a
piecewise analytic density of states extended to excited bands,
Blakie et al. [12] developed an analytical expression of the
critical temperature for an ideal bosonic gas in the combined
harmonic lattice potential, and compared the analytic result
with their numerical computations. However, these studies on
combined traps did not mention interference patterns of the
released bosonic gases. A more recent theoretical paper [13]
has investigated the Bose-Einstein condensation (BEC) in a
3D inhomogeneous optical lattice system, and predicted that a
bimodal structure in the momentum-space density profile is a
universal indicator of BEC transition.

The experiment of Spielman et al. [14] has examined the
superfluid to normal transition for a finite-sized 2D optical
lattice system. Their measurements confirm that bimodal
momentum distributions are associated with the superfluid
phase. For such a system with a typical density of 1 atom
per lattice site, the phase transition behavior can be interpreted
in terms of the commonly used Bose-Hubbard model.

Unlike the 2D and 3D cases, an inhomogeneous 1D optical
lattice system is usually much more heavily populated, with
an atomic number up to several hundreds in a single lattice
site. In the superfluid phase, the on-site interaction energy
U varies from site to site because of its dependence on
the local population in single lattice sites. This increases
the complexity in searching for an analytical description
of the phase transition. In this paper we present a study
of the critical temperature and interference patterns of an
ultracold bosonic gas confined by a 1D optical lattice and an
additional magnetic potential. The interference patterns of the
normal gas and the condensed atoms are treated separately. The
superposition of the two parts gives rise to a feature of “peak
on a peak.” Different from a homogeneous lattice system,
however, the normal gas cannot produce sharp interference
peaks. Furthermore, the theoretical results are compared with
our preliminary experiment for a 1D lattice system of 87Rb
Bose-Einstein condensates.
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Our theoretical model relevant to the phase transition is
for ideal bosonic gases. In fact, interatomic interaction may
affect the shape of the interference pattern, especially for
the condensed part which has a higher atomic density. In
order to obtain a better match with the experiment result,
we take the interaction energy into consideration for the
condensed atoms during the time of flight. The computed
result shows that interference peaks arising from the condensed
atoms can be significantly broadened due to the interaction
effect.

This paper is organized as follows. In Sec. II, we begin
with a semiclassical energy spectrum for a combined harmonic
lattice trap. Under the tight-binding approximation and in the
low-energy limit, we derive an analytical expression of the
critical temperature for the atoms condensed to a superfluid
state. The accuracy of the analytical results are checked with
respect to the numerical calculations. Section III gives a
description on how the interference patterns are calculated
for the normal gas, as well as the Bose condensed gas. In
Sec. IV, we briefly introduce the experiment, and present the
observed interference patterns for a comparison with our the-
oretical results. Finally in Sec. V, we summarize the obtained
results.

II. CRITICAL TEMPERATURE

We now consider an ideal Bose gas confined in a 3D
harmonic potential with axial symmetry around the z direction.
The axial and transverse trapping frequencies are ωz and
ωx = ωy = ω⊥, respectively. Moreover, we assume that the
axial confinement is much weaker than the radial confinement
(ωz � ω⊥), so that the Bose gas is made cigar shaped. A
1D optical lattice potential, V0 sin2(kz), is applied along the
z axis, where k = π/d is the wave vector of the lattice light, d
denotes the lattice period, and V0 denotes the potential depth
of the lattice. V0 can be written in terms of the recoil energy
Er , say, V0 = sEr , where Er = h̄2k2/2m, and m is the atomic
mass. The harmonic potential, together with the optical lattice,
forms a combined trap written as

V (x,y,z) = 1
2mω2

⊥(x2 + y2) + 1
2mω2

zz
2 + V0 sin2(kz). (1)

In practice, an optical lattice is usually produced by a
retroreflected Gaussian laser beam which also produces a
transverse confining potential that can be simply absorbed
into ω⊥ if it is non-negligible.

To obtain the eigenenergies of the combined trap system,
one needs to derive the single-particle Hamiltonian of the
system and then numerically diagonalize it [12]. Despite its
accuracy for ideal Bose gases, this numerical method cannot
provide an analytic expression of the energy levels. The
energy spectrum corresponding to the transverse confinement
is described by equally spaced harmonic-oscillator states,
whereas the oscillator treatment is not applicable to the axial
dimension due to the presence of the optical lattice. Our dis-
cussion hereafter is based on the tight-binding approximation
that only the ground band is accessible to the system. This
approximation is valid when the thermal energy of the atoms
is much less than the first band gap of a deep lattice. For a 1D
uniform lattice, the eigen energy can be written as a function of
quasimomentum q [15], ε(q) = 1

2h̄ω̃ − 2J cos(qd/h̄). Here,

ω̃ is the frequency of the local oscillation at each lattice well,
while J is the tunneling energy due to the hopping to a nearest
neighboring well, and it depends upon the lattice depth s in
the following form [15]:

J = 4√
π

Ers
3/4 exp(−2

√
s). (2)

It should be noted that Eq. (2) is valid only for deep lattices.
At s = 11, for example, it overestimates J by approximately
18%. For the combined trap, it is a reasonable assumption
that Eq. (2) remains valid as long as the trapping frequency
ωz of the weak axial confinement is much smaller than the
tunneling rate J/h̄. We are thus able to use a constant J over
the entire lattice system at a given lattice depth. For simplicity
the energy spectrum corresponding to the combined confine-
ment in the axial direction is approximated by the semiclassical
energy, ε(pz) + 1

2mω2
zz

2, in the z-pz phase space, where
pz is the quasimomentum in the ground band. Now we
are able to write the total energy spectrum in an explicit
form:

εnxny
(z,pz) = h̄ω⊥(nx + ny + 1) + 1

2mω2
zz

2

+ 1
2h̄ω̃z − 2J cos(pzd/h̄), (3)

where {nx,ny} are non-negative integers.
For a semiclassical description of this system, we treat the

harmonic trap semiclassically while treating the optical lattice
quantum mechanically. Such a picture corresponds to a density
distribution of the thermal cloud:

n(z) =
∑
nx,ny

∫
dpz

2πh̄
F (pz,z)Md

∣∣�pz
(z)

∣∣2
, (4)

where

F (pz,z) = 1

exp
[
β
(
εnxny

− µ
)] − 1

,

and

�pz
(z) = 1√

M

M/2∑
l=−M/2

w(z − ld) exp(ipzz/h̄).

Here, �pz
is the normalized wave function of a uniform optical

lattice system with an extension of M lattice sites, and w(z −
ld) is the Wannier wave function. The total number of thermal
atoms is then written as

Nth =
∫

n(z) dz =
∑
nx,ny

∫
dpzdz

2πh̄
F (pz,z)Md

∣∣�pz
(z)

∣∣2
. (5)

In the tight-binding limit, w(z) is well localized within a
single lattice site. In contrast, F (pz,z) is a slowly varying
function of z. Therefore, �pz

(z) in Eq. (5) can be integrated
out. This results in a new integrand expressed as a summation
of discrete F (pz,z − ld)d, which in turn can be approximated
as an integral over z. By doing so, one gets

Nth =
∑
nx,ny

∫
dpzdz

2πh̄
F (pz,z). (6)
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Below a critical temperature Tc the chemical potential µ of
the Bose gas reaches the bottom of the ground band,

µ → µc = h̄ω⊥ + 1
2h̄ω̃z − 2J,

while the lowest state with pz = 0 becomes macroscopically
populated which corresponds to the onset of Bose-Einstein
condensation. The condensed atoms exhibit macroscopic
superfluidity, whereas all other atoms beyond the lowest state
form a so-called normal gas. Since the condensate is actually
a quantum fluid, we use “superfluid” just as a synonym of
BEC. The atomic number of the normal gas is given by
the sum,

Nnc = N − Nc =
∑
nx,ny

∫
1

exp
[
β
(
εnxny

− µc

)] − 1

dpzdz

2πh̄
,

(7)

where N is the total number of the atoms, Nc the atomic
number of the condensed part, β = 1/kBT , and kB the
Boltzmann constant. The integrand can be expanded in powers
of the exponential term using the formula 1/(ex − 1) =∑∞

n=1 e−nx . Moreover, the sum over nx , ny can be replaced
by an integral if the atomic number N is large. Performing the
integration over nx , ny as well as that over the coordinate z,
one gets

N − Nc = 1

(βh̄ω⊥)2

∞∑
n=1

1

n2

(
2π

nβmω2
z

)1/2

×
∫

dpz

2πh̄
exp{−nβ[2J − 2J cos(pzd/h̄)]}, (8)

and the right side is a function of temperature T . Apparently,
Eq. (8) is suitable for numerical calculation of the atomic
number in the normal gas since the integration can be simply
replaced by a summation over the pz region.

By imposing that Nc = 0 at the transition, Eq. (8) deter-
mines a critical temperature Tc for a given N . Apparently,
to obtain the value of Tc, one needs to carry out numerical
computations based on Eq. (8). Nevertheless, we can derive
an analytic expression of Tc in a limiting case. When the
temperature of the Bose gas is so low that most atoms occupy
the states in the vicinity of the bottom of the ground band, the
relation pz � h̄/d holds, and the cosine function in Eq. (8)
can be expanded to the order of p2

z . With the pz-dependent
function integrated out, one has

N = (kBTc/h̄ω)3(m∗/m)1/2ζ (3),

where ω = (ω2
⊥ωz)1/3 is the geometric average of the trapping

frequencies, m∗ = h̄2/2Jd2 the effective mass of the atom,
and ζ (α) = ∑∞

n=1 1/nα the Riemann zeta function. Finally,
one gets

kBTc = 0.94h̄ωN1/3(m/m∗)1/6, (9)

which can be used as an analytic estimation of the critical
temperature.

We recall that an ideal Bose gas trapped in a 3D harmonic
potential undergoes the phase transition to Bose-Einstein
condensation at a temperature [16] kBTc = 0.94h̄ωN1/3. Com-
paring this expression with Eq. (9), one can see that Tc is

FIG. 1. Critical temperature Tc versus the total number of 87Rb
atoms. The solid curve and the dashed curve are obtained from the
numerical calculation of Eq. (8) and the analytical approximation
of Tc [Eq. (9)], respectively. The dotted line gives the full numer-
ical result by diagonalizing the single-particle Hamiltonian. The
lattice parameters are d = 400 nm and s = 11.2 Er . The trapping
frequencies of the harmonic potential are ω⊥ = 2π × 83.7 Hz and
ωz = 2π × 7.63 Hz, respectively.

changed by a factor of (m/m∗)1/6 due to the presence of
the 1D lattice. Since m∗ is always larger than m [4] under
tight-binding approximation, the combined trap Tc is actually
reduced compared to the case without lattice. Note also that a
homogeneous 3D lattice system has a reduced Tc as well [4],
but with a reducing factor

√
m/m∗ instead.

We have calculated the critical temperature Tc for a 87Rb
gas in the combined trap (see Fig. 1). The trap parameters
are intentionally chosen to match our experiment which will
be described in the later section. The numerically calculated
Tc is displayed by the solid curve, while the dashed curve
is the analytic Tc calculated according to Eq. (9). The
discrepancy between the two curves becomes larger as the
atom number N is increased, showing that the accuracy of
the analytic estimation becomes worse for larger N . We
thus use only the numerically calculated Tc in the following
computations.

It is well known that an ideal Bose gas in a 3D harmonic
potential shows a T dependence of the condensate fraction
as Nc ∼ 1 − (T/Tc)3 for T < Tc. We have also calculated
the condensate fraction for our combined trap system with
5 × 104 atoms, as shown by the solid line in Fig. 2. It
displays a noticeable deviation from the curve of 1 − (T/Tc)3,
but fits well to the characteristic shape, 1 − (T/Tc)α , with
α = 2.679.

To justify our analytical approximation, we also calculate
the critical temperature and condensate fraction based on the
diagonalization of the single-particle Hamiltonian. The energy
spectrum of the system is written as

εnxnynz
= h̄ω⊥(nx + ny + 1) + εnz

. (10)
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LÜ, TAN, WANG, CAO, AND XIONG PHYSICAL REVIEW A 82, 053629 (2010)

FIG. 2. Condensate fraction as a function of T/Tc. Solid
line shows numerical results based on Eq. (8). Dotted line
is the full numerical result based on diagonalizing the single-
particle Hamiltonian. The dash-dot line is 1 − (T/Tc)3 for T � Tc.
The parameters of the combined trap are the same as in Fig. 1, and
the atomic number is N = 5 × 104, corresponding to Tc = 47.9 nK.

εnz
can be obtained numerically from the following single-

particle Hamiltonian along the z direction,

Ĥz = −J

2

∑
〈i,j〉

(̂a†
i âj + âi â

†
j ) +

∑
i

εi â
†
i âi . (11)

Here εi describes an energy offset at each lattice site due
to the presence of the harmonic trap along the z direction.
By diagonalizing the matrix 〈i|Ĥz|j 〉, one can get directly the
energy spectrum εnz

. Furthermore, with the following formula,

N =
∑

nx,ny ,nz

1

e(εnxnynz −µ)/kBT − 1
, (12)

we give the full numerical results of the critical temperature
and condensate fraction by the dotted lines in Figs. 1
and 2, respectively. Clearly, our semiclassical treatment agrees
with the full numerical method, and proves to be reliable.
Furthermore, it offers a convenient way to analyze the spatial
distribution of a confined atomic cloud, which in turn simplifies
the calculation of interference patterns.

III. INTERFERENCE PEAKS

When the combined trap is suddenly shut off at the moment
t = 0, the Bose gas starts to expand freely. After a time of
flight τ , the expanded wave packets initially localized in
single lattice wells overlap with each other, forming a 3D
density distribution. In the following calculation, the x and
y dependence of the atomic density will be integrated out so
as to obtain a density profile along the z direction only. This
is convenient for making a comparison with the experimental
results. Usually, an absorption image is used to record the
column density profile of a released atomic cloud. Supposing
that the probe laser beam is applied along the direction of the
x axis, the density profile along z can be easily obtained by
integrating the column density over the y dimension.

A. Normal gas

In the combined trap, normal gas atoms are distributed
over the transverse harmonic modes labeled by a positive
quantum number q = nx + ny . For a given q, there are q + 1
degenerate states, and we hereafter call them substates. The
summation over nx and ny in the previously mentioned
equations is thus equivalent to

∑
q(q + 1) . . .. From Eq. (7),

one sees that the substates belonging to the same q number
have identical populations and spatial distribution along the
z direction. Due to optical lattice potential, atoms in a
single substate are further distributed over the Bloch states
with different quasimomentum pz with pz/h̄ ∈ (−π/d,π/d).
Each pz component can be treated semiclassically where
the influence of the optical lattice is given by a quantum
wave-packet description, while the influence of the harmonic
trap along the z direction is treated semiclassically. In such a
picture, the single-particle wave function of a pz component
at t = 0 takes the following form:

�q
pz

(t = 0) =
∑

l

α
q

l w(z − ld) exp(ipzz/h̄), (13)

where (αq

l )2 denotes the probability for a particle roughly
located in the lth lattice site for the transverse harmonic
mode q.

Equation (7) shows that the atomic density of a substate
with pz has an envelope as

n(z) = �pz

2πh̄

1

eβ[qh̄ω⊥+2J (1−cos(pzd/h̄))+ 1
2 mω2

z z
2] − 1

, (14)

where �pz denotes a small interval of pz. The atom number
in the lth lattice site is then

nl = d�pz

2πh̄

1

eβ[qh̄ω⊥+2J (1−cos(pzd/h̄))+ 1
2 mω2

z d
2l2] − 1

. (15)

Therefore, α
q

l is simply given by (αq

l )2 = nl/Nq , with Nq =∑
l nl being the total atom number of the pz component in the

substate of interest. In principle, α
q

l should be determined
by solving the Schrodinger equation of Hz. However, as
shown lately, the thermal average of in-trap density written
in terms of |αp

l |2 is matched to the expression obtained
by semiclassical approximation, hence within semiclassical
approximation |αq

l |2 can be identified to (αq

l )2 = nl/Nq .
In the tight-binding limit w(z) can be well approximated

by a Gaussian wave packet (πσ 2)−1/4 exp(−z2/2σ 2), where
σ = √

h̄/mω̃z is the oscillator length. After the free expansion
over a time of τ , the single-particle wave function of the atoms
with pz is written as

�q
pz

(t = τ ) =
∑

l

α
q

l

∫
K(z,z′,τ )w(z′ − ld) exp(ipzz

′/h̄) dz′.

(16)

Here, K(z,z′,τ ) = 〈z| exp(−iHτ/h̄)|z′〉 is the propagator,
with H the Hamiltonian governing the expansion process.
If the interatomic interaction is neglected, H contains only
the kinetic energy, say, H = P 2

z /2m. In this case, it is
straightforward to get

K(z,z′,τ ) =
√

m

i2πh̄τ
exp

[
im

2h̄τ
(z − z′)2

]
. (17)
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For simplicity of expression and calculation, we will use
dimensionless units for the length in z, the quasimomentum
pz and the time t by the replacement z → zd (and hence σ →
σd), pz → pzh̄/d, and t → t(2md2/h̄). Inserting Eq. (17)
into Eq. (16), and working out the integration over z′,

one gets

�q
pz

(t = τ ) = A
∑

l

α
q

l B(pz,l,z), (18)

with A and B given by

A = π−1/4(σ + i2τ/σ )−1/2,

B(pz,l,z) = exp

[
(2τ + iσ 2)

{ − 2τσ 2p2
z + 2σ 2zpz + i[4lpzτ + (z − l)2]

}
2(σ 4 + 4τ 2)

]
.

Taking into consideration all transverse modes and all pz

components, one gets the atom density after the time of flight,

nnc(z) =
∞∑

q=1

∑
pz

(q + 1)Nq

∣∣�q
pz

(t = τ )
∣∣2

= |A|2
∞∑

q=1

∑
pz

(q + 1)

∣∣∣∣∣∑
l

√
nlB(pz,l,z)

∣∣∣∣∣
2

. (19)

In the numerical calculations of Eq. (19), the summation over
transverse modes is cut off at q = 200, while n is cut off at 30
and lattice number l at ±350. These cutoff numbers are chosen
to assure a high accuracy better than 0.2% in the calculations
of atom numbers. By setting �pz to 0.05π , the whole pz range
is divided into 40 intervals. This step size of pz has the order
of h/dM , where M � 100 is the typical spatial extent in the
z direction. We have also checked that the calculated results
have almost no change when further reducing �pz. The step
size in z is set to be 18d (7.2 µm), comparable to the pixel
size of 9 µm in our experiment.

In Fig. 3(a) we show the numerical results of a normal gas
of 87Rb atoms after 30 ms of time of flight. It is obvious that
the normal gas leads to three peaks in the atomic distribution
along the z dimension. However, these peaks are not sharp,
and, close to the Tc, the side peaks are not even well resolved.
In contrast, a normal gas initially trapped in a 3D homogenous
lattice system gives rise to much sharper peaks [4].

We now define a visibility for the side peaks as in Ref. [17]:

v = nA − nB

nA − nB

, (20)

where nA is the atomic density of the side peak, and nB is
atomic density at the minimum between the central peak and
the side peak. From Fig. 3(b) it can be seen that the visibility
v is well below 1 at a considerable fraction of the normal
gas. Although v can reach 0.8 at a very low temperature of
T = 0.1Tc ∼ 5 nK, only about 0.1% of the atoms remain in
the normal gas state while all other atoms are condensed.
Actually, it is hard to detect such a small number of atoms
using the conventional absorption imaging method.

B. Condensed gas

Unlike the normal gas, Bose-condensed atoms in the
combined trap occupy the lowest state of q = 0 and pile to
a small quasimomentum interval of pz = 0. Nevertheless, the

normal gas propagator holds also for the condensed gas. In
analogy with the calculations for the normal gas, one can
derive the single-particle wave function of the condensed gas

FIG. 3. (a) The solid lines are the calculated atomic distribution
of the normal gas (87Rb) after 30 ms of time of flight. The total atom
number N = 5.9 × 104, and the trap parameters are the same as
in Fig. 1, corresponding to Tc = 51.1 nK. For the top two curves,
the temperature T/Tc is 0.98 and 0.95, respectively. The other nine
curves, from top to bottom, are for T/Tc ranging from 0.9 to 0.1
with a step of 0.1. Vertical scales of the curves have been adjusted
so that the central peaks have roughly the same height. (b) Solid
circles represent the visibility of the side peaks in (a). The solid curve
connecting the points is added to guide the eye. Open circles show
the normal gas fraction for the given total atom number.
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after the time of flight,

�0(t = τ ) = A(τ )
∑

k

αkB0(k,z), (21)

where k denotes the kth lattice well, α2
k is the probability of an

atom staying in the kth well, and

B0(k,z) = exp

[
(i2τ − σ 2)(z − k)2

2(σ 4 + 4τ 2)

]
.

Note that, in the two formulas above, τ , z, and σ are in their
dimensionless form.

In the tight-binding limit, condensed atoms in the combined
trap form an array of subcondensates along the z axis. Each
subcondensate is a 2D quantum gas in nature, and its density
distribution in the radial dimensions is described by a Thomas-
Fermi profile [18]. The local chemical potential associated
with the repulsive interaction of the atoms depends upon the
average atom number in the following form [19]:

µloc
k =

√
gmω2

⊥Nk√
2π3/2σ

. (22)

Here, Nk is the average atom number in the kth lattice well,
and g = 4πh̄2a/m is the interaction parameter with a the
s-wave scattering length. The sum of µloc

k and the external
harmonic potential (1/2)mω2

zz
2 is just the chemical potential

which should remain invariant throughout the entire condensed
gas at equilibrium. Accordingly, Nk is given by

Nk = (15Nc/16kM )
(
1 − k2/k2

M

)2
, (23)

where kM labels the outermost lattice well populated with
condensed atoms, and it is written as [18]

k2
M = 2h̄ω

mω2
zd

2

(
15Nc

8
√

π

a

aho

d

σ

)2/5

. (24)

If we neglect the mean-field interaction of the condensed gas
during the free expansion time, the density distribution after the
TOF can be directly derived from the coherent superposition
of the expanded subcondensates:

nc(z) = |A(τ )|2
∣∣∣∣∣

kM∑
k=−kM

√
NkB0(k,z)

∣∣∣∣∣
2

. (25)

For the condensed gas before expansion, due to the high
atomic density, µloc

k /h is in the order of several hundred
Hertz. Although the atomic density drops quickly during
the TOF, we still expect that mean-field interaction might
lead to a considerable change in the coherence property
of the expanding atomic clouds. For simplicity, we only
consider the mean-field interaction within the single expanding
subcondensates, and neglect the interaction between them.
At the beginning of the TOF, the combined trap is suddenly
turned off. Therefore, the total energy of the kth subcondensate
includes only the mean-field energy at this moment, that is,

Ek = Eint = (1/2)UkN
2
k .

Here, Uk = g
∫ |�k(r,z)|4dzdr is the on-site interaction ma-

trix element of the kth subcondensate when confined in the

combined trap. Using the analytic form of �k(r,z), we can get
the expression of Uk in terms of the trap parameters:

Uk = 1

3

(
2

π

)3/4
√

gmω2
⊥

σNk

. (26)

Its dependence on Nk is due to the fact that the atomic number
affects the Thomas-Fermi radius of the radial wave function.
At later times, the total energy Ek remains constant despite
the fact that the interaction energy is being converted into
kinetic energy. Then, the corresponding chemical potential is
simply given by µk = ∂Ek/∂Nk = µloc

k /2. Over the total time
of flight, the kth subcondensate acquires an additional phase
factor exp(−iµkτ/h̄). Consequently, we can write the density
distribution at the end of TOF by just inserting this phase factor
into Eq. (25):

nc(z) = |A(τ )|2
∣∣∣∣∣

kM∑
k=−kM

√
Nk exp(−iµkτ/h̄)B0(k,z)

∣∣∣∣∣
2

. (27)

From this equation one sees that µk will affect nc(z) by its
nonuniformity. In Fig. 4(a), we plot two curves calculated,
respectively, with Eqs. (25) and (27) for a condensed gas of
2.5 × 104 atoms. When the mean-field interaction is included,
all three interference peaks are significantly broadened by
about a factor of two. Since the mean-field interaction is non-
negligible, all the theoretical interference patterns mentioned
hereafter are computed by Eq. (27).

In Fig. 4(b), we plot the calculated density distributions
of the condensed gases at different temperatures for a fixed
total atomic number and a fixed lattice depth. With decreased
temperature, the condensate contains more atoms, leading to
wider interference peaks due to mean-field interactions. Unlike
a normal gas, a condensed gas always shows fully resolved
interference peaks, with a high visibility very close to 100%.
This characteristic behavior can be easily understood as the
global coherence of condensed atoms in a superfluid state.
Additionally, these peaks are considerably narrower than that
of the corresponding normal gases, except the extreme cases
of very low temperatures that the normal-gas atom number
is very small and hardly detectable. When one measures the
interference pattern of a mixture of the condensed gas and a
normal gas, one would see three narrow peaks riding on three
broad peaks. This is the so-called “peak on a peak” structure
which was first predicted for a homogeneous system [4,5].
For an inhomogeneous system in the combined tap, the onset
of the condensed gas is also characterized by the “peak on a
peak” structure.

On the other hand, if the condensed gas undergoes only a
ballistic expansion during the TOF (no mean-field interaction),
the relative intensity of the side peaks with respect to the central
one should obey a simple law [18]: P1 = exp(−4/

√
s). We

check the data in Fig. 4(b) (P1 = 0.303 for s = 11.2), and find
that the side peak intensities agree well with P1 (to within
2%). It seems that the analytic expression of P1 is also valid in
the case of the existence of mean-field interaction during the
expansion time.
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FIG. 4. Atomic distribution of the condensed gases after 30 ms
of time of flight. The total atom number and the trap parameters are
the same as in Fig. 3. (a) The dashed (solid) line is the result for
T = 0.7 Tc with (without) a consideration of the mean-field inter-
action during TOF. (b) These curves are calculated from Eq. (27).
From the top curve to the bottom one, the temperature is decreased
in sequence, with the same values as in Fig. 3. Vertical scales of the
curves have been adjusted so that the central peaks have the same
height.

IV. EXPERIMENT

In experiment, we create a cigar-shaped 87Rb condensate
in the hyperfine state |F = 2,MF = 2〉, confined in a conven-
tional quadrupole Ioffe configuration (QUIC) trap with an axial
trapping frequency of ωz = 2π × 18.7 Hz and radial trapping
frequency of ω⊥ = 2π × 205 Hz. A nearly pure condensate
contains approximately 2 × 105 atoms. If the frequency of the
rf knife for evaporation cooling is ramped down further, we
can obtain a condensate with a lower temperature at the cost
of decreased atomic numbers. Certainly, the temperature is
hard to measure because there are almost no thermal atoms
remained. Nevertheless, we are able to coarsely adjust the
temperature of the cold atomic sample using the rf knife. After
the evaporation cooling, the QUIC trap is adiabatically relaxed
until the axial and radial trapping frequencies are lowered

to ω⊥ = 2π × 83.7 Hz and ωz = 2π × 7.63 Hz, respectively.
Accordingly, the spatial extension of the condensate wave
packet is increased by a factor of 2.45, so as to cover more
lattice periods at later times. The optical lattice is formed
by one retroreflected laser beam which is derived from a
Ti:sapphire laser at a wavelength of λ = 800 nm and focused
to a 1/e2 radius of 300 µm. It is applied to the condensate
along the long axis, and it is ramped up to a given intensity
over a time of 50 ms and held at this value for 10 ms. The
sum of the optical lattice and the QUIC trap potential gives a
combined trap in accord with Eq. (1). The potential depth of the
optical lattice is calibrated using the method of Kapitza-Dirac
scattering [17]. We then suddenly switch off the combined trap
and allow the cold atomic sample to expand freely for a time of
30 ms. Finally, we take an absorption image of the expanded
atomic gas using a CCD camera, from which we can deduce
both the total atom number and the atomic density distribution.

The “peak on a peak” features of interference patterns
were confirmed by the measured linear densities of expanded
atomic clouds in many runs of experiments. The black curves
in Figs. 5(a)–5(c) display three typical density distributions
which were obtained by integrating the pixels in each column
of the corresponding absorption image. The calculated critical
temperature Tc is usually in the order of several tens of nK.
In contrast, during the evaporative cooling stage, the critical
temperature for condensation in the QUIC trap is much higher
(∼400 nK). Actually, the experiment reported in [20] showed
clearly a significantly decreased critical temperature for a
combined trap when compared with a purely magnetic trap.

To test our theory, the temperature of the atomic sample
before expansion must be known. It can be deduced from the
transverse distribution of the normal gas after the TOF, which
should take a Gaussian profile due to the initially thermal
occupation of the transverse modes. Since the condensate part
should take a Thomas-Fermi profile in the transverse direction,
a bimodal transverse distribution is expected for a released
gas, just as shown in Fig. 6. However, a measured temperature
based on this method usually has a large uncertainty due to
the following reasons. First, in the transverse direction, the
spatial extent of the condensate is not very distinct from that
of the normal gas, especially when the condensate fraction is
large. Second, the normal gas density profile deviates from
an ideal Gaussian shape, and exhibits a slight asymmetry that
may arise from the misalignment between the lattice light and
the magnetic trap. Third, the optical noise in the absorption
images also lowers the fitting accuracy. As pointed out in
[21], an atomic sample can be significantly heated or cooled
when adiabatically loaded to an optical lattice. Yet, to date, we
have no alternative methods for accurate measurement of the
temperature of an atomic sample confined in a lattice system.
We have to treat temperature as a fitting parameter in the
calculation, so that the calculated density distribution most
closely reproduces the experimental curve.

The gray curves in Fig. 5 are the calculated density
distributions of cold rubidium gases. Figure 5(a) is a case
with a smaller atom number, and the fitting curve agrees
fairly well with the experimental data. Figure 5(b) displays the
interference pattern of another atomic sample initially confined
in a deeper lattice, and the side peaks are more prominent.
As a comparison, the atomic sample in Fig. 5(c) contains
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FIG. 5. Density distribution of two typical atomic samples of
87Rb. Black curves are the measured linear density of the released
87Rb atoms after a 30-ms TOF. Gray curves are the calculated
results based on Eqs. (19) and (27), where temperature is used as
a fitting parameter. The dotted curves in (b) and (c) are the calculated
results based on measured temperature values. Their vertical scales
have been adjusted for comparison with the black curves. (a) The
measured total atom number and lattice depth are N � 5.3 × 104 and
s � 5.6, respectively, corresponding to Tc = 55.9 nK. T = 44.7 nK
is assumed in the computation. (b) N � 5.9 × 104, s � 11.2 and
Tc = 51.1 nK; T = 33 nK for the gray line and T = 37.4 nK for
the dotted line. (c) N � 1.1 × 105, s � 16.7, and Tc = 63.0 nK;
T = 55 nK for the gray line and T = 49.3 nK for the dotted line.
(d) N � 2 × 105, s � 20, and Tc = 76.5 nK; T = 73.4 nK for the
gray line.

more atoms and the lattice depth was further increased.
Accordingly, the calculated Tc shifts up to 63 nK. Since
the normal gas density is increased, the feature of “peak
on a peak” is more pronounced. In (b) and (c), we also
plot the density distributions calculated using the measured
temperature values. The larger deviation from the measured
density profiles should be attributed to the inaccuracy of
temperature.

Despite the overall agreement between the theoretical and
experimental curves in Fig. 5, there are still noticeable dis-
crepancies. As the lattice depth increases, theoretical normal
gas peaks become broader than the measured density profiles.
As shown in Fig. 5(d), the gray line does not match the
black curve, particularly at the wings of the normal gas. For
this atomic sample, the temperature is close to Tc, and the
condensate peaks are hence very small. The mismatch between
the theory and experiment indicates that our model is not valid
for very deep optical lattices. This can be easily understood by
comparing the tunneling energy J to the energy offset between
adjacent lattice sites induced by harmonic potential. For a
cloud with an extension of lMd, this energy offset is mω2

zd
2lM

FIG. 6. Density distributions in the transverse dimension for the
same atomic cloud as in Fig. 5(b). The black curve is the integration
along the axial direction of the central peak. The gray curve is a
bimodal fitting of the black curve, which represents a superposition
of a Gaussian profile and a Thomas-Fermi profile (inverted parabola).
The rms size of the Gaussian part gives a temperature of 37.4 nK.
(Inset) The absorption image of this atomic cloud.

at the site of lM . A typical value of lM = 200 corresponds
to an energy offset of 2πh̄ × 16 Hz, whereas J decreases
with increased lattice depth. For s = 20 as in Fig. 5(d),
J � 2πh̄ × 10 Hz. When J gets smaller than the energy offset
between adjacent lattice sites, normal gas atoms are essentially
localized and the semiclassical analysis breaks down. We
have also calculated the Tc’s for situations of s � 20, using
the diagonalization method and semiclassical approximation,
respectively. We do find significant discrepancy between
the predictions of these two methods. In such situations,
an atomic cloud should be treated as a chain of separate
condensates, where the loss of condensate is interpreted as the
loss of well-to-well phase coherence [17]. At a depth level of
s � 30, we observed a complete disappearance of interference
peaks.

On the other hand, in our model, the interatomic interactions
during TOF are taken into account for the subcondensates
individually. This amounts to neglecting the variation of the
wave-function modulus induced by the interactions between
subcondensates. The fluctuations of the wave-function modu-
lus are related to the relative phase of the subcondensates, and
hence affect their phase coherence, leading to variations of the
interference peak of the condensates. Evidently, the calculated
condensate peaks are slightly wider than the measured ones
(see Fig. 5). Perhaps the neglected interactions are favorable
for establishing a uniform phase which partially cancels the
phase nonuniformity discussed in Sec. III B. Since we have
not found a simple model to account for it, this effect will not
be discussed in detail in this paper.

V. CONCLUSION

We have performed a study, both theoretically and
experimentally, on the phase transition to macroscopic
superfluidity for a Bose gas confined in a combined trap
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formed by a harmonic potential and an optical lattice. We
have mainly investigated the interference patterns of the Bose
gases below the critical temperature. By using a semiclassical
energy spectrum and tight-binding approximation, we have
derived an analytical approximation of the critical temperature
which is applicable to an atomic gas residing in the vicinity
of the bottom of the ground Bloch band. Furthermore, the
interference patterns of the normal gas and the condensed
gas were analyzed separately. We have derived the analytical
expressions of the atomic density distribution for the released
normal gas and condensed gas which has experienced a
free expansion over a time of flight. Our calculation results
show that a condensed gas is characterized by fully resolved
narrow interference peaks while a normal gas forms broad
interference peaks with lower visibility. For comparison, we
have performed a preliminary experiment using Bose-Einstein
condensates of 87Rb atoms. The combined trap system was

implemented by applying a 1D optical lattice to a magnetically
trapped condensate. The measured interference pattern agrees
essentially with our theoretical prediction, exhibiting “peak
on a peak” structures associated with the onset of condensed
gases. Thus, both the theoretical and experimental results
confirm that the “peak on a peak” structure is indeed a signature
of macroscopic superfluidity in our inhomogeneous lattice
system.
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