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Hidden vortices in a Bose-Einstein condensate in a rotating double-well potential
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We study vortex formation in a Bose-Einstein condensate in a rotating double-well potential. In addition to the
ordinary quantized vortices and elusive ghost vortices, “hidden” vortices are found distributed along the central
barrier. These hidden vortices are invisible like ghost vortices but carry angular momentum. Moreover, their
core size is not given by the healing length, but is strongly influenced by the external potential. We find that the
Feynman rule can be well satisfied only after including the hidden vortices. There is no critical rotation frequency
for the formation of hidden vortices while there is one for the formation of ordinary visible vortices. Hidden
vortices can be revealed in the free expansion of Bose-Einstein condensates. In addition, the hidden vortices in a
Bose-Einstein condensate can appear in other external potentials, such as a rotating anisotropic toroidal trap.
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I. INTRODUCTION

The double-well (DW) potential is an important model
potential for its simplicity and yet richness in physics. The
properties of Bose-Einstein condensates (BECs) in a DW
potential have been studied extensively since the realization
of BECs [1]. With the advances of technology, DW potentials
for ultracold atoms can now be realized in experiments
with great controllability and precision [2—4]. One particular
interesting development is the possibility of rotating a DW
potential via radiofrequency dressing [5]. This opens the
door to a study of the behavior of vortices in a degenerate
quantum gas in arotating DW potential. As topological defects,
quantized vortices have contributed greatly to revealing the
phase coherence, superfluidity, and nonlinear phenomena in
degenerate quantum gases, and have been the subject of
extensive experimental and theoretical studies [6-23].

The DW potential also offers a unique testing ground for
the well-known Feynman rule of vortices [24]. The Feynman
rule is a very powerful relation that links the total number
of vortices with the angular frequency of rotation. Feynman
argued that for a rotating superfluid with angular frequency
2, the superfluid should be regarded as a classical fluid
when it reaches the steady state. This leads to the important
mathematical relation that the total number of vortices N, in
an area A is linearly proportional to 2, 2nhN,/m = 2QA.
Alternatively, the Feynman rule can expressed as [, /i = N, /2
with [, being the mean angular momentum per atom at
equilibrium [14,15,24,25]. This rule was formulated originally
for uniform superfluid helium, and has been intensively studied
both theoretically [25,26] and experimentally [9,10] for a BEC
trapped in a single harmonic potential. It is interesting to
know how the rule fares in a more complicated geometric
confinement. The DW potential provides a clear opportunity
to answer this question.

In this paper we describe a comprehensive two-dimensional
(2D) numerical study of vortex formation in a BEC in
a rotating DW potential. We find, surprisingly, that the
in situ density distribution seems to violate the Feynman rule
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significantly in that the total number of vortices with visible
cores is significantly smaller than 2/, /. With the belief that the
Feynman rule should hold in some form, we carefully analyze
the results and find that these “missing” vortices are distributed
along the central barrier of the DW potential. Unlike the usual
vortex, these vortices have no visible cores but have phase
singularities, and their core size is not given by the healing
length but is strongly influenced by the external potential. For
this reason, they may be called “hidden vortices.” With the
inclusion of the hidden vortices, one recovers the Feynman
rule.

These hidden vortices remind us of the ghost vortices
found numerically in Ref. [25]. In general, for the case of a
simply connected trap the ghost vortices lie at the outskirts
of the condensate and for the case of multiply connected
trap the ghost vortices are in the outer region of the cloud,
where the particle density |l//|2 is very small. As a result, like
hidden vortices, they show up in numerical results as phase
singularities but have no visible cores. However, there are key
differences: the ghost vortex carries no angular momentum
while the hidden vortex does; the core size of the ghost vortex
is determined by the healing length as for the usual visible
vortex while that of the hidden vortex is determined by the
shape of the external potential. In addition, we find that with
increasing rotation frequency €2 the hidden vortices appear first
in the DW system, followed by ghost vortices and the usual
visible vortices. Furthermore, angular momentum can be put
gradually into the BEC via the generation of hidden vortices
while the emergence of a visible vortex is still accompanied
by a jump in the system’s angular momentum. Although the
hidden vortices are invisible in the in situ density distribution,
after free expansion of the BEC, they can appear in the density
distribution because of their stable topological structure.

It is well known that there exists a special type of vortex
called a Josephson vortex (or fluxon) in a long superconducting
Josephson junction [27] or between two weakly coupled BECs
[28,29]. These Josephson vortices can be regarded as hidden
vortices. However, the hidden vortex is a more general notion
than the Josephson vortex (fluxon) as a hidden vortex can exist
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in a non-DW potential (or non-Josephson structure). We have
used a rotating anisotropic toroidal trap to illustrate this point.

This paper is organized as follows. In Sec. II, we present
a phenomenological model to describe the dynamics of a
BEC confined in a rotating DW potential in the presence
of dissipation. Hidden vortices are found in the rotating DW
BEC, where the Feynman rule is satisfied only after inclusion
of these hidden vortices. A simple and feasible scheme is
proposed to observe the hidden vortices. In Sec. III, we study
the vortex formation process and the critical rotation frequency
in the rotating DW BEC. In Sec. IV, we discuss the hidden
vortices in a BEC confined in a rotating anisotropic toroidal
trap. Section V provides a summary and discussion.

II. HIDDEN VORTICES IN A ROTATING DW
BEC AND FEYNMAN RULE

We consider the situation where the condensate is tightly
confined in the axial direction (w,,w, < ;) so that the system
is effectively two dimensional. The DW potential is described
by
X%+ 2%y?

4
where Vj and o are the height and width of the potential barrier,
respectively, and A = w, /w, denotes the anisotropy parameter
of the harmonic trap. In the presence of dissipation, the order
parameter in the frame rotating with the angular velocity €2
around the z axis obeys the time-dependent Gross-Pitaevskii
equation

0
(= = [(V2 4 92) 4 Vow +elyP - QLY. @

Vow(x,y) = + Voe 2, (1)

Here L, = i(yd, — xd,) is the z component of the angular-
momentum operator, y characterizes the degree of dissipation,
and c is the 2D interatomic interaction strength. In this work,
length, time, energy, angular momentum, and rotation angular
frequency are in units of dy = /h/2mw,, 1/w,, ho,, h, and
wy, respectively. The phenomenological dissipation model (2)
is a variation of that in Ref. [25]. For the case of a BEC in a
rotating harmonic trap, our computation results agree well with
the experimental observations in Ref. [8] and the simulation
results in Ref. [25].

In our calculations, we first obtain the initial ground-state
order parameter in the DW potential by the imaginary time
propagation method [30-32] for 2 = 0. The vortex formation
process is then studied by solving Eq. (2) numerically with
different Q. Here we consider a BEC of 8’Rb atoms with
repulsive interaction. The system parameters are chosen to
be wy = w, =27 x40 Hz, o, =27 x 800 Hz, V, = 40,
o = 0.5, c = 600. In Eq. (2), variation of the nonzero y only
influences the relaxation time scale but does not change the
dynamics of vortex formation and the ultimate steady vortex
structure. In our computation, we choose y = 0.03, which
corresponds to a temperature of about 0.17, [33].

Figure 1(a) shows the steady density distribution |y|* at
t = 250 for a DW potential rotating with € = 0.9. From this
in situ density distribution, we see a pair of ordinary vortex
lattices with triangular structure as expected from the rotating
DW configuration. However, by simply counting, we find
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FIG. 1. (Color online) (a) Density distribution | |* and (b) phase
distribution of i at t = 250 after rotating the system with & = 0.9.
(c) I, versus N, /2 for different 2, where the line is [, = N,/2 =
(N, + Nj,) /2 and the solid circles denote the numerical results. The
value of the phase varies continuously from 0 to 27. The darker color
area indicates lower density or phase. The small derivation between
the line and the circles in (c) may be due to the inhomogeneous
condensate density [25]. Here x and y are in units of dy, /; is in units
of /1, and 2 is in units of w,.

something surprising. In Fig. 1(a), the total number of vortices
is N, = 18. Numerical results show that the mean angular
momentum per atom I, = [[ Y*L ydxdy/ [[ |¥|* dxdy is
about [, =& 16 > N,/2. It seems that the Feynman rule
[14,15,24,25] is no longer satisfied. For other rotation frequen-
cies, this seemingly significant violation of Feynman rule is
also found. With the belief that the Feynman rule should always
hold, this violation indicates that some angular momentum is
missing and is not manifested in the form of ordinary vortices.

To find the missing angular momentum, we look into the
phase distribution of ¥ (x,y,r = 250), which is plotted in
Fig. 1(b). We find that in addition to the phase singularities
corresponding to the above mentioned vortices, there are
other phase defects, distributed along the central barrier and
the outskirts of the cloud. The initial reaction is that these
phase defects, which are invisible in the in situ density
distribution, are ghost vortices as discussed in Ref. [25]. Since
ghost vortices are known not to carry angular momentum,
it seems that these invisible phase defects cannot account
for the missing angular momentum. However, a more careful
examination shows otherwise.

The phase singularities along the central barrier are not
ghost vortices and they carry angular momentum. To see this,
we assume N, is the total number of phase singularities along
the central barrier, and N; = (N, + N,,) is the sum of N, and
Np,. From Fig. 1(b), we have N, = 16. If we include these,
the Feynman rule I, ~ N, /2 = (N, + N;,)/2 is well satisfied,
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indicating that these phase singularities do carry angular
momentum like the usual visible vortices. We have checked
other rotation frequencies and found that the Feynman rule can
always be well satisfied by including the phase defects along
the central barrier. In Fig. 1(c), we have plotted the dependence
of I, on N,/2 for different rotation angular frequencies. The
solid line is the Feynman rule [, = N, /2 while the solid circles
are the numerical results for /; at equilibrium. The excellent
agreement between them strongly supports that phase singu-
larities along the central barrier carry angular momentum,
and thus are not ghost vortices. We call these topological
defects along the central barrier hidden vortices because of
their difference from the ordinary vortex and the ghost vortex.

Two factors are involved in why a hidden vortex carries
angular momentum while a ghost vortex does not: location
and core size. To see this, we consider a phase defect with
a singly quantized circulation in the condensate. The angular
momentum carried by this phase defect varies with the location
asl, ~ (1 — r?/R?) [14], where R is the size of the condensate
and r is the distance from the center. Since a ghost vortex
always lies on the outer region of the condensate, meaning
r ~ R, its contribution to angular momentum is negligible.
For a hidden vortex, which is located near the center of
the condensate, we have r < R. Therefore, its contribution
to the angular momentum is significant and needs to be
counted for the Feynman rule. Furthermore, the core size of
a nonhidden vortex is about the healing length & = /1/nc
(n is the local density of the condensate without vortices).
Since n is very small for a ghost vortex, the core size of a
ghost vortex approaches an infinite value. As a result, ghost
vortices contribute to neither the angular momentum nor the
energy of the system. For a hidden vortex, n is also very small at
its location. However, its core size is determined by the barrier
width, not the healing length. Therefore, a hidden vortex can
contribute to the angular momentum. With the local density
approximation, our numerical calculations do show that the
hidden vortices carry significant angular momentum while the
angular momentum due to a ghost vortex can be neglected.

Even though the hidden vortices are invisible in the in situ
density distribution as shown in Fig. 1(a), we find numerically
that they show up in the cloud after free expansion (see the
following discussion). This makes it possible to observe and
test the existence of these hidden vortices experimentally.

We use the state shown in Figs. 1(a) and 1(b) as an
example. After a short expansion time, the state begins to look
very different. In Fig. 2, the density distribution and phase
distribution at the expansion time T = 4 are plotted. We see
clearly in Figs. 2(a) and 2(b) that, in addition to 18 vortices
already shown in the in situ density distribution [see Fig. 1(a)],
a series of new ordinary vortices appear along the symmetric
axis of the two condensates. These new visible vortices
originate physically from the hidden vortices. It is not difficult
to understand the revelation of the hidden vortices during the
free expansion. The core of a vortex (hidden, ghost, or visible)
is also a velocity singularity, where the velocity approaches
infinity. Because the kinetic energy should be finite, during
free expansion where the angular momentum is conserved,
no atoms will be allowed into the core area. As a result, the
core is stable and will not be destroyed. At the same time, as
the two BECs begin to overlap, atoms begin to move into the
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FIG. 2. (Color online) (a) Density distribution, (b) density con-
tour, and (c) phase distribution after the cloud expands freely for
T = 4. Before the free expansion, the system has rotated with 2 = 0.9
for t = 250. The darker color area or contour indicates lower density
or phase. Here x and y are in units of dj.

central region and fill the space between hidden vortex cores,
rendering them visible. Not all hidden vortices can be revealed
during free expansion. As shown in Fig. 2(c), there still exist
several remnant hidden vortices along the boundary between
the two flows, which is due to the strong repulsion and pushing
of the newly formed visible vortices during the expansion.

Because the ghost vortices lie on the outskirts, the locations
of their phase defects move outward during the free expansion.
Consequently, the density in the regime of the ghost vortices
is always negligible. This is the reason that the ghost vortices
will not become visible vortices during the expansion.

III. VORTEX FORMATION PROCESS AND CRITICAL
ROTATION FREQUENCY FOR A
ROTATING DW BEC

The vortex formation process with the rotating DW poten-
tial is very different from that with a single harmonic potential.
There is a critical angular frequency for a rotating single-well
potential to create vortices: when the angular frequency €2 is
below the critical angular frequency, only ghost vortices are
formed at the outskirts of the BEC cloud and the cloud does not
carry any significant angular momentum; when €2 is larger than
the critical frequency, visible vortices begin to appear along
with a jump in the angular momentum [25]. For the rotating
DW system, the vortex formation starts with a pair of hidden
vortices. As seen in Figs. 3(a)-3(e), the hidden vortex pair
begin their formation at the ends of the potential barrier, then
move toward the center. This is followed by a sequence of other
hidden vortex pairs. Ghost vortices begin to appear only after
several pairs of hidden vortices are already formed. Eventually
at the critical rotation frequency 2. = 0.59, a pair of ordinary
visible vortices are formed [see Fig. 3(f)], accompanied by a
jump in the system’s angular momentum [see Fig. 3(g)].

The dependence of the angular momentum per atom, [,
on the rotation frequency 2 is shown in Fig. 3(g). It is
clear from the figure that the angular momentum /, increases
gradually and continuously with € until a jump occurs at
Q. = 0.59. Along with Figs. 3(a)-3(e), this shows that the
hidden vortices can gradually increase the system’s angular
momentum as they move toward the center. The ghost vortex
has no capacity to carry angular momentum. As demonstrated
clearly in Figs. 3(d) and 3(e), even as a pair of ghost vortices
move toward the center and eventually become a pair of
ordinary visible vortices, the change in the angular momentum
is very sudden as witnessed by the jump in Fig. 3(g).
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FIG. 3. (Color online) Phase distributions of i at t = 250 for
different rotation frequencies: (a) 2 = 0.1; (b) 2 =0.12; (¢) 2 =
0.5; (d) Q2 = 0.58; (e) Q2 = 0.59. (f) The density distribution |y |? at
t = 250 for 2 = 0.59. (g) Angular momentum per atom /, versus 2.
The darker color area indicates lower phase or density. Here x and y
are in units of dy, [, is in units of 72, and €2 is in units of w,.

By virtue of the data fit, another interesting feature in
Fig. 3(g) is that, for Q < ., [, increases linearly; in contrast,
for Q > Q., I, grows exponentially. These two different
regimes marked by linear and perfectly exponential growth
are likely associated with the fact that the hidden vortices only
form along the central barrier but the ordinary visible vortices
can emerge in the whole region of the cloud.

IV. HIDDEN VORTICES IN A BEC CONFINED IN A
ROTATING TOROIDAL TRAP

Hidden vortices can exist in non-DW potentials. To illus-
trate this point, we consider a BEC confined in a rotating
toroidal trap. The toroidal trap is given by

2 2

4

where o characterizes the anisotropy of the 2D central barrier
in the toroidal trap. & = 1 corresponds to a circular toroidal
trap, which has recently been studied by Aftalion et al. [34].
In addition, Piazza et al. [23] investigated the vortex-induced
phase-slip dissipation in an isotropic toroidal BEC flowing
through a barrier. We focus on an anisotropic (deformed)
toroidal trap (o # 1), where the lack of rotation symmetry
excludes the possibility of formation of a multiquantized
vortex (giant vortex) in the center of the trap for sufficiently
large rotation frequency €2 and sufficiently narrow barrier. The

VTT(XJ’) — + Voe*(axZerz/a)/Zaz ’ 3)
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FIG. 4. (Color online) Density distributions | |? (left) and phase
distributions of y (right) at = 250 for a toroidal trap rotating with
€ = 0.6 (top) and 2 = 0.9 (bottom). The corresponding parameters
are Vy =40, =0.8,0 =1, y =0.03, and ¢ = 600. The value of
the phase varies continuously from 0 to 27. The darker color area
indicates lower density or phase. Here x and y are in units of d,.

numerical procedure for this toroidal trap is identical to the DW
potential. In Fig. 4 we display the steady density distributions
|1//|2 (left) and the corresponding phase distributions of v
(right) at r = 250 for an anisotropic toroidal trap rotating
with Q = 0.6 (top) and 2 = 0.9 (bottom). The parameters
are Vo =40, =0.8,0 =1, y = 0.03, and ¢ = 600.

At Q2 = 0.6, two visible vortices appear in the in situ
density distribution as shown in Fig. 4(a). Moreover, there is
an ellipsoidal density hole in the trap center which looks like
a giant vortex. In the phase distribution displayed in Fig. 4(b),
we see that as well as two phase singularities corresponding to
the two visible vortices, there are other phase defects, which
are distributed along the long axis of the central barrier and
at the outskirts of the cloud. The four singly quantized phase
defects along the long axis of the central barrier show that the
ellipsoidal density hole is not a giant vortex. Our numerical
simulation further indicates that the four single-quantized
phase defects carry angular momentum and satisfy the
Feynman rule together with the two visible vortices.
Therefore, they are four singly quantized hidden vortices.
On the other hand, the phase defects at the outskirts of the
cloud are ghost vortices because they contribute no angular
momentum to the system.

With increase of the rotation frequency, more vortices
nucleate and a triangular vortex lattice forms eventually [see
Fig. 4(c)]. At the same time, as shown in Fig. 4(d), more hidden
vortices also show up in the central barrier region, e.g., there
are six hidden vortices for 2 = 0.9. However, these hidden
vortices do not form a triangular lattice, and they are still
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FIG. 5. (Color online) Local enlargement of (a) Fig. 4(b) and
(b) Fig. 4(d), where the circles mark the positions of hidden vortices.
Here x and y are in units of dj.

distributed along the long axis of the ellipsoidal central barrier.
This shows from another perspective that the hidden vortex is
different from the usual visible vortex. Local enlargements of
Figs. 4(b) and 4(d) are given in Fig. 5, where the circles denote
the positions of hidden vortices.

Note that in our simulation we did not observe the
generation of vortex-antivortex pairs in the double-well
case and the toroidal trap, as were reported, respectively,
in Ref. [35] and Ref. [23]. For the double-well case, it is
because there was no free expansion in Ref. [35] so that
the extra energy caused by removing the central barrier is
used to create vortex-antivortex pairs. In the toroidal trap, the
vortex-antivortex pairs seen in Ref. [23] are suppressed by the
dissipation term in our simulation.

V. DISCUSSION AND SUMMARY

In summary, we have investigated numerically the forma-
tion of vortices in a rotating double-well potential. We found
that, other than the usual visible and ghost vortices, there exists
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another type of vortex, which we call a hidden vortex. Unlike
the usual visible vortex, these hidden vortices are invisible in
the in situ density distribution. They differ also from the ghost
vortex by being able to carry angular momentum. In addition,
the core size of the hidden vortex is not given by the healing
length and is strongly influenced by the shape of the external
potential. Only after inclusion of the hidden vortices can the
Feynman rule be satisfied.

The hidden vortex has appeared in the literature under other
names. Examples are the magnetic fluxons in a superconduct-
ing long Josephson junction in a parallel magnetic field [27],
Josephson vortices between two long parallel coupled atomic
BECs [28], and rotational fluxons of BECs in rotating coplanar
double-ring traps [29]. The giant vortices (sometimes called
“phantom vortices™) in a cylindrical hard-walled bucket or a
quadratic plus quartic trap [36] or a circular toroidal trap [34]
can also be regarded as a form of hidden vortex. However, as
we have illustrated in the preceding section with an anisotropic
toroidal trap, hidden vortices can occur in many settings
other than the previously mentioned structure or potentials.
Therefore, the hidden vortex is a more general notion that
encompass all the essential features of the Josephson and
giant vortices. At the same time, these names, such as
the Josephson vortex and giant vortex, each coined for a
special potential, show that it is necessary to distinguish the
hidden vortex from the usual visible vortex and the ghost
vortex.
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