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Full counting statistics of the interference contrast from independent Bose-Einstein condensates
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We show that the visibility in interference experiments with Bose-Einstein condensates is directly related to the
condensate fraction. The probability distribution of the contrast over many runs of an interference experiment thus
gives the full counting statistics of the condensed atom number. For two-dimensional Bose gases, we discuss the
universal behavior of the probability distribution in the superfluid regime and provide analytical expressions for
the distributions for both homogeneous and harmonically trapped samples. They are non-Gaussian and unimodal
with a variance that is directly related to the superfluid density. In general, the visibility is a self-averaging
observable only in the presence of long-range phase coherence. Close to the transition temperature, the visibility
distribution reflects the universal order-parameter distribution in the vicinity of the critical point.
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I. INTRODUCTION

Interference experiments constitute an invaluable tool for
the characterization of the coherence properties of ultracold
gases [1–3]. These properties are particularly intriguing in
the case of ultracold one- or two-dimensional (1D or 2D)
Bose gases [4–6]. Due to strong phase fluctuations, both
the 1D gas at zero temperature and the 2D gas at finite
temperature exhibit only quasi-long-range order; that is, the
one-body density matrix which measures long-range phase
coherence decays as a power law instead of converging to a
finite constant for long distances. Due to the quantum nature
of the interfering matter fields, the measured visibility is a
random variable that differs from one experimental run to
another. For the case of 1D Bose gases at zero temperature,
the probability distribution of the interference contrast has
been calculated analytically for arbitrary strong interactions,
using a mapping to the exactly solvable boundary sine-Gordon
theory [7]. In the weak coupling limit, it turns out to be a
Gumbel distribution [8,9]. Numerical data calculated within
the same theoretical framework, but at finite temperature, are
in good agreement with experiment [10].

Here we reconsider the issue of the statistics of the
interference contrast for Bose-Einstein condensates in arbi-
trary dimension, discussing in particular the 2D case and
the connection between long-range order and self-averaging.
We show that the probability distribution of the interference
contrast is identical to that of the condensate fraction in
the limit of a large integration volume in the absorption
images. The resulting distributions therefore provide the
precise counting statistics for the number of condensed
atoms [11]. The statistics of the condensate number has a
universal form in two limiting cases: at the critical point, as a
consequence of finite size scaling [12,13], and at temperatures
far below the critical temperature. We discuss both cases
and give analytical expressions for the distribution for the
latter. Specifically, for 2D Bose gases, the distribution at
temperatures T far below the critical temperature of the
Berezinskii-Kosterlitz-Thouless (BKT) transition [14,15], is
controlled by the dimensionless parameter η(T ) = 1/nsλ

2
T ,

where ns is the superfluid density, and λT =
√

2πh̄2/mkBT

the thermal wavelength. The fluctuations around the average
visibility are determined by the superfluid density, a quantity

that is rather difficult to measure by other means [16]. For
a homogeneous square sample, we show that the probability
distribution of the interference contrast is close to a convolution
of two Gumbel distributions, similar to but different from the
Gumbel distribution that is obtained for the weakly interacting
limit of a 1D Bose gas at zero temperature [8,9]. Non-Gaussian
distributions are also found in harmonically trapped and
strongly anisotropic 2D gases, in qualitative agreement with
preliminary data taken at the Ecole normale supérieure (ENS)
in Paris [17]. The principal focus of this article is on the
physics of 2D Bose gases, but we highlight the differences and
similarities to the 3D case as well as the 1D case at vanishing
temperature.

This article is organized as follows. In Sec. II, we introduce
the physical system and discuss the connection between the
measured distribution of the interference contrast and that of
the condensed fraction. In Sec. III we use a functional integral
description for explicit analytical or numerical calculations
of the visibility distribution in the regime where phase
fluctuations are dominant. In particular, we discuss the general
form of the probability distribution in terms of its cumulants
and the issue of self-averaging. Section IV is devoted to the
explicit analytical calculation of the probability distribution in
the 2D case far below the BKT transition temperature for both
a homogeneous system and a harmonically trapped sample.
In Sec. V, we discuss the scaling behavior of the probability
distribution of the interference contrast at the critical point,
where the average visibility vanishes. The 1D case and the
anomalous fluctuations of the condensate fraction in 3D are
discussed in the appendices.

II. INTERFERENCE STATISTICS

Typical interference experiments with 2D Bose gases (e.g.,
[2,18]) start out by preparing a pair of such gases confined to
the lowest transverse mode in the z direction and separated by a
distance d in the z direction. The atoms are then released from
the trap and imaged after an adjustable free expansion time
using absorption imaging (time-of-flight measurement). When
the trapping potentials are cut off, the gases rapidly expand in
the z direction while the density distribution as a function of x

and y can approximately be regarded as constant. Within this
initial expansion period, there is no transformation of phase
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FIG. 1. (Color online) Illustration of the experimental situation
in the 2D case. After a time t of rapid expansion, two identical Bose
gases overlap and interfere. The interference pattern is characterized
by its iso-phase surfaces. Three surfaces having all the same phase
are shown for illustration, the pattern itself continues all over the
vertical extension of the sample, as suggested by the continuation
dots above and below the shown surfaces. The sample is imaged
using an absorption beam in the y direction.

fluctuations into density fluctuations, which only sets in at a
later stage [19]. Due to the rapid expansion along z, the gases
completely overlap after a time t of the order of 20 ms for
typical traps. The difference between their phases then results
in a spatially modulated interference pattern (see Fig. 1).

The operator for the atomic density after time of flight at
an observation point x can be written as [20]

n̂(x) = n0(z)[n̂1(r) + n̂2(r) + Â(r)eiQz + H.c.]. (1)

Here n0(z) is an envelope function (i.e., a normalized function
of z which has a negligible Fourier component at the wave
number Q of the expansion), n̂1,2 are the in situ (i.e.,
before time of flight) density operators of the individual
gases, Q = md/h̄t is the wave vector associated with the
ballistic expansion, and Â(r) = ψ̂

†
1(r)ψ̂2(r) is the operator

that determines the local interference amplitude. Here and in
the following, we use r to denote a point in the trap before time
of flight and x for observation points after time of flight [6].

In a given experimental run, the measured density distri-
bution n(x) corresponds to an eigenstate of the Hermitian
operator n̂(x) and Â(r) can be replaced by a complex number
A = V(r)eiφ(r). The resulting density can then be written
in the standard form n0(x)(1 + V(r) cos{Q[z − z0(r)]}) of
an interference pattern with the local visibility V(r) = |A|
and a spatially varying shift z0(r) = −φ(r)/Q. When the
interference pattern is integrated over a finite volume, spatial
variations of both V(r) (caused by density fluctuations) and
z0(r) (caused by phase fluctuations) lead to a reduction of the
integrated visibility V . The height function z0 defines a surface
in real space, the iso-phase surface. In 1D or 2D, there is one
unique iso-phase surface which is repeated over the entire ex-
tension of the sample (cf. Fig. 1). In 3D, z0 depends on all three
spatial coordinates and the shape of the iso-phase surfaces is
different for different phase values. Provided that density fluc-
tuations are negligible, which is always the case in the strongly
degenerate regime [21], the integrated interference contrast is
completely determined by the shape of the iso-phase surfaces.

The interference amplitude in a given run of the experiment
can be extracted from the measured density n(x) by taking the
Fourier transform along z and evaluating it at the wave vector
Q, where the magnitude of the local interference amplitude,

AQ(x,y) =
∫

dzn(x)e−iQz, (2)

takes its maximum. This yields a complex number which
contains the random relative phase between the two clouds.
Its average over many runs will therefore vanish. Here we are
interested in the modulus square of AQ, which determines the
observed visibility of the interference fringes. Experimentally,
the local amplitude |AQ(x,y)|2 is not a directly accessible
quantity since the absorption imaging automatically integrates
over the y direction. In practice, the averaged interference
contrast is obtained by extending the domain of integration
over a volume � that typically covers the entire sample. It is
then convenient to define an operator,

α̂ =
∫

�

d3x

∫
�

d3x ′n̂(x)n̂(x′)e−iQ(z−z′), (3)

whose eigenvalues represent the magnitude of the integrated
contrast in an individual run [20]. In terms of the basic in-trap
field operators, this operator can be expressed by

α̂ =
∫

�

ddrddr ′ψ̂†
1(r)ψ̂1(r ′)ψ̂2(r)ψ̂†

2(r ′). (4)

Now, in a homogeneous condensate, the one-body density
matrix ψ̂

†
i (r)ψ̂i(r ′) approaches a constant on length scales

|r − r ′| larger than the healing length. Moreover, one has
ψ̂2(r)ψ̂†

2(r ′) ≈ ψ̂
†
2(r ′)ψ̂2(r) up to corrections that vanish like

1/�. As a result, the operator

α̂ � �−2

(∫
ddrddr ′ψ̂†

1(r)ψ̂1(r ′)
)

×
(∫

ddrddr ′ψ̂†
2(r)ψ̂2(r ′)

)
= N̂

(1)
0 N̂

(2)
0 , (5)

whose eigenvalues determine the measured interference con-
trast in a given run, is equal to the product of the number of
condensed atoms,

N̂
(i)
0 = �−1

∫
ddrddr ′ψ̂†

i (r)ψ̂i(r ′), (6)

within the integration volume � of each initial condensate. It
is important to emphasize that this argument does not rely on
the presence of true long-range phase coherence. In particular,
it is valid for 2D Bose gases at finite and 1D Bose gases at zero
temperature, where the one particle density matrix approaches
a finite value ñ0 on scales much larger than the interparticle
spacing. The eventual algebraic decay to zero only appears
at distances beyond a phase coherence length �φ that is still
much larger. For an integration volume that contains a large
number of particles N � 1 and identically prepared samples,
therefore, the operator α̂ is just the square of the condensed
atom number in each sample. The eigenvalues α of α̂, which
are the experimental observables according to the standard
rules of quantum mechanics, thus may take any value between
zero and N2, where N is the number of atoms in either of the
two samples. The measured integrated density as a function of
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z varies between 2N − 2
√

α and 2N + 2
√

α. The visibility V
is therefore simply

√
α/N , or

V2 = α

N2
=
(

N0

N

)2

. (7)

The measured distribution of the visibility thus directly reflects
that of the condensate fraction.

Our aim in the following is to calculate the probability
distribution for the different positive eigenvalues α of α̂.
For a given many-body state characterized by a density
operator ρ̂, the associated probability distribution is just
p(α) = 〈α|ρ̂|α〉. Mathematically, it is more convenient to
calculate its characteristic function

p(σ ) ≡
∫ ∞

−∞
dα p(α)eiσα = Tr[ρ̂eiσ α̂] = 〈eiσ α̂〉. (8)

To proceed further, we replace eiσ α̂ with its normal-ordered
counterpart :eiσ α̂ :. This approximation neglects commutator
terms which describe the effect of atomic shot noise [22]
and are of relative order 1/N [8]. Since typical integration
volumes for a measurement of the interference contrast contain
N ∼ 103 atoms at least, this approximation is valid up to
corrections of less than 1% . A convenient representation for
the calculation of the characteristic function (8) is obtained by
evaluating the trace in terms of coherent states. This gives rise
to a functional integral,

p(σ ) = (N1N2)−1
∫

D(ψ̄1,ψ1)D(ψ̄2,ψ2)e−S1[ψ̄1,ψ1]−S2[ψ̄2,ψ2]

× exp

[
iσ

∣∣∣∣
∫

ddrψ̄1(r)ψ2(r)

∣∣∣∣
2
]

, (9)

over bosonic c-number fields ψ(r,τ ), which are periodic in
the interval τ = [0,β]. (Here and in the following, we adopt
units in which h̄ = kB = 1.) Here S1,2 are the respective
actions for the interacting Bose gases 1,2, while Ni =∫
D(ψ̄i,ψi) exp(−Si[ψ̄i,ψi]) are normalization factors. Due to

our normal-ordering approximation, the fields in the last expo-
nential do not vary with τ , in contrast to the fields appearing in
the action, but are evaluated at τ = 0. For notational simplicity,
ψi(r,0) ≡ ψi(r). By a simple redefinition of σ → σ/N2,
Eq. (9) gives the characteristic function for the square V2

of the visibility, which is a direct measure of the interference
contrast.

Within the functional integral, it is convenient to switch
to the density-phase representation ψi(r) = √

ni(r)eiϕi (r) for
the c-number fields. In this representation, the square of the
visibility V2 reads

V2 = 1

N2

∫
ddrddr ′ψ̄1(r)ψ1(r ′)ψ2(r)ψ̄2(r ′)

= 1

N2

∫
ddrddr ′√n1(r)n1(r ′)n2(r)n2(r ′)

× ei{[ϕ2(r)−ϕ1(r)]−[ϕ2(r ′)−ϕ1(r ′)]}. (10)

In particular, for temperatures low enough that the influence of
density fluctuations around an average n̄(r) may be neglected,
the visibility

V2 ≈
∣∣∣∣ 1

N

∫
ddrn̄(r)ei[ϕ2(r)−ϕ1(r)]

∣∣∣∣
2

(11)

only depends on the phase difference φ ≡ ϕ2 − ϕ1.

III. INTERFERENCE CONTRAST AT LOW
TEMPERATURE

In the following, we assume that the two gases are identical
and describe each one using the quantum hydrodynamic action

S[ϕj ] =
∫ β

0
dτ

∫
ddr

{
ns(r)

2m
[∇ϕj (r,τ )]2

+ 1

2g
[∂τϕj (r,τ )]2

}
. (12)

Here β = 1/T is the inverse temperature, m is the atomic mass,
and g is a coupling constant, which is just the inverse of the
compressibility κ . Moreover, ns is the superfluid density, which
is inhomogeneous in trapped gases. The action (12) provides a
completely general low-energy description of superfluid Bose
gases. In particular, it describes 3D gases below the critical
temperature for Bose-Einstein condensation, 2D gases below
the BKT transition [14,15], and 1D gases at zero temperature.

Since V2 depends only on the phase difference, it is
advantageous to switch to a new set of variables:

� = ϕ2 + ϕ1

2
; φ = ϕ2 − ϕ1. (13)

In terms of these variables, the total action can be rearran-
ged as

S = S[ϕ1] + S[ϕ2] = 2S[�] + 1
2S[φ], (14)

which implies that the contribution depending on the total
average phase � cancels out in Eq. (9). The characteristic
function (9) can then be written as

p(σ ) = 1

N

∫
Dφe−S[φ]/2 exp

[
iσ

∣∣∣∣
∫

ddr

N
n̄(r)eiφ(r)

∣∣∣∣
2
]

,

(15)

with N = ∫ Dφ exp(−S[φ]/2). Note that a constant contribu-
tion in φ has no effect on the result since it cancels out when
taking the modulus square. In the following, we thus restrict
our analysis to functions without constant component, that is,∫

ddrφ(r) = 0.
For explicit calculations, we follow the technique used by

Imambekov et al. [8,9] and parametrize the functional integral
(15) by expanding φ in terms of the solutions of the imaginary
time Euler-Lagrange equation associated with the action (12),

∂2
τ φ(r,τ ) + g

m
∇ · [ns(r)∇φ(r,τ )] = 0, (16)

supplemented with appropriate spatial boundary conditions.
The bosonic nature of the field φ(r,τ ) requires that the
solutions satisfy φ(r,0) = φ(r,β). A separation ansatz readily
gives a family of solutions ψλ(r)e±ωλτ , where λ is a formal
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index labeling the eigenmodes. To satisfy the boundary
condition on τ , we use the expansion

φ(r,τ ) =
∑
λ 
=0

sλψλ(r)

(
eωλτ

eβωλ + 1
+ eβωλe−ωλτ

eβωλ + 1

)
. (17)

Factors have been chosen so that the parentheses evaluate to
unity at τ = 0 and τ = β.

Unless excluded by the boundary conditions, the Euler-
Lagrange equation always permits a solution ψ0(r) which is
constant and nonzero in space. Since the modes ψλ form a
complete orthonormal system,

∫
ddrψλ(r)ψλ′(r) = δλ,λ′ , this

implies that all further modes have a vanishing spatial average.
The condition

∫
ddrφ = 0 therefore translates to the omission

of the constant mode λ = 0.
Substituting the expansion (17) into the action yields a

diagonal quadratic form

S

2
=
∑
λ 
=0

s2
λ

2g
ωλ tanh

(
βωλ

2

)
. (18)

Introducing the dimensionless variables

tλ ≡ sλ

√
ωλ

g
tanh

(
βωλ

2

)
, (19)

the characteristic function can then be rewritten as

p(σ ) =
∏
λ 
=0

∫
dtλe

− t2
λ
2√

2π
exp

(
iσ

∣∣∣∣
∫

ddr

N
n̄(r)eih{tλ}(r)

∣∣∣∣
2
)

,

(20)

where

h{tλ}(r) = φ(r,0) =
∑
λ 
=0

√
g

ωλ

coth

(
βωλ

2

)
tλψλ(r) (21)

is the parametrized iso-phase surface. This expression has
already been derived by Imambekov et al. [9], starting from
the relationship between the moments of V2 and higher-order
correlation functions. The fluctuating surface h emerged as an
abstraction in their article. Here we see that it is just the shape
of the iso-phase surfaces.

Equations (20) (or rather, the expression for V2 appearing
therein) and (21) are well suited for numerical use: To
obtain a given realization of V2, one generates a large
number of Gaussian deviates for the amplitudes tλ, constructs
the corresponding surface h, and numerically calculates the
integral to obtain V2. Repeating this sequence with different
sets of amplitudes yields histograms for the possible values of
V2, whose shape approaches the actual probability distribution
as the number of iterations grows large.

Analytical results can be obtained in the limit of high con-
trasts, 1 − V2 � 1, where the iso-phase surfaces are smooth
and one may expand the exponential inside the definition of
V2. As is clear from Eq. (21), the expansion parameter is
given by

ε ≡ max
λ,r

√
g

ωλ

coth

(
βωλ

2

)
ψλ(r). (22)

In all cases that we encounter in the following, this maximum
is found for ωmin ≡ minλ 
=0 ωλ.

In the following, we focus on the regime where the
reduction of the visibility is dominated by thermal fluctuations
so that quantum fluctuations (caused by interactions) may be
neglected. Considering, in particular, a 2D Bose gas whose
characteristic size lz in the direction of transverse confinement
obeys lz � as , the effect of zero point fluctuations of the
phase on the reduction of the visibility can be determined
by a Bogoliubov calculation, which gives [21]

〈V2〉(T = 0) =
(

n0(0)

n

)2

= 1 − g̃2

2π
+ · · · . (23)

Here, g̃2 = mg2 = √
8πas/ lz is the dimensionless 2D inter-

action constant, which has typical values g̃2 = 0.1 [2,17],
which implies practically unit visibility at zero temperature.
By contrast, at finite temperature, the integrated visibility

〈V2〉(T ) − 〈V2〉(0) =
[

1 − 2η(T ) log

(
L

ξ

)]
(24)

decreases logarithmically with the size of the system, which
reflects the absence of long-range order at finite temperature
in the thermodynamic limit [23,24]. Since the size dependence
of the thermal depletion is only logarithmic, finite condensate
fractions may be found at low-enough temperature for realistic
system sizes.

In actual experiments, the temperature is usually large
compared to the typical frequencies ωλ, which are of the order
of the chemical potential µ. Then coth(βωλ/2) can be replaced
with 2T/ωλ and hence ε2 = 2gT maxλ,r ψλ(r)2/ω2

λ. Within
this approximation the effect of thermal phase fluctuations
scales linearly with temperature. For weakly interacting 2D
Bose gases, the necessary condition T � µ is well obeyed
even in the deeply degenerate regime because µ/T = g̃2/2π

at nλ2
T = O(1) [6]. Note that for g̃2 � 1 the conditions T � µ

and ε2 � 1 are simultaneously satisfied for the typical phase-
space densities nλ2

T that are reached in 2D Bose gases [25].
Quite generally, whether or not ε is small, that is, whether

a physical regime which permits such an expansion exists,
depends crucially on temperature and the spatial dimension
d. Because of normalization, the eigenfunctions ψλ scale
with the characteristic size L = �1/d of the system as L−d/2,
while the eigenfrequencies ωλ will scale as L−1, independent
of the dimensionality. It follows that ε scales as L1−d/2.
For concreteness, in a homogeneous system with periodic
boundary conditions,

ε2 = L2−d

π2

mT

ns
. (25)

For the case of 2D Bose gases, which is the main focus of
our work, ε2 = 2η(T )/π is independent of system size and is
determined by the exponent η(T ) = (nsλ

2
T )−1, which gives the

decay of the one-body density matrix.
For ε � 1, the exponent in Eq. (20) can be expanded in

the form

exp

⎛
⎝i
∑
λ 
=0

εtλ

⎞
⎠ � 1 + i

∑
λ 
=0

εtλ − 1

2

∑
λ,λ′ 
=0

ε2tλtλ′ , (26)

053622-4



FULL COUNTING STATISTICS OF THE INTERFERENCE . . . PHYSICAL REVIEW A 82, 053622 (2010)

since the variables tλ are of order one due to the Gaussian
weight factors e−t2

λ /2. Within this approximation, an exact
calculation of the distribution functions is possible. The
inclusion of the terms quadratic in ε leads to nontrivial
distributions instead of the Delta functions that result in leading
order in ε [8]. In the general case of an inhomogeneous system
with a spatially varying superfluid density ns(r), thermal phase
fluctuations lead to a reduction of the visibility from unity
(or—more precisely—from its value at zero temperature) of
the form

1 − V2 = 2gT

�

⎡
⎢⎣ ∑

λ,λ′ 
=0

tλtλ′

ωλωλ′
Iλ,λ′ −

⎛
⎝∑

λ 
=0

tλ

ωλ

Jλ

⎞
⎠

2
⎤
⎥⎦ , (27)

where � is the integration volume and

Iλ,λ′ = �

N

∫
ddrn̄(r)ψλ(r)ψλ′(r),

(28)

Jλ =
√

�

N

∫
ddrn̄(r)ψλ(r)

are dimensionless numbers. In a homogeneous system, Iλ,λ′ =
δλ,λ′ , and Jλ = 0 for any λ. In inhomogeneous systems, there
may be finite “off-diagonal” values for Iλ,λ′ and finite values
for Jλ.

For a discussion of some general features of the statistics
of the interference contrast like the dependence on dimen-
sionality and the related issue of self-averaging, we focus on
homogeneous systems (we discuss the experimentally relevant
trapped 2D system in Sec. IV C). It is then convenient to define

u ≡ 2

ε2
(1 − V2) =

∑
λ 
=0

t2
λ

ω̃2
λ

, (29)

where ε2 has been defined in Eq. (25) and ω̃λ ≡ ωλ/ωmin.
Note that the scaling factor 2/ε2 between 1 − V2 and u is
large compared to one. While the visibility takes values on
the interval [0,1], the auxiliary variable u has values on the
interval [0,∞] due to our expansion of eiφ(r). The characteristic
function

q(σ ) = 〈eiσu〉 =
∫ ∏

λ 
=0

dtλe
−t2

λ /2

√
2π

exp

⎛
⎝iσ

∑
λ 
=0

t2
λ

ω̃2
λ

⎞
⎠ (30)

of the probability distribution q(u) for the rescaled deviation
u of the visibility from unity is now readily evaluated to be

q(σ ) =
∏
λ 
=0

1√
1 − 2iσ/ω̃2

λ

. (31)

This evaluation ceases to be straightforward when Iλ,λ′ is not
diagonal, since it amounts to the calculation of the determinant
of an infinite matrix with a nontrivial entry structure.

The logarithm

log q(σ ) = 1

2

∞∑
s=1

(2iσ )s

s
ζ{λ}(s) =

∞∑
s=1

(iσ )s

s!
〈us〉c (32)

of the characteristic function q(σ ), which is the generating
function of the cumulants of u, can be expressed in terms of the

spectral ζ function ζ{λ}(s) ≡∑λ 
=0(ω̃2
λ)−s of the eigenfrequen-

cies of the quantum hydrodynamic action (12). In particular,
it determines all cumulants of the random variable u via

〈us〉c = 2s−1(s − 1)!ζ{λ}(s). (33)

Note that this calculation does not depend on the explicit form
of the eigenvalues and eigenfunctions: The geometry of the
system is completely contained in the factor between u and
1 − V2 and the spectral ζ function (for systems with diagonal
Iλ,λ′ ).

The precise form of the spectral ζ function obviously
depends on the geometry of the system and the spectrum that
follows from it, but the following properties are valid for any
homogeneous system: ζ{λ}(s) is a monotonically decreasing
function of its argument and has a lower bound (which is
reached in the limit s → ∞) equal to the degeneracy of ωmin

(note that this essential property cannot be reproduced when
one replaces the sum in ζ{λ}(s) with an integral). It follows
that for increasing s, the number of frequencies that make a
non-negligible contribution to the value of ζ{λ}(s) decreases so
that higher-order cumulants will essentially depend only on
a small number of low frequencies. However, we find that it
diverges for s = 1 in d � 2 and must be rendered finite by the
introduction of a UV cutoff.

Substituting back from Eq. (29), we obtain the cumulants
of V2 − 1 (which are identical to the cumulants of V2 except
for the expectation):

〈(V2 − 1)s〉c = (s − 1)!

2
(−ε2)sζ{λ}(s). (34)

As will be shown in Eq. (35) below, the spectral ζ function
remains finite for all s � 2 in all relevant cases, thus determin-
ing the finite size scaling behavior of all higher cumulants: In
d dimensions, the sth cumulant scales as Ls(2−d).

Specifically, we consider a homogeneous system in
d dimensions in a hypercubic volume � = Ld with
periodic boundary conditions. Then, ωk = c|k|, with k =
(2π/L)(l1, . . . ,ld ), where li ∈ Z, and the speed of sound
c = √

gns/m. The resulting spectral ζ function then reads

ζ{k}(s) =
∑

l1,...,ld

′ 1(
l2
1 + · · · + l2

d

)s =
∞∑

n=1

Ad (n)
1

ns
, (35)

where the prime on the sum indicates that the point l1 = · · · =
ld = 0 is omitted and Ad (n) is the number of possibilities to
represent the integer n as a sum of d squares (including squares
of negative numbers). The representation on the right-hand
side is a special case of a Dirichlet series which arises in
connections between number-theory and modular forms [26].

The expectation is then given by Eqs. (34) and (35) with
s = 1. However, simple power counting reveals that the spec-
tral ζ function is UV divergent at s = 1 in 2D and 3D. Since the
quantum hydrodynamic action (12) is an effective low-energy
description, however, this divergence is an artifact. It can be
avoided by introducing a cutoff at a maximum momentum
� = 2π/ξ , where ξ is the healing length. The necessity of
an explicit UV cutoff has the important consequence that
the expectation does not follow the scaling with system
size announced in Eq. (34): in 2D, the cutoff introduces a
logarithmic dependence on system size that would otherwise

053622-5



STEFFEN PATRICK RATH AND WILHELM ZWERGER PHYSICAL REVIEW A 82, 053622 (2010)

be absent so that the expectation takes on a nonuniversal
character. During the remainder of this article, we focus
on the higher cumulants (from the variance on), which are
universal.

Since the variance is independent of system size (as
are all higher cumulants) while the expectation vanishes
logarithmically as L → ∞, fluctuations are not self-averaging
in 2D and the regime 1 − V2 � 1 can only be reached in
finite-size systems (even if they may in fact be quite large due
to the weak logarithmic size dependence of the expectation).
This is in contrast to the 3D situation, where as a consequence
of true long-range order, the expectation is finite in the
thermodynamic limit while all higher cumulants decrease
with increasing system size. In this case, the visibility is a
self-averaging observable, that is, for large integration volumes
�, the value obtained in a single run is equal to an average
over many runs. In Sec. IV, we focus on system sizes where
the condensate depletion remains small and the visibility is
close to unity, that is, L � �φ = ξe1/2η(T ), and the system
is a true condensate rather than a quasicondensate [21]. The
opposite case is discussed in Sec. V.

The fact that all cumulants from the variance on are finite
and obey the scaling given in Eq. (34) implies that the
probability distribution p(V2) is universal and non-Gaussian.
The following section is devoted to the explicit analytic
calculation of this distribution in different geometries.

IV. ANALYTICAL RESULTS IN 2D

For a given geometry and boundary conditions, one
can always evaluate the spectral ζ function numerically.
Equation (34) then permits the calculation of an arbitrary
number of cumulants. However, this is not sufficient to
obtain an analytical expression for the underlying probability
distribution p(V2), which requires a closed-form expression
for ζ{λ}(s). This may be obtained in the 2D case for simple
geometries, which we discuss in this section.

In order to clarify the applicability of our results to
experiment, it is necessary to define what we mean by “2D”
in practice. We consider the two gases to be strongly confined
along the z direction with a trapping potential ωz which is
sufficiently strong to ensure ωz � T and ωz � µ so that the
gases reside in the harmonic oscillator ground state along the z

direction. However, the spatial extension lz = √
1/mωz shall

still be large compared to the scattering length as . This regime,
which is sometimes referred to as “quasi-2D” [27], accurately
describes the situation in typical experiments on cold atoms
where the tight confinement is realized using an optical
dipole potential [2,18,28–31]. It is particularly simple in that
the interaction may be described by a simple dimensionless
constant g̃ = mg = √

8πas/ lz (for not too strong interactions.
Here and in the following, we drop the subscript “2” for ease of
notation), whereas the interaction constant in a 2D system with
lz <∼ as depends on the chemical potential and thus effectively
on the spatial density [27].

The first case we discuss is that of a rectangle with periodic
boundary conditions. The latter are certainly artificial, but the
results are important from a conceptual point of view because
the calculation can be carried out in closed form. We discuss
two limiting cases of this particular case (isotropic and strongly

anisotropic) before moving on to the experimentally relevant
case of a harmonically trapped sample.

A. Homogeneous square sample

The conceptually and mathematically most elementary case
is the one where the gas is homogeneous and confined to
a rectangular area of extension L × aL, 0 < a � 1, with
periodic boundary conditions. First, we focus on the particular
case a = 1, that is, a square sample, but it is convenient to
introduce the notation directly in its slightly more general
form for arbitrary a. In this case, the eigenfunctions take the
simple form

ψ
(c)
k =

√
2

aL2
cos(k · r); ψ

(s)
k =

√
2

aL2
sin(k · r), (36)

with k = (2π/L) × (n1/a,n2) and n1,2 ∈ Z.
We may now give an explicit expression for the expansion

parameter ε defined in Eq. (22) and the relationship between
V2 and the auxiliary variable u. For this particular set of
eigenfunctions and eigenvalues,

ε2 = 1

aπ2

mT

ns
= 2

πa
η(T ); u = 2

ε2
(1 − V2). (37)

Quite remarkably, ε and hence the entire probability distri-
bution p(V2) have no explicit dependence on the interaction
constant g, which is hidden in the nontrivial relation between
the superfluid density that enters η(T ) and the bare 2D density
n. For weakly interacting Bose gases, this relation has been
worked out in [32].

As we already stated, the calculation of a closed-form
expression for the probability distribution p(V2) requires a
closed-form expression for ζ

(a)
{k} . It turns out that in 2D and

in the absence of a high-k cutoff ζ
(1)
{k} is a special case of a

lattice sum first calculated by Lorenz [33] and Hardy [34],
who showed that

ζ
(1)
{k} (s) =

∑
l1,l2

′ 1(
l2
1 + l2

2

)s = 4ζ (s)β(s), (38)

where the prime on the sum signifies that the value l1 = l2 =
0 must be omitted (for a derivation of Eq. (38), see [35]).
Here, ζ (s) =∑∞

k=1 k−s is the Riemann ζ function and β(s) =∑∞
l=0(−1)l/(2l + 1)s is the Dirichlet β function. As already

stated, (38) is undefined for s = 1 since the Riemann ζ function
diverges; that is, the expectation of u cannot be calculated
without a UV cutoff. For s � 2, that is, for all cumulants
except the expectation, (38) is finite. The introduction of a
high-k cutoff will only cause small deviations since the sums
are infrared-dominated and we may write

log q(σ ) = iσ 〈u〉 + 2
∞∑

s=2

(2iσ )s

s
ζ (s)β(s), (39)

where 〈u〉 is evaluated using a finite cutoff. The different UV
behavior of the expectation and the higher-order cumulants
has the consequence that the probability distribution for u is
universal except for a cutoff-dependent shift. Thus, the variable
u − 〈u〉 has values on the entire real axis. As long as the
resulting probability distribution takes on negligible values
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TABLE I. The first four relevant values of the Dirichlet β function.

s 2 3 4 5

β(s) 0.915 966 0.968 946 0.988 945 0.996 158

for values of u corresponding to visibilities outside the interval
[0,1], this does not create any inconsistency.

As pointed out by Bramwell in the context of the order-
parameter distribution for the 2D XY model in the low-
temperature limit [36], (39) is closely related to the Gumbel
distribution

pG(x) = exp[−(x + γ ) − e−(x+γ )] (40)

(with the Euler constant γ = 0.577 . . .), which determines the
statistics of the interference contrast for weakly interacting
1D Bose gases at zero temperature [7,8] (note that (40) is a
normalized distribution with zero average and variance π2/6).
Its cumulant-generating function reads

log pG(σ ) =
∞∑

s=2

(iσ )s

s
ζ (s). (41)

In fact, there are two nontrivial differences: (i) The presence
of the Dirichlet β function in (39). This function rapidly
converges to one so that it may be replaced by unity to a good
approximation (see Table I). Since the expectation is nonuni-
versal anyway, this essentially amounts to increasing the
variance by 9% or, equivalently, the width of the distribution
by 4% (this may be seen as a convolution with a normalized
Gaussian of appropriate width). (ii) The global factor of two
which implies [accepting β(s) � 1] that q(u) is the convolution
of two identical Gumbel distributions and p(V2) its scaled
mirror image. Thus, there is a striking similarity between
the 2D case at finite temperature discussed here and the
1D case at vanishing temperature. However, owing to the
different corresponding eigenspectra, passing from the latter
to the former case does not amount to the simple replacement
K �→ 1/2η, as suggested in [9].

The evolution of the distribution q(u) with decreasing
temperature, obtained numerically, is shown in Fig. 2. For
simplicity, we have subtracted the nonuniversal expectation so
that all distributions are centered around zero. The numerical
data were obtained by generating 100 000 random surfaces
per curve using a total of 1000 modes on a 16 000-point grid
and then calculating V2 using Eqs. (20) and (21) without any
approximation beyond the replacement of coth(βωλ/2) with
2T/ωλ. In particular, there is no expansion of exp(ih) to second
order in h. For sufficiently low temperatures, the distribution
approaches the universal low-temperature distribution, whose
characteristic function is given in Eq. (39). The numerically
calculated distribution for ns/mT = 2/π should, of course,
not be taken seriously: While the superfluid density remains
finite at the critical point, the range of momenta where the
quantum hydrodynamic action (12) is valid approaches zero.
A proper result for the distribution of the interference contrast
near Tc requires calculating the full counting statistics of the
condensate number near the BKT transition, as is discussed in
Sec. V.
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FIG. 2. Numerically calculated distributions q(u − 〈u〉) for
Tc/T = 1,2,4,8,32 (symbols, cf. legend) and a convolution of two
Gumbel distributions (continuous line). The lines are a guide for the
eye. Here and in the following plots, the statistical error is of the order
of the symbol size.

As one can see in Fig. 3, the actual shape of the distribution
that is obtained from scaling q(u) by its standard deviation√

〈u2〉c is already quite close to the asymptotic result for
ns/mT = 2/π and converges rapidly with decreasing tem-
perature.

B. Strongly anisotropic rectangle

While there is no general closed-form expression for
ζ

(a)
{k} for arbitrary values of a, it is nonetheless possible to

obtain an analytical expression for p(V2) in the limiting case
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FIG. 3. The same data as in the previous figure (except for the
choice of shown temperatures), but with normalized variance. In
this representation, the convergence toward the asymptotic shape is
considerably faster.
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a � 1, that is, for a very anisotropic sample. The reason
lies in the mathematical structure of the cumulants: Except
for the nonuniversal expectation, all cumulants are given by
sums which are dominated by the lowest-lying eigenvalues.
Already for moderate values of the aspect ratio a (around 1/5;
preliminary experimental data has been taken for aspect ratios
even lower, <∼0.1 [17]), the contribution of the modes along
the shorter direction of the samples becomes negligible and
one obtains

ζ
(a�1)
{k} (s) �

∑
l 
=0

1

l2s
= 2ζ (2s). (42)

It is important to keep in mind that in order to remain in
the 2D regime, the aspect ratio must not become too small;
that is, Eq. (42) holds under the condition that a � 1, but at
the same time h̄2/m(aL)2 < µ,T . If the second inequality
is violated, the system becomes effectively 1D. At the same
time, ε as given in Eq. (22) ceases to be a small parameter so
that one can no longer justify the approximate treatment of
eiφ(r). However, we emphasize that Eq. (42) is well satisfied
(for s � 2) already for moderately small a so that the strongly
anisotropic 2D regime is well defined.

Substituting (42) into Eq. (32) yields

log q(σ ) = iσ 〈u〉 +
∞∑

s=2

(2iσ )s

s
ζ (2s)

= iσ

(
〈u〉 − π2

3

)
+ log[�(1 −

√
2iσ ) (43)

×�(1 +
√

2iσ )],

or (defining umin ≡ 〈u〉 − π2/3)

q(σ ) = π
√

2iσ csc(π
√

2iσ )eiσumin . (44)

This function is meromorphic in the entire complex plane
since the branch cuts of the square roots before and inside
the cosecant cancel each other. This makes it possible to ex-
plicitly calculate its inverse Fourier transform q(u) = (2π )−1∫∞
−∞ dσq(σ )e−iuσ using the residue theorem. In the upper half

plane, q(σ ) has no poles and falls off as exp[−√
2Im(σ )]

for large arguments. Thus, for u − umin � 0, one may close
the integration contour with a half-circle over the upper half
plane and the integral vanishes. For u − umin > 0, one must
close the contour in the lower half plane where q(σ ) has an
infinite number of poles σn = −in2/2. There, e−iσ (u−umin)q(σ )
has the residues Rn = (−1)n−1in2e−n2(u−umin)/2. Thus, we
obtain

q(u) =
{

0 u � umin∑∞
n=1(−1)n−1n2e− n2

2 (u−umin) u > umin

(45)

This can be written in a more compact form in terms of its
cumulative distribution function,

q(u) = θ (u − u+
min)

d

du
ϑ4(e(u−umin)/2), (46)

where θ is the Heaviside function, and ϑ4(z) = 1 +
2
∑∞

n=1(−1)nzn2
is a Jacobi theta function. As a shorthand, we

refer to the distribution described by Eq. (45) as the “Jacobi
distribution.”
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FIG. 4. Probability distributions p(V2) of the visibility as a
function ofV2/〈V2〉 for Tc/T = 1,2,4,8, for an anisotropy a = 1/10.
Unlike the distribution in the isotropic case, the distribution for a
strongly anisotropic sample undergoes strong shape modifications as
Tc/T increases.

The evolution of the probability distribution with decreas-
ing temperature in the strongly anisotropic case is shown in
Fig. 4 (for a = 1/10). Unlike the isotropic case, the value
V2 = 0 is actually quite probable at temperatures close to the
critical point so that the shape of the distribution shows a
clear qualitative change as the temperature is lowered toward
the asymptotic regime. This observation is in qualitative
agreement with preliminary experimental data taken at ENS
[17]. Note that as long as the probability for a vanishing
visibility stays finite, the shape of the distribution depends
on the expectation and is thus explicitly cutoff dependent.
However, since this dependence is only logarithmic, we expect
the qualitative evolution of the shape to be insensitive to the
precise value of the cutoff.

In turn, Fig. 5 shows the evolution of the probability
distribution in the asymptotic low-temperature regime (T =
Tc/256) with changing aspect ratio, confirming our earlier
statement that the strongly anisotropic regime is reached
already for a <∼ 1/5.

C. Harmonically trapped sample

As we have pointed out in the preceding discussion,
the cumulants (and hence the shape of the distribution) are
dominated by the excitations with the lowest frequency. The
periodic boundary conditions we have used up to this point are
thus quite artificial: Even for a homogeneous system, going
over to different boundary conditions will have effects on the
shape of the distribution (see [9] for examples). However,
the differences are mere numerical factors appearing in the
cumulants (for an example, the variance in a 3D homogeneous
sample is smaller by a factor of 1.67 when Dirichlet boundary
conditions are used instead of periodic ones [37]); the
dependence on physical parameters remains unaltered.

We now consider the geometry most relevant for actual
experiments: a sample which is harmonically trapped. For
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FIG. 5. Probability density q(u) for a = 1,1/2,1/5, as well as the
asymptotic distributions for the isotropic (heavy line) and strongly
anisotropic (thin line) regime. For a � 1/10 (not shown), the results
become indistinguishable from the strongly anisotropic limiting
case. A value of Tc/T = 256 has been chosen to ensure that the
distributions are well within the asymptotic low-temperature regime.

simplicity, we consider an isotropic trap with trapping fre-
quency ω. If the particle number is large enough to warrant
Ng̃ � 1 [6] (which is readily fulfilled for g̃ ∼ 0.1 and
N ∼ 103) and the temperature is sufficiently low, the density
distribution takes the form of a Thomas-Fermi profile:

n̄(r) = n̄(0)

[
1 −

( r

R

)2
]

θ (R − r); R =
√

2gn̄(0)

mω2
. (47)

In the following, we assume the entire sample is superfluid and
we need not distinguish between the superfluid and the total
density. This requires the temperature to be substantially below
TBKT = (4πNω2/g̃D2

c )1/2 where the phase space density D =
n̄λ2

T reaches the critical value Dc = log(380/g̃) of the BKT
transition in the trap center [38]. Moreover, we want to be
in the regime of near-unity visibility so that we must fulfill
δφ(R) = [n̄(0)λ2

T ]−1 log(R2/ξ 2) � 1 [6] or, equivalently,

T � Tφ = 1

log(2g̃N/π )

√
4πNω2

g̃
. (48)

For N = 5000, g̃ = 0.1, and ω = 2π × 20 Hz, one obtains
TBKT = 95 nK and Tφ = 132 nK (for lower interaction con-
stants, both are even higher) so that the low-temperature regime
we are considering is within experimental reach.

In analogy to the calculation of the low-energy modes in
3D [39], the solutions ψn,l(r,θ ) of the Euler-Lagrange equation
(16) with open boundary conditions yield the frequencies

ωn,l = ω

√
n(n + 2) − l2

2
. (49)

Here, n = 0,1,2 . . . is a radial and l = −n, − n + 2, . . . ,n −
2,n is an azimuthal index [40]. The eigenmodes are of the
general form,

ψn,l(r,θ ) = Pn,|l|(r/R)

R
×

⎧⎪⎨
⎪⎩

cos(lθ )/
√

π l > 0

1/
√

2π l = 0

sin(|l|θ )/
√

π l < 0

, (50)

where Pn,|l|(x) =∑k a
(n,|l|)
k xk are polynomials, the coeffi-

cients of which may be obtained from the recursion relation

a
(n,|l|)
k+2 [l2 − (k + 2)2] = a

(n,|l|)
k [n(n + 2) − k(k + 2)]. (51)

Hence, the Pn,|l|(x) are either even or odd, and the highest
and lowest occurring powers of x are n and |l|, respectively.
The magnitude of the lowest coefficient is fixed by the
normalization condition

∫ 1
0 dxxPn,|l|(x)2 = 1.

The eigenmodes satisfy the orthogonality relations∫ 2π

0
dθ

∫ R

0
drrψn,l(r,θ )ψn′,l′ (r,θ ) = δn,n′δl,l′ (52)

on a disk of radius R. For different l, the orthogonality is
assured by the azimuthal part, for equal l, by the radial part of
the eigenfunctions.

A particularly important subset of the eigenfunctions is
formed by the surface modes

ψn,±n(r) =
√

2(n + 1)
rn

Rn+1

{
cos(nθ )/

√
π l = n,

sin(nθ )/
√

π l = −n,
(53)

with eigenfrequencies ωn,±n = √
nω. By inspecting Eq. (49),

one finds that most of the lowest-lying modes are such surface
modes. This is physically intuitive, since the phase stiffness as
given by Eq. (47) is lower close to the rim so that low-energy
excitations should live on the boundary of the sample. It is
thus to be expected that the condensate fraction and hence
the interference contrast is dominated by the behavior of the
surface modes.

If we substitute the eigenmodes and eigenfrequencies of
the surface modes into the definitions of ε and u, we obtain
[noting that ψn,l(r)2/ω2

n,l takes its maximum for |l| = 1 and
r = R]:

ε2 = 4

π

mT

ns(0)
; u = π

ns(0)

mT
(1 − V2). (54)

Once again, as in the homogeneous case, there is no explicit
dependence on the interaction constant. However, in the
present case, there is an implicit dependence on the interaction
constant since the latter defines the geometry of the sample
and the density in the center is given by n̄(0) = mNω2/πg.

Carrying out the expansion (27), we find that in the case
of harmonic trapping, the integrals (28) become nontrivial.
One readily finds that In,l,n′,l′ = δl,l′In,n′ (|l|) and Jn,l = δl,0Jn,
which follows immediately from the azimuthal part of the
eigenfunctions. This shows already that there is no I that
“couples” different surface modes (they all differ in l) and no J

that involves any surface modes. The diagonal elements for the
surface modes are readily found to be In,±n(n) = 2/(n + 2).
On closer inspection, one finds that the matrices In,n′ (|l|) are
tridiagonal in the sense that they are nonvanishing only for
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TABLE II. Variance and standard deviation of u in the harmoni-
cally trapped case, exact and in two different approximations.

Approximation 〈u2〉c

√
〈u2〉c

Exact 2.813 1.677
Diagonal 2.496 1.580
Surface 2.160 1.470

n′ = n,n ± 2 (we recall that n and l are either both even or
both odd); likewise, only J2 = 1/

√
3 is finite.

Taken together with the physical intuition that the statistics
should be dominated by the surface modes, these results sug-
gest that it should be a reasonable approximation to disregard
J2 and the nondiagonal elements of the matrices In,n′ (|l|),
which would make it possible to carry out the integration
leading to Eq. (31). In order to see whether this leads to correct
results, we evaluate the variance of u first exactly, then in
the “diagonal” approximation. A straightforward calculation
gives

〈u2〉c = 2
∑
n,n′,l

′ In,n′ (|l|)2

ω̃2
n,lω̃

2
n′,l

− 1

6

∑
n

′ I2,n(0)

ω̃n,0
+ 1

72
, (55)

which is reminiscent of a structurally similar expression for the
variance of condensate fluctuations in a 3D harmonic trap by
Giorgini et al. [41], but with two additional terms which come
from the finiteness of J2. Once again, the primes on the sums
are reminders that the sums go only over permitted values of
the indices.

In Table II, we give the numerical value of Eq. (55) calcu-
lated in three different manners: first exactly, that is, without
approximations apart from the numeric calculation, and in two
different approximations. In the “diagonal” approximation, we
disregard the two last terms which are generated by J2 and
take into account only the diagonal elements of In,n′ (|l|) in
the first term. The “surface” approximation goes even one step
further by dropping all contributions except those coming from
the surface modes. We see that the diagonal approximation
is quite satisfactory (we recall that the higher cumulants are
increasingly dominated by the lowest-lying modes so that we
expect the approximation to improve with increasing cumulant
order) and even the elementary surface approximation fares
reasonably well.

In the diagonal approximation, u reads

u =
∑
n,l

′ t2
n,l

ω̃2
n,l

In,n(|l|), (56)

and the spectral ζ function is

ζ{n,l}(s) =
∑
n,l

′
(

In,n(|l|)
ω̃2

n,l

)s

. (57)

In the surface approximation, this can be written explicitly as

ζ
(surf)
{n} (s) = 2

∞∑
n=1

(
2

n(n + 2)

)s

≈ 2

(
2

3

)s

ζ (3s/2). (58)

The approximation on the right-hand side is better than within
1% for all s � 2. The global factor of 2 comes from the
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FIG. 6. Scaled distribution q(u) for the harmonically trapped
case, for Tc/T = 1,4,64. A Gumbel distribution (not a convolution
of Gumbel functions) scaled to have unit variance is shown for
comparison (continuous line). The sharp falloff at the right end
of the T = Tc curve corresponds to zero visibility, while the T =
Tc/64 curve is already well within the asymptotic low-temperature
regime. Quite amusingly, the profile for T = Tc/T = 16 (not shown)
comes out almost superposed with a Gumbel distribution while the
asymptotic distribution comes quite close to it, but remains more
sharply peaked, in agreement with the arguments presented in the
text.

twofold degeneracy of the surface modes. As in the strongly
anisotropic rectangle case, it compensates the global factor of
1/2 in Eq. (32).

While it does not seem possible to derive a closed-form
expression for the associated probability distribution, the form
of the spectral ζ function suggests that the distribution should
be something intermediate between a Gumbel distribution
[where the spectral ζ function is proportional to ζ (s)]
and a Jacobi distribution [where the spectral ζ function is
proportional to ζ (2s)], that is, more asymmetric than the
former, but less asymmetric than the latter. Of course, the
contributions from the neglected modes will render the actual
distribution somewhat more symmetric than this argument
suggests, but it should remain qualitatively valid. This is
supported by numerical results which are calculated without
approximations, as can be seen in Fig. 6.

V. DISTRIBUTION AT THE CRITICAL POINT

A quite interesting aspect associated with the statistics of
interference amplitudes is the possibility of measuring the
universal probability distribution of the order parameter near
a critical point. Indeed, as has been shown in Sec. II, the
visibility is identical with the condensate fraction provided the
integration length is much larger than the interparticle spacing.
Our calculation of the resulting visibility distribution in the
previous section is valid deep in the Bose-condensed regime,
where the visibility is close to one.

In the following, we discuss the situation close to the critical
point of Bose-Einstein-condensation, that is, in a regime where
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the system size L is large compared to microscopic lengths but
of the same order or smaller than the correlation length ξ of
the infinite system. Mathematically, this may be expressed by
a dimensionless parameter,

x = tL1/ν = ±
(

L

ξ

)1/ν

= O(1), (59)

that measures the deviation from the critical point due to the
finite system size. Here t = (T − Tc)/Tc is the dimensionless
distance from the bulk critical temperature Tc and ν ≈
0.672 the critical exponent that characterizes the divergence
ξ ∼ |t |−ν of the correlation length in a 3D Bose-Einstein
condensate (BEC) [42,43]. This exponent has, in fact, been
measured also in dilute ultracold gases [44]. Quite generally,
finite size scaling predicts that the probability distribution of
a two-component order parameter s (for a BEC, s2 = n0 is
the condensate fraction) in the critical regime has a scaling
form [13,45]

p(s,t,L) = L2yp�
d (sLy,tL1/ν). (60)

Here

y(d) = (d − 2 + η)/2 (61)

is related to the standard anomalous dimension η of the XY

model while p�
d (z,x) is a universal, non-Gaussian distribution

that only depends on z2 = n0L
2y . The existence of such a

distribution for properly scaled block-spin variables sLy with
finite moments of arbitrary order, is, in fact, a basic assumption
of the renormalization group approach to critical points, as
emphasized by Parisi [46]. Precisely at the critical point,
where x = 0, the distribution is determined by the effective
potential V �

eff(z) of the underlying field theory at the fix
point via

p�
d (z,x = 0) ∼ exp[−V �

eff(z)]. (62)

Within the standard two-component �4 theory, the distribution
p�

3(z,x) in the 3D case has been calculated by Chen et al.
[47], taking into account the singularities associated with
the Goldstone mode. The resulting distribution at the critical
point x = 0 is shown in Fig. 7. It exhibits a maximum
at z2 � 1.146. The most probable value for the number of

0
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0.6

0 1 2 3 4

p
� 3
(z
,0

)

z2

FIG. 7. The universal distribution p�
3(z,0) for the order parameter

z in 3D directly at the critical point as calculated in [47].

particles in the condensate therefore scales as N̄0 � L2−η,
which is subextensive, as expected right at Tc. The average
typical visibility, √

〈V2〉 ∼ 1/L1+η, (63)

at the critical point will therefore vanish with an anoma-
lous power of the integration length L, that is, basically
like 1/L because η � 0.03 is rather small. Moreover, the
fact that the variance of the variable z2 is a universal
constant of order one, the so-called Binder cumulant [45],
implies that the fluctuations of the visibility scale with the
same anomalous power of the integration length as the
average.

In the 2D case, there is no breaking of a continuous
symmetry at finite temperature. Instead, there is a BKT
transition to quasi-long-range order below Tc, where the gas
is a proper superfluid but not a BEC. The absence of a finite
correlation length below Tc in this case does not allow to
define a simple analog of the variable x in (59). Right at
the BKT transition, however, one expects again a universal
order-parameter distribution function p�

2(z) for the variable
z2 = n0L

η, since y = η/2 in 2D. In contrast to the situation
discussed in Sec. IV, where the distribution of the interference
contrast has been calculated deep in the superfluid regime and
the visibility is close to one, the distribution p�

2(z) with its
anomalous scaling applies to 2D Bose gases whose size is
much larger than the phase coherence length �φ . The thermal
phase fluctuations then imply an average condensate fraction
〈n0〉 ∼ L−η which decreases with system size. The typical
value

√
〈V2〉 ∼ L−η of the visibility is therefore close to zero.

In fact, since the 2D superfluid phase corresponds to a line
of critical points at any T < Tc, this behavior of the average
visibility is valid at arbitrary temperature below Tc in the
limit L → ∞ with a temperature-dependent exponent η(T ),
which reaches its critical value ηc = 1/4 at Tc. Note that,
independent of the precise form of the distribution p�

2(z), the
very existence of a scaling variable z2 = n0L

η immediately
implies the subextensive scaling 〈N0〉 ∼ L2−η of the average
number of particles in the condensate for an interacting 2D
Bose gas and its anomalous fluctuations VarN0 ∼ 〈N0〉2 [48]
in the thermodynamic limit.

In order to observe this anomalous scaling, the system size
must be large compared to the phase coherence length, L �
�φ = ξe1/2η(T ). At the critical point, this is readily fulfilled for
typical system sizes of the order of some 10 µm and healing
lengths of the order of 0.1 µm. By contrast, for T � Tc, the
system size required to be in the anomalous scaling regime
rapidly exceeds experimentally feasible values. Therefore, one
has L � �φ in practice and the visibility distribution can
be determined by an expansion around V2 ≈ 1, as done in
Sec. IV.

VI. CONCLUSION

In conclusion, we have shown that interference experiments
may be used as a direct measurement of the statistics of
the condensate fraction in ultracold Bose gases. Unlike in
interference experiments in classical optics, where the fringe
visibility is determined by a deterministic cross correlation
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function of the optical fields [49,50], the interference contrast
of matter waves is a quantum observable. Repeated experi-
ments with identically prepared condensates therefore produce
a statistical distribution of values instead of a reproducible
single value. The resulting distributions are non-Gaussian
even in the thermodynamic limit and have been calculated
explicitly for 2D Bose gases at temperatures such that their
effective condensate fraction is close to one. Quite generally,
the interference contrast is a self-averaging observable in
situations with long-range phase coherence. Our findings for
the 2D strongly anisotropic case are in qualitative agreement
with preliminary data taken at ENS [17]. Clearly, a quantitative
comparison between theory and experiment is needed to verify
our predictions. In particular, the interference statistics might
be used as a precise thermometer of the gases, similar to what
has been achieved in 1D gases [10]. A quite interesting open
problem, from both a theoretical and an experimental point
of view, is the analysis of the interference contrast near the
transition to the normal phase. It offers the possibility of
directly measuring the distribution of the order parameter1

near the critical point, a quantity that is very hard to measure
otherwise.
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APPENDIX A: UNIVERSAL SCALING IN 3D

As shown in Sec. II, the distribution of the condensate num-
ber, which is related to the intensive two-component vector
order parameter s that describes Bose-Einstein condensation
from the point of view of statistical physics by N0 = L3s2 is
not a simple Gaussian. This is a result of the fact that in the case
where the broken symmetry is continuous, the order-parameter
correlation length is infinite for all temperatures below Tc [37].
The universal distribution function of the condensate number
below Tc is, in fact, contained in the result (32) for the
logarithm of the characteristic function of the random variable
u = 2(1 − V2)/ε2. In 3D, the small parameter ε defined in
Eq. (25) can be written in the form

ε2 = 1

π2

ξJ(T )

L
, (A1)

where we have introduced the Josephson length ξJ = mT/ns.
For any finite temperature, therefore, ε goes to zero for a
system size L much larger than the Josephson length. The
universal distribution p(u) for the fluctuating variable,

u = 2π2L

ξJ

(
1 − N2

0

N2

)
, (A2)

1Note that for 2D gases there is no true order parameter, yet there is
a nontrivial distribution of the number of particles at zero momentum.

which determines the distribution of the condensate num-
ber of a 3D BEC below Tc, is fixed by the exact cu-
mulants given in (33). It depends on the 3D spectral ζ

function

ζ{λ}(s) =
∑

l1,l2,l3

′ 1(
l2
1 + l2

2 + l2
3

)s =
∞∑

n=1

A3(n)

ns
, (A3)

for which, unfortunately, no closed-form expression seems to
exist [35]. It is evident, however, that ζ{λ}(s) is convergent
for all s > 3/2 and thus all cumulants except the first are
finite. The variable with a proper, non-Gaussian distribution
in the limit L → ∞ is thus n2

0L/ξJ , which implies that the
condensate fraction is a self-averaging variable. Its fluctu-
ations, however, are not of order 1/� as usual but only
decay like 1/L2 [37]. Since all higher cumulants including the
variance are finite and have the same scaling with system size
L, the ratios 〈us〉c/〈u2〉s/2

c are constant and finite. A special
case of this result has in fact been found by Kocharovsky
et al. [51], who calculated the cumulants of the number
of condensed atoms in a 3D BEC within a Bogoliubov
approach. In particular, to leading order in ε, our cumulants
from Eq. (34) agree with theirs, showing the close connec-
tion between the condensed fraction and the interference
amplitude.

APPENDIX B: THE 1D CASE AT ZERO TEMPERATURE

In this appendix, we discuss the case of a homogeneous
1D Bose gas at vanishing temperature. Using c = √

gns/m

and substituting ns/m = cK/π , where K is the dimensionless
Luttinger parameter, the hydrodynamic action (12) governing
the phase difference φ = ϕ2 − ϕ1 of two interfering 1D Bose
gases has the form

S0[φ] = K

4πc

∫ L

0
dx

∫ β

0
dτ {[∂τφ]2 + c2[∂xφ]2}, (B1)

where we have kept β finite. Using the Fourier expansion,

φ(x,τ ) = 1√
βL

∑
k

∞∑
n=−∞

φk(ωn)ei(kx−ωnτ ), (B2)

where k = 2πl/L with l ∈ Z, and ωn = 2πn/β are the
bosonic Matsubara frequencies, the action takes the diagonal
form:

S0[φ] = K

4πc

∑
k,n

(
c2k2 + ω2

n

)|φk(ωn)|2. (B3)

The generating function p(σ ) = 〈eiσV2〉 for the square of
the visibility requires calculating a functional integral with a
perturbation

S1 = iσ

N2

∫
dx

∫
dx ′n̄(x)n̄(x ′) cos[φ(x) − φ(x ′)] (B4)

to the action (B1). This perturbation only contains the phase
difference φ(x) ≡ φ(x,0) on the boundary in imaginary
time τ . Except for φ(x) = φ(x,τ = 0), all variables are
therefore Gaussian and can be integrated out. The problem
then is completely analogous to that of backscattering from

053622-12



FULL COUNTING STATISTICS OF THE INTERFERENCE . . . PHYSICAL REVIEW A 82, 053622 (2010)

a single impurity in a Luttinger liquid discussed by Kane and
Fisher [52].

Upon elimination of the modes φk(τ 
= 0), one obtains the
reduced free action

S0[φ] = K

2π

�∑
k=−�

|k| |φ(k)|2 (B5)

for the remaining, non-Gaussian degrees of freedom,
where we have explicitly written the ultraviolet cutoff �.
This corresponds to a nonlocal action in space of the
form

S0[φ(x)] = α

8π2

∫
dx

∫
dx ′
(

φ(x) − φ(x ′)
x − x ′

)2

(B6)

that arises in τ space for dissipative quantum mechanics of a
single particle [53] or in the study of nontrivial ground states
of open strings [54]. Equations (B5) and (B6) are equivalent
if the associated dimensionless strength α of the dissipation is
related to the Luttinger parameter by α = 2K .

Following the arguments of Sec. IV, the distribution of
the interference contrast can be calculated analytically in
the limit ε2 = 1/K � 1 by expanding S1 in Eq. (B4) to
second order in φ. Again, it is then natural to consider the
characteristic function q(σ ) = 〈eiσ (1−V2)〉 which corresponds
to a perturbation (for a homogeneous system with n̄(x) =
N/L):

Ŝ1[φ] = − iσ

2L2

∫
dx

∫
dx ′[φ(x) − φ(x ′)]2. (B7)

Substituting the Fourier series representation for φ(x), this
becomes

Ŝ1[φ] = − iσ

L

∑
k 
=0

|φk|2. (B8)

The functional integral is now Gaussian and can be evaluated
exactly, giving

q(σ ) =
∏
k>0

(
1 − 2πiσ

KkL

)−1

, (B9)

or

log q(σ ) = iσ

K
〈1 − V2〉 +

∞∑
s=2

1

s

(
iσ

K

)s

ζ (s), (B10)

where again the expectation is explicitly cutoff dependent.
Comparison with Eq. (40) shows that the variable K(〈V2〉 −
V2) has a Gumbel distribution of the normalized form given in
Eq. (40), as derived in [8].

Note that the action S0 + S1, as given by Eqs. (B1) and
(B4), differs from the action of the boundary sine-Gordon
model that appears for dissipative quantum mechanics in a
(purely imaginary) periodic potential. Instead, it corresponds
to a classical 1D XY model with infinite range interactions.
However, a mapping to a sine-Gordon model (relying on
a Hankel transform rather than a Fourier transform of the
probability distribution) is possible in the thermodynamic limit
and has been used by Gritsev et al. in [7] to calculate the
distribution function of the interference contrast for arbitrary
values of the Luttinger parameter K .

[1] M. R. Andrews, C. G. Townsend, H.-J. Miesner, D. S. Durfee,
D. M. Kurn, and W. Ketterle, Science 275, 637 (1997).
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