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We report results for the Thomas-Fermi ground state of a spin-polarized dipolar interacting Bose-Einstein
condensate for the case when the external magnetic field B is not orientated parallel to a principal axis but is
aligned parallel to a symmetry plane of a harmonic anisotropic trap. For a dipole interaction strength parameter
εD �= 0 the release energy of the condensate depends on the trap orientation angle ϑT between the principal axis
ez,T of the trap and the field B. From the quasiclassical Josephson equation of macroscopic quantum physics
we determine the low-lying eigenfrequencies of small-amplitude collective modes of the condensate density for
various trap frequencies ωa and trap orientation angles ϑT . For the special case of a spherical harmonic trap with
trap frequency ω it is rigorously shown for − 1

2 < εD < 1 that a pure s-wave symmetry breather excitation of

the condensate density exists, that oscillates at a constant frequency �s = √
5ω around the ground-state cloud,

despite the well-known fact that the shape of the ground-state cloud of a spin-polarized dipolar condensate
is for εD �= 0 not isotropic. For ϑT �= 0 the small-amplitude modes of the particle density with isotropic and
quadrupolar symmetry consist of two groups. There exist four modes that are combinations of basis functions, with
s-wave, dx2-y2 - and dz2 -wave, and dxz-wave symmetry, and two modes that are combinations of basis functions
with dyz- and dxy-wave symmetry. A characteristic difference in the dependence of the frequencies of these six
collective modes on the dipole interaction strength parameter εD for prolate and oblate harmonic triaxial traps,
respectively, is suggested to be used as an experimental method to measure the s-wave scattering length as of
the atoms.

DOI: 10.1103/PhysRevA.82.053620 PACS number(s): 67.85.Hj, 03.75.Hh, 03.75.Kk

I. INTRODUCTION

Experiments with trapped, extremely dilute gas clouds,
consisting of identical atoms with mass m�, and forming at
ultracold temperatures a quantum degenerate Bose-Einstein
condensate (BEC), are nowadays a research focus in many
laboratories. It was realized early that cold atom clouds do not
form an ideal Bose gas but experience isotropic interaction
forces in the low-energy sector of the system that can be
well described by a microscopic s-wave scattering length
as [1]. While the size of an ideal Bose gas confined inside
a harmonic trap with trap frequency ω is determined by the
width aω =√

h̄
m�ω

of the ground-state wave function of a single
particle, the size of an interacting cold atom cloud consisting of
a large number N � 1 of condensed Bose atoms may increase
to much larger distances, �TF = aω( 4πNas

aω
)

1
5 . Fortunately, the

necessary requirement, 4πNas

aω
� 1, for observing a BEC in

a harmonic trap can be realized simultaneously with the
condition of a small diluteness parameter n0a

3
s � 1, so the

mean-field theory of Ginzburg and Pitaevskii for interacting
Bose systems is applicable for a wide range of parameters,
aω and as . As the length �TF increases with increasing N ,
the kinetic energy EK � h̄2

2m��2
TF

of the interacting particles in
the ground state eventually becomes much smaller than the
potential energy VT � m�

2 ω2�2
TF of the particles, because the
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density inside the BEC becomes a smooth and slowly varying
function of position. In the Thomas-Fermi approximation the
kinetic energy term for the particles in the ground state of
the BEC is neglected altogether. This is justified when the
chemical potential µ of the interacting system is much larger
than the chemical potential ∼ 3

2h̄ω of the noninteracting Bose
gas. So for 4πNas

aω
� 1 the dominant balance required for me-

chanical equilibrium of a trapped BEC is between the repulsive
interactions of the atoms and the confinement forces of the
trap.

Interesting physics can be observed when, in addition to the
usual s-wave contact interaction, the atoms are influenced by
long-range dipole-dipole forces [2]. This occurs, for example,
for Bose atoms with nuclear spin I = 0 and integer (electronic)
spin S, thus giving rise to a multiplet −S � MS � S of
atomic magnetic dipole moments with the z component
2µBMS . A transition metal atom like chromium 52Cr has
I = 0 and S = 3. On the other hand, alkali-metal atoms like
87Rb carry (nuclear) spin I = 3

2 and S = 1
2 , thus coupling

to a total spin F = 1 in the lowest energy state. The first
experimental study of magnetic dipole-dipole interactions in
a BEC was realized with 52Cr atoms [3] carrying a large
magnetic moment |〈M〉| = 6µB . A quantum degenerate F = 1
spinor BEC was synthesized successfully with 87Rb atoms [4].
Recently, intrinsically anisotropic BEC systems with elec-
tric dipole-dipole interactions between polar molecules have
been studied experimentally [5]. New research directions are
concerned with magnetic quantum gases consisting of heavy
rare-earth-metal atoms like thulium [6] with |〈M〉| = 4µB ,
erbium [7] with |〈M〉| = 7µB , and dysprosium [8] with
|〈M〉| = 10µB .
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In the ensuing considerations we study spin-polarized Bose
atom clouds. When the magnetic dipole moments of the atoms
are 100% polarized under a homogeneous external magnetic
induction field B = B(ext)ez, so all atoms in the cold gas cloud
carry the identical effective magnetic moment, say, 〈M〉 =
−2µBS ez, it is still possible to describe the Bose-condensed
ground state � of N interacting atoms by a scalar Hartree
ansatz:

�(r(1), . . . ,r(N)) = ψ(r(1))ψ(r(2)) · · · ψ(r(N)). (1)

The expectation value of the many-body Hamiltonian H ,
evaluated with such a trial wave function � consisting of a
product of N identical one-particle wave functions ψ(r), is
then minimized with respect to variations of that one-particle
wave function ψ(r). The optimal one-particle wave function
ψ(r) so found is a solution to the Gross-Pitaevskii equation [1][

− h̄2

2m�
∇2

r + VT (r) − µ

+ (N − 1)
∫
R3

d3r ′U (r,r′)|ψ(r′)|2
]

ψ(r) = 0. (2)

Here, VT (r) denotes the potential of the trap and U (r,r′)
describes the interaction potential between two bosons. The
chemical potential µ is a Lagrange parameter connected to the
particle number N in the condensate by the constraint∫

R3
d3r ′|ψ(r′)|2 = 1. (3)

II. THOMAS-FERMI THEORY OF SPIN-POLARIZED
DIPOLAR BOSE-EINSTEIN CONDENSATE

In the following we investigate the macroscopic quantum
degenerate ground state of a spin-polarized system of inter-
acting Bose atoms carrying a magnetic dipole moment |〈M〉|.
The interaction potential

U (r,r′) = U0(r,r′) + Umd (r,r′) (4)

between two atoms, one at position r and the other at r′,
consists of two contributions, the short-range isotropic s-wave
interaction pseudopotential

U0(r,r′) = gsδ
(3)(r − r′),

(5)

gs = 4πh̄2

m�
as,

and the long-range magnetic dipole-dipole interaction
potential

Umd (r,r′) = gmd

4π

[
1

|r − r′|3 − 3(rz − r ′
z)

2

|r − r′|5
]

, (6)

gmd = µ0|〈M〉|2.
Here the external magnetic induction field B is orientated
parallel to the Cartesian unit vector ezin the laboratory frame,
so the magnetic moments of two interacting atoms, one at
positions r and the other at r′, are both aligned parallel to ez.

Using well-known identities

3(rz − r ′
z)

2

|r − r′|5 − 1

|r − r′|3 = ∂2

∂r2
z

1

|r − r′| − 1

3
· ∇2

r
1

|r − r′|
(7)

−∇2
r

1

|r − r′| = 4πδ(3)(r − r′),

and introducing the dimensionless parameter [9,10]

εD = gmd

3gs

= µ0 |〈M〉|2
12πh̄2

m� as

(8)

as a measure of relative strength of magnetic dipole interaction
forces, the interaction potential between two atoms in the gas
cloud may be rewritten in the guise

U (r,r′) = gs

[
(1 − εD)δ(3)(r − r′) − 3εD

∂2

∂r2
z

1

4π

1

|r − r′|
]

.

(9)

In the Thomas-Fermi approximation the particle density
profile in the ground state of the trapped BEC

n(r) = |
√

Nψ(r)|2 (10)

is a solution to the integral equation

(1 − εD)nTF(r) − 3εD

∂2

∂r2
z

1

4π

∫
DTF

d3r ′ 1

|r − r′|nTF(r′)

= µ − VT (r)

gs

. (11)

This is actually a nonlinear problem, because the solution of
the integral equation is sought inside the Thomas-Fermi cloud

DTF = {r ∈ R3|nTF(r) � 0} (12)

where the region is not known a priori. The determination of
the shape of the cloud DTF, or its boundary ∂DTF, is part of
the problem.

Eberlein et al. [10] have found for a dipolar interacting
BEC confined inside a harmonic trap that despite the nonlocal
anisotropic dipole-dipole interaction term, the domain DTF

always maintains the shape of an ellipsoid, as in the case
εD = 0, but with different semiaxes. We confirm this finding
and present additional results for the case when the external
magnetic field B is not in alignment with the principal axis
ez,T of the trap.

Consider a harmonic anisotropic trap potential VT (r) with
its minimum at position r = 0 and with the principal axis ez,T

of the trap not in alignment with the field B:

VT (r) = m�

2

(
ω2

xr
2
x,T + ω2

yr
2
y,T + ω2

z r
2
z,T

)
. (13)

For ωx �= ωy , ωy �= ωz, and ωz �= ωx , surfaces of constant trap
potential VT (r) = VT > 0 have the geometrical shape of a
triaxial ellipsoid. Three mutually orthogonal Cartesian unit
vectors ex,T , ey,T , and ez,T determine the orientation of the
principal axes of such a trap. The magnetic field B is then
in general a linear combination of all three principal axis
vectors: B = Bx,T ex,T + By,T ey,T + Bz,T ez,T . For simplicity
we restrict our considerations in the following to the special
case when the magnetic field B and the principal axis ez,T
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FIG. 1. (Color online) Orientation of principal axis ez,T of
harmonic trap and orientation of principal axis ez,0 of Thomas-Fermi
ellipsoid DTF relative to the spin polarizing external magnetic field B.
The inset on the left-hand side corresponds to a cut of DTF with
the symmetry plane y = 0. Arrows indicate the orientation of the
spin-polarizing magnetic field B relative to the principal axis ez,0 of
DTF.

of the trap span a symmetry plane of the trap, say the plane
ry = 0. Then we have in (13)

rx,T = rx (ϑT ) = cos (ϑT ) rx + sin (ϑT ) rz,

ry,T = ry (ϑT ) = ry, (14)

rz,T = rz (ϑT ) = − sin (ϑT ) rx + cos (ϑT ) rz,

i.e., the principal axis ez,T of the trap is turned by an angle ϑT

around the rotation axes ey,T ⊥ B (see Fig. 1).
As is indicated in Fig. 1, the self-consistent solution of (11)

for the density distribution nTF(r) reveals that the principal
axis ez,0 of the Thomas-Fermi cloud DTF is rotated away
from the direction of the external field by an angle ϑ0 �= ϑT .
Accordingly, the density profile associated with the ellipsoidal
domain DTF has the general form

nTF(r) = n0

(
1 − r̃ 2

x

λ2
x

− r̃ 2
y

λ2
y

− r̃ 2
z

λ2
z

)
, (15)

where

rx(ϑ0) = r̃x = cos(ϑ0)rx + sin(ϑ0)rz,

ry(ϑ0) = r̃y = ry, (16)

rz(ϑ0) = r̃z = − sin(ϑ0)rx + cos(ϑ0)rz.

Only in the highly symmetric case ϑT = 0 is the principal axis
vector ez,0 of the ellipsoid DTF orientated parallel to B. For
0 < ϑT < π

2 it is found from the self-consistent solution for
the density profile nTF(r), that ϑ0 �= ϑT , i.e., the principal axis
ez,0 of DTF, is never in alignment with the field B, nor is it in
alignment with the principal axis ez,T of the trap (see Fig. 1
and Fig. 2).

The particle density distribution nTF(r) inside the Thomas-
Fermi ellipsoid DTF is stratified. Like an onion it consists of a
series of thin homoeoidal shells of constant density

nTF(r) = n0(1 − ν2) = const,
(17)

0 � ν � 1.

Strata of equal density thus correspond to ellipsoidal shells
concentric and similar to the bounding ellipsoidal shell ∂DTF,
but with scaled semiaxes νλa .
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FIG. 2. (Color online) Angle difference ϑ0 − ϑT vs trap orien-
tation angle ϑT for the self-consistent ground-state density profile
nTF (r). The curves shown correspond to a dipole interaction strength
εD = 0.5 and to various frequency ratios ωx :ωy :ωz of the harmonic
trap: 2:6:3, purple open diamond; 3:6:2, purple solid diamond; 3:2:6,
red open square; 6:2:3, red solid square; 1:2:2, blue open circle;
2:2:1, blue solid circle; 2:3:6, green open triangle; 6:3:2, green solid
triangle.

For a general triaxial ellipsoid DTF the normalization
integral ∫

DTF

d3r ′nTF(r′) = N (18)

leads to

N = 8π

15
λxλyλzn0. (19)

So the problem is to determine from (11) the three semiaxes λx ,
λy , λz, the orientational angle ϑ0 and the chemical potential µ.

As has been emphasized by Eberlein et al. in Ref. [10] the
central task in solving the Thomas-Fermi integral equation (11)
is to calculate the potential function

φTF(r) = 1

4π

∫
DTF

d3r ′ 1

|r − r′|nTF(r′) (20)

for a heterogeneous particle density distribution nTF(r). Then,
because

− ∇2φTF(r) = nTF(r), (21)

the Thomas-Fermi integral equation (11)

(1 − εD) nTF (r) − 3εD

∂2

∂r2
z

φTF(r) = µ − VT (r)

gs

(22)

becomes (in free space) equivalent to a partial differential
equation of potential theory:

−
[

(1 − εD)

(
∂2

∂r2
x

+ ∂2

∂r2
y

)
+ (1 + 2εD)

∂2

∂r2
z

]
φTF(r)

= µ − VT (r)

gs

. (23)

In order that the differential operator on the left-hand side is
positive definite it is required that

− 1
2 < εD < 1. (24)
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Due to the dz2 anisotropy of the dipole-dipole interaction
between two spin-polarized atoms at positions r and r′
the dipole-dipole interaction part of the potential U (r,r′) is
attractive or repulsive, depending on the orientation of the
distance vector r − r′ relative to the field vector B. So, if
εD > 1 or εD < − 1

2 , attractive forces prevail and the system
will collapse. Of course, a better criterion for stability is to
calculate the frequencies of the collective modes of the dipolar
interacting BEC. We shall present in the next section results
for quadrupolarlike modes of the density fluctuations around
the ground-state density profile nTF(r).

The differential equation (23) makes it manifest that the
integral operator with integration domain DTF and kernel

1
|r−r′| in the Thomas-Fermi integral equation (22) for r ∈DTF

maps a quadratic form nTF(r) spanned by the linearly
independent basis functions {1,rarb}a�b∈{x,y,z} into a quartic
form φTF(r) spanned by linearly independent basis functions
{1,rarb,rarbrcrd}a�b�c�d∈{x,y,z}. Because for a harmonic trap
potential VT (r) the right-hand side of (23) is (by definition)
a quadratic form, the problem would be exactly solved,
provided the coefficients of the quadratic form presented by
the derivatives ∂2

∂r2
a
φTF(r) of the potential function (20) can be

found.
We describe now a very convenient method to determine

the coefficients of the quadratic form ∂2

∂r2
z
φTF(r), which is all

we need to solve the Thomas-Fermi integral equation (22). As
a matter of fact, three-dimensional integrals of the type

�l (s) = 1

4π

∫
D

d3s ′ 1

|s − s′|

(
1 − s ′2

x

λ2
x

− s ′2
y

λ2
y

− s ′2
z

λ2
z

)l

l = 0,1,2,3, . . . , (25)

D =
{

s′ ∈ R3| s
′2
x

λ2
x

+ s ′2
y

λ2
y

+ s ′2
z

λ2
z

� 1

}

have been calculated analytically by Chandrasekhar [11] in his
magisterial treatment of the ellipsoidal figures of equilibrium
of gravitating and rotating gas clouds in astrophysics. He
showed that �l (s) can be represented exactly in terms of
singularity free fast convergent one-dimensional integrals.
Chandrasekhar’s result for the three-dimensional integral
�l (s) at an internal point of the ellipsoid D is

s ∈ DTF,

l = 0,1,2,3, . . . ,

�l (s) = λxλyλz

4

1

l + 1

∫ ∞

0

du√[(
λ2

x + u
) (

λ2
y + u

) (
λ2

z + u
)]

×
(

1 − s2
x

λ2
x + u

− s2
y

λ2
y + u

− s2
z

λ2
z + u

)l+1

. (26)

To solve the Thomas-Fermi integral equation we now make
use of this result for the special case l = 1. Because the
Cartesian coordinates r̃b of a point presented in the principal
axes frame of the Thomas-Fermi ellipsoidDTF are connected to
the Cartesian coordinates ra of that same point in the laboratory

frame by a rotation,

rb(ϑ0) = r̃b =
∑

a∈{x,y,z}
Rba(ϑ0; ey)ra,

(27)

Rba(ϑ0; ey) =

⎡⎢⎣ cos(ϑ0) 0 sin(ϑ0)

0 1 0

− sin(ϑ0) 0 cos(ϑ0)

⎤⎥⎦
ba

and taking into account that under such a rotationR(ϑ0; ey) we
have |r − r′| = |̃r − r̃′|, we immediately see that the potential
function

φTF(r) = n0�1 [ r̃(r)] (28)

at a position r ∈ DTF is a quartic form with
regard to the linearly independent basis functions
{1,rarb,rarbrcrd}a�b�c�d∈{x,y,z}. As a second-order derivative
of a quartic the function ∂2

∂r2
z
φTF(r) is then manifestly a

quadratic form, spanned by a linear combination of the basis
functions {1,̃r 2

x ,̃r 2
y ,̃r 2

z ,̃rx r̃z} or, taking into account (27), it
is spanned by a linear combination of the basis functions
{1,r2

x ,r2
y ,r2

z ,rxrz}. The transformation from one basis system
to the other is accomplished by the orthogonal transformation
(27).

The coefficients cab of the quadratic form

r ∈ DTF,
(29)

∂2

∂r2
z

φTF (r) = n0

2

(−c00 + cxxr
2
x + cyyr

2
y + czzr

2
z + cxzrxrz

)
depend on the trap orientation angle ϑ0 and the semiaxes λx ,
λy , λz of the ellipsoid DTF via the following one-dimensional
integrals:

a,b ∈ {x,y,z},

Ia(λx,λy,λz) = λxλyλz

∫ ∞

0

du√(
λ2

x + u
) (

λ2
y + u

) (
λ2

z + u
)

× 1(
λ2

a + u
) ,

Iab(λx,λy,λz) = λxλyλz

∫ ∞

0

du√(
λ2

x + u
) (

λ2
y + u

) (
λ2

z + u
)

× 1(
λ2

a + u
) (

λ2
b + u

) . (30)

In Appendix A some of the properties of these so-called index
integrals are listed. We find

c00 = sin2(ϑ0)Ix + cos2(ϑ0)Iz,

cxx = cos2(ϑ0) sin2(ϑ0) (Ixx + Izz) + [cos4(ϑ0) + sin4(ϑ0)]Izx

+ 2 sin2(ϑ0) cos2(ϑ0)(Ixx − 2Izx + Izz),
cyy = sin2(ϑ0)Ixy + cos2(ϑ0)Izy,

czz = 3[sin4(ϑ0)Ixx + cos4(ϑ0)Izz + 2 sin2(ϑ0) cos2(ϑ0)Izx],
cxz = 6 sin(ϑ0) cos(ϑ0)[sin2(ϑ0) (Ixx − Izx)

+ cos2(ϑ0) (Izx − Izz)]. (31)

It is advantageous to work in the geometry under consid-
eration not with the basis functions {1,r2

x ,r2
y ,r2

z ,rxrz} but with
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the basis functions {1,̃r 2
x ,̃r 2

y ,̃r 2
z ,̃rx r̃z} obtained by a rotation

of the coordinate system around the axis ey by the trap
orientation angle ϑ0 as defined in (27). The exact solution
of the Thomas-Fermi integral equation (22) is then obtained
by inserting the corresponding explicit expressions for the
quadratic form ∂2

∂r2
z
φTF(r) and the trap potential VT (r). From the

condition that the prefactors of the linearly independent basis
functions {1,̃r 2

x ,̃r 2
y ,̃r 2

z ,̃rx r̃z} in (22) should vanish identically,
the following set of coupled self-consistency equations is
found:

{
1 − εD + 3

2
εD[sin2(ϑ0)Ix + cos2(ϑ0)Iz]

}
n0 = µ

gs

, (32){
1 − εD

λ2
x

+ 3εD

2
[cos2(ϑ0)Izx + 3 sin2(ϑ0)Ixx]

}
n0

= m�

2gs

[
ω2

x cos2(ϑT − ϑ0) + ω2
z sin2(ϑT − ϑ0)

]
, (33){

1 − εD

λ2
y

+ 3εD

2
[cos2(ϑ0)Izy + sin2(ϑ0)Ixy]

}
n0 = m�

2gs

ω2
y,

(34){
1 − εD

λ2
z

+ 3εD

2
[3 cos2(ϑ0)Izz + sin2(ϑ0)Ixz]

}
n0

= m�

2gs

[
ω2

x sin2(ϑT − ϑ0) + ω2
z cos2(ϑT − ϑ0)

]
, (35)

3εD

2
sin(2ϑ0)Ixzn0 = m�

2gs

ω2
x − ω2

z

2
sin(2ϑT − 2ϑ0). (36)

The normalization condition connects the density n0 at the
center of the Thomas-Fermi domain DTF to the product of the
semiaxes:

n0 = 15

8π

N

λxλyλz

. (37)

Let us first write the self-consistency equations without
dipole interaction setting εD = 0. There follows

n
(0)
0 = µ(0)

gs

,

(38)
1[

λ
(0)
a

]2 = m�

2µ(0)
ω2

a.

Using the normalization

n
(0)
0 = 15

8π

N

λ
(0)
x λ

(0)
y λ

(0)
z

(39)

and introducing the definitions

ω = (ωxωyωz)
1
3 ,

(40)

aω =
(

h̄

m�ω

) 1
2

,

we obtain for the chemical potential µ(0) and the semiaxes λ(0)
a

of a BEC inside an anisotropic harmonic trap in the Thomas-
Fermi regime well-known results:

µ(0) (N ) =
(

15

4π

4πNas

aω

) 2
5 h̄ω

2
, (41)

λ(0)
a (N ) =

(
2µ(0)

m�ω2
a

) 1
2

= ω

ωa

�,

(42)

� = aω

(
15

4π

4πNas

aω

) 1
5

.

The exponent 2
5 is characteristic for the large N scaling of

the chemical potential µ(0) (N ) of a BEC confined inside a
harmonic trap [1].

The ensuing calculations simplify making use of elemen-
tary scaling relations that hold for single- and double-index
integrals:

Ia(λx,λy,λz) = Ia

(
λx

λz

,
λy

λz

,1

)
≡ I a,

(43)

λ2
cIab(λx,λy,λz) = λ2

c

λ2
z

Iab

(
λx

λz

,
λy

λz

,1

)
≡ λ2

c

λ2
z

I ab.

Using the obvious relation

n0

n
(0)
0

= λ(0)
x λ(0)

y λ(0)
z

λxλyλz

, (44)

the self-consistency problem posed by (32)–(36) may then be
reduced to three coupled equations for the ratios λx

λz
,
λy

λz
and

the equilibrium orientation angle ϑ0 as functions of the trap
orientation angle ϑT , the trap frequencies ωa , and the dipole
interaction strength parameter εD:

λ2
x

λ2
z

= ω2
x sin2(ϑT − ϑ0) + ω2

z cos2(ϑT − ϑ0)

ω2
x cos2(ϑT − ϑ0) + ω2

z sin2(ϑT − ϑ0)
×

1 − εD + 3εD

2
λ2

x

λ2
z
[cos2(ϑ0)I zx + 3 sin2(ϑ0)I xx]

1 − εD + 3εD

2 [3 cos2(ϑ0)I zz + sin2(ϑ0)I xz]
, (45)

λ2
y

λ2
z

= ω2
x sin2(ϑT − ϑ0) + ω2

z cos2(ϑT − ϑ0)

ω2
y

×
1 − εD + 3εD

2
λ2

y

λ2
z
[cos2(ϑ0)I yz + sin2(ϑ0)I xy]

1 − εD + 3εD

2 [3 cos2(ϑ0)I zz + sin2(ϑ0)I xz]
, (46)

tan(2ϑ0) =
(
ω2

x − ω2
z

)
sin (2ϑT )(

ω2
x − ω2

z

)
cos (2ϑT ) + 3εD

λ2
y

λ2
z
I xz

ω2
y

1 − εD + 3εD
2

λ2
y

λ2
z

[cos2(ϑ0)I zy + sin2(ϑ0)I xy ]

. (47)
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λz

λy

λx

45° 90°
T

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8
λa

FIG. 3. (Color online) Plot of semiaxes λx , λy , and λz of self-
consistent ground-state density profile nTF (r) vs trap orientation
angle ϑT for various dipolar interaction strength εD:εD = 0.2, dotted
line; εD = 0.5, dashed line; εD = 0.8, solid line. The ratio of trap
frequencies is ωx :ωy :ωz = 6:3:2.

We have found that the set of self-consistency equations (45),
(46), and (47) may be conveniently solved numerically by the
method of fixed point iteration. Using identities like

cos2(ϑ0) = 1

2
+ 1

2

1√
1 + tan2 (2ϑ0)

the evaluation of trigonometric functions in the iteration
process can be completely avoided.

Once the ratios λx

λz
,
λy

λz
and the orientation angle ϑ0 are

known, it follows directly from (35) and (59) that

λz =
⎡⎣ ω2

z

ωxωy

λx

λz

λy

λz

1 − εD + 3εD

2 [3 cos2(ϑ0)I zz+ sin2(ϑ0)I xz]
ω2

x

ω2
z

sin2(ϑT − ϑ0) + cos2(ϑT − ϑ0)

⎤⎦
1
5

λ(0)
z ,

λx = λx

λz

λz, λy = λy

λz

λz. (48)

For the special case of an isotropic harmonic trap [1] the
principal effect of the dipole-dipole interaction on the ground-
state density profile nTF (r) of a dipolar interacting BEC is the
well-known elongation of the semiaxis λz parallel to B, and the
distortion of the semiaxes λx = λy perpendicular to B toward
smaller values:

λx

λz

= 1 − 1
5εD + · · ·

1 + 2
5εD + · · · . (49)

In Figs. 2 and 3 self-consistent solutions of the coupled
equations (45), (46), and (47) for the equilibrium angle
ϑ0 − ϑT and the semiaxes λa are plotted as functions of the trap
orientation angle ϑT for various magnetic dipole interaction
strength parameters εD , assuming a triaxial trap anisotropy
ratio ωx :ωy :ωz = 6:3:2.

Once the semiaxes λa of the particle density nTF (r) (15) are
determined, then (44) gives us the value n0 of the density of the
ellipsoidal shaped BEC at its center. In Fig. 4 the ratio n0

n
(0)
0

is

plotted vs the trap orientation angle ϑT , the inset showing
for selected trap orientation angles ϑT ∈ {0, π

4 , π
2 } cuts of

the corresponding self-consistently determined Thomas-Fermi
ellipsoidDTF with the symmetry plane y = 0. For a prolate trap
the density is largest for ϑT = 0, because the net mutual dipole
force between atom pairs inside the domain DTF is attractive.
As ϑT increases the density n0 becomes smaller and assumes

0° 45° 90°
T1.00

1.05

1.10

1.15

1.20

1.25
n0 n0

0
D 0.5

FIG. 4. (Color online) Self-consistent particle density n0 at the
center position of the anisotropic harmonic trap plotted vs trap
orientation angle ϑT . The inset displays cuts of the Thomas-Fermi
ellipsoid DTF with the symmetry plane y = 0 for trap orientation an-
gles ϑT = 0◦, ϑT = 45◦, and ϑT = 90◦. The ratio of trap frequencies
is ωx :ωy :ωz = 2:2:1, and the dipole interaction strength is εD = 0.5.

a minimum at ϑT = 90◦, because for a parallel alignment the
net mutual dipole force between atom pairs inside the domain
DTF is repulsive.

Finally, there follows from (32) an explicit formula for the
chemical potential:

µ =
{

1 − εD + 3

2
εD[sin2(ϑ0)I x + cos2(ϑ0)I z]

}
n0

n
(0)
0

µ(0)(N ).

(50)

The dependence of µ on particle number N is solely described
by the factor µ(0) (N ), i.e., the ratio µ

µ(0) is independent of
particle number N . In Fig. 5 the chemical potential µ is
plotted vs the trap orientation angle ϑT for different values
of the dipole interaction strength εD . While for an isotropic
harmonic trap the chemical potential µ does not change to first
order in εD , one finds for an anisotropic harmonic trap, making
a straightforward expansion to the first order in the dipole inter-
action strength εD , for the case of an oblate (pancake shaped)
trap that [ dµ

dεD
]εD=0 > 0 and for a prolate (cigar shaped) trap

that [ dµ

dεD
]εD=0 < 0, respectively.

The displayed characteristic dependence of chemical po-
tential µ on the trap orientation angle ϑT should be observable

45° 90°
T

0.8

0.9

1.0

1.1

µ µ 0

FIG. 5. (Color online) Chemical potential µ vs trap orientation
angle ϑT for different values of dipole interaction strength. εD = 0.2,
red square; εD = 0.5, blue circle; εD = 0.8, purple triangle. The ratio
of trap frequencies is ωx :ωy :ωz = 6:3:2.
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as the release energy Er of a spin-polarized dipolar interacting
BEC confined in a harmonic trap, when the trap potential is
suddenly switched off to zero, and subsequently the dilute atom
gas cloud undergoes a ballistic expansion [3]. We find within
the range of validity of the Thomas-Fermi approximation that
there holds also in the presence of long-ranged dipole-dipole
interactions

Er = Eint = 2
7µN. (51)

As a matter of fact, the total energy

E = 〈Ĥ 〉� = 〈Ĥkin + Ĥpot + Ĥint〉� (52)

and the interaction energy Eint = 〈Ĥint〉� are connected in the
ground state � of the BEC, see (1), by the general relation

E = µN − Eint. (53)

This applies because the optimal one-particle wave func-
tion ψ(r) building the N particle ground state �

solves the Gross-Pitaevskii (GP) equation, so the expec-
tation value 〈Ĥkin〉�of the kinetic energy can be reex-
pressed via the GP equation in terms of the chemi-
cal potential µ and the interaction energy Eint. On the
other hand, the total energy E of the BEC is connected to
the chemical potential µ by the general relation

µ = ∂E

∂N
. (54)

It follows from (50), and the established scaling (41) of
µ(0) (N ) ∝ N

2
5 for a large particle number N � 1, that up

to a constant that is independent of N there also holds for a
spin-polarized dipolar BEC confined inside a harmonic trap
the well-known relation [1]

E = 5
7µN (55)

and therefore

Eint = µN − E = 2
7µN. (56)

III. COLLECTIVE MODES OF SMALL-AMPLITUDE
DENSITY OSCILLATIONS

A. Parametrization of low-lying excitations
in triaxial harmonic trap

An important test of the macroscopic quantum physics
of a BEC is the study of elementary excitations above the
ground state. One technique to excite low-energy collective
modes of a BEC is to suddenly modify the trap potential.
For example, shifting the center of the trap excites the dipole
modes, that is, the motion of the center of mass of a BEC cloud
around its equilibrium position in a harmonic trap. Changing
the curvature of the trap by switching the trap frequencies
may excite the breather mode. In an anisotropic harmonic trap
there also exist the so-called scissors modes [12], which can
be excited by rotating a principal axis of the trap, thus pushing
the atom cloud in the trap away from equilibrium. A recently
reported elegant new experimental technique excites a BEC
by modulating the field dependence of the atomic scattering
length as near to a magnetic Feshbach resonance [13–15].

In this section we calculate for the case of a harmonic
anisotropic trap with arbitrary trap orientation angle ϑT the

small-amplitude collective modes of a dipolar interacting
spin-polarized BEC at very low energy, so the wavelength
of the excitations becomes comparable to the size of the
Thomas-Fermi length �. For a large number N � 1 of
particles in the BEC the particle density n(r,t) and the
macroscopic Josephson phase S(r,t) are conjugate variables,
so the collective dynamics of the system (ignoring a small
quantum pressure) is governed by the standard canonical
equations of motion of macroscopic quantum physics [1]:

h̄
∂

∂t
S(r,t) = − h̄2

2m�

∑
a∈{x,y,z}

(
∂S(r,t)

∂ra

)2

− VT (r)

−
∫
D(t)

d3r ′U (r,r′) n(r′,t), (57)

∂

∂t
n(r,t) + h̄

m�

∑
a∈{x,y,z}

∂

∂ra

[
n(r,t)

∂S (r,t)
∂ra

]
= 0. (58)

The gradient of the phase, the velocity field v(r,t) =
h̄
m� ∇δs(r,t), is directly connected to the density of the particle
current, j(r,t) = n(r,t)v(r,t) [1]. The quasiclassical Josephson
equation (57) and the continuity equation (58) need to be
solved subject to the normalization condition∫

D(t)
d3r n(r,t) = N, (59)

where for a fluctuating particle density n(r,t) the positivity
domain

D(t) = {r ∈ R3| n(r,t) > 0} (60)

depends (in principle) on time too.
Let us assume a perturbation expansion of phase and density

of the form

S(r,t) = −µ

h̄
t + δs (r,t),

(61)
n(r,t) = nTF(r) + δn (r,t),

with δs (r,t) and δn (r,t) denoting small fluctuations of phase
and particle density around the ground state of the BEC.

For convenience we work from now on, unless otherwise
explicitly stated, in the principal axes frame of the Thomas-
Fermi ellipsoid DTF. As is indicated in Fig. 1, for a trap
orientation angle ϑT �= 0, the magnetic field B is not aligned
parallel to the principal axis vector ez,0 of the ellipsoid DTF.
In this case the interaction energy U (r,r′) between two spin-
polarized atoms at position r and r′, both carrying a magnetic
dipole moment 〈M〉 = (2µBS) m orientated (anti)parallel to
B, is then given by

U (r,r′)

= gs

[
(1 − εD)δ(3)(r − r′) − 3εD(m · ∇r)2 1

4π

1

|r − r′|
]
.

(62)

In the geometry under consideration the axis ez,0 of the
ellipsoid DTF is rotated around the axis ey,T of the trap by

053620-7



I. SAPINA, T. DAHM, AND N. SCHOPOHL PHYSICAL REVIEW A 82, 053620 (2010)

an angle ϑ0, and we assume m ⊥ ey :

(m · ∇r)2 = sin2(ϑ0)
∂2

∂r2
x

+ cos2(ϑ0)
∂2

∂r2
z

+ sin(2ϑ0)
∂2

∂rx∂rz

.

(63)

Upon linearization of (57) and (58), in the expansion we
reproduce the Thomas-Fermi integral equation (11) to zero
order, determining the equilibrium density profile nTF(r) and
the chemical potential µ, as discussed in the previous section.

To derive the equations of motion for the fluctuations of
the phase δs (r,t) and the density δn (r,t), let us first consider
for a kernel K(r,r′) that couples to particle density n(r′,t) the
associated fluctuation

δK(t) =
∫
D(t)

d3r ′K(r,r′) n(r′,t) −
∫
DTF

d3r ′K(r,r′) nTF(r′).

(64)

In principle there are two contributions to δK (t). One is
generated by the time dependence of the density distribution,
and the other results from a change of the integration domain
D (t). Introducing the Heaviside distribution

�H (x) = 1 + sgn(x)

2
, (65)

we rewrite (64) as

δK(t) =
∫

d3r ′K(r,r′){�H [nTF (r′) + δn (r′,t)]

× [nTF (r′) + δn (r′,t)] − �H [nTF (r′)]nTF (r′)}. (66)

An expansion to the first order in the small quantitiy δn leads
to

δK(t) =
∫

d3r ′K(r,r′)δn(r′,t){�[nTF (r′)]

+ nTF (r′)δD[nTF (r′)]} + o(|δn|2), (67)

where δD (x) denotes the Dirac-delta distribution:

δD (x) = d

dx
�H (x) . (68)

Here, the term proportional to nTF (r′) δD[nTF (r′)] corresponds
to a surface integral over the boundary ∂DTF of the Thomas-
Fermi domain DTF. However, because nTF (r′) ≡ 0 for r′ ∈
∂DTF the value of this surface integral is zero. This means the
fluctuation of the integration domain D(t) around the shape of
the equilibrium cloud DTF as caused by a density fluctuation
δn = n(r,t) − nTF (r) represents only a small correction to
δK(t) beyond first-order accuracy:

δK(t) =
∫
DTF

d3r ′K(r,r′) δn (r′,t) + o(|δn|2). (69)

It follows now directly from (57) for the time derivative
of the phase fluctuation δs(r,t), substituting the special case
K(r,r′) = U (r,r′) into (69), that

h̄
∂

∂t
δs(r,t) = −

∫
DTF

d3r ′U (r,r′)δn (r′,t) (70)

and, further, from (58),

a ∈ {x,y,z},
0 = ∂2

∂t2
δn(r,t) + 1

m�

∑
a

∂

∂ra

[
nTF (r)

∂

∂ra

h̄
∂

∂t
δs(r,t)

]
.

(71)

This is the well-known wave equation describing the collective
density excitations of a BEC in the quantum hydrodynamic
limit [1] for the case of a nonlocal interaction potential U (r,r′).

In the ensuing discussion we consider the collective modes
of small-amplitude oscillations around the equilibrium density
distribution nTF (r) in the trap. The corresponding density fluc-
tuations δn(r,t) may be expanded with respect to a set of lin-
early independent multinomials {1,ra,rarb,rarbrc, . . .}a�b�c···:

a,b,c ∈ {x,y,z},
δn (r,t) = δn(0) (t) +

∑
a

δn(1)
a (t) ra

+
∑
a,b

δn
(2)
ab (t)rarb +

∑
a,b,c

δn
(3)
abc(t)rarbrc · · · . (72)

We restrict here to the terms of zero order, first order, and
second order of the density fluctuation δn (r,t) as described
by amplitudes δn(0) (t), δn(1)

a (t), and δn
(2)
ab (t), respectively.

Third- and higher-order terms proportional to δn
(3)
abc (t), etc.,

are considered elsewhere [16].
A very convenient approach to the determination of the

small-amplitude oscillations δn (r,t) around the equilibrium
density nTF (r) ≡ nTF (r; λ) is to parametrize the density
fluctuations δn (r,t) in terms of a displacement vector field
η(r,t) and in terms of a dilatation amplitude vector ζ (t):

δn (r,t) = nTF [r + η(r,t); λ + ζ (t)] − nTF (r; λ) . (73)

Neglecting small higher-order terms regarding the size of the
amplitudes |η| and |ζ |, a general density fluctuation δn (r,t)
around the ground state of the BEC cloud is then

b ∈ {x,y,z},
δn (r,t) =

∑
b

[
∂nTF (r; λ)

∂rb

ηb(r,t) + ∂nTF (r; λ)

∂λb

ζb (t)

]
+ o(|η|2 + |ζ |2). (74)

It follows directly from atom number conservation, and
substituting the special case K(r,r′) ≡ 1 into (69), that∫

DTF

d3r ′δn (r′,t) = 0. (75)

Upon insertion of (74) into (75), and using the theorem of
Gauß, we see that the displacement vector field η(r,t) is
necessarily a solenoidal vector field:

divη (r,t) = 0. (76)
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Making a partial integration this property of η(r,t) implies for
the phase fluctuation (70)

b ∈ {x,y,z},

h̄
∂

∂t
δs(r,t) =

∑
b

[∫
DTF

d3r ′ηb (r′,t)
∂U (r,r′)

∂r ′
b

nTF (r′; λ)

− ζb(t)
∂

∂λb

∫
DTF

d3r ′U (r,r′) nTF(r′; λ)

]
.

(77)

A simplification results for the standard two-body interaction
forces among two atoms, say at positions r and r′, that obey
Newton’s law “actio = reactio”:

∂U (r,r′)
∂r ′

b

= −∂U (r,r′)
∂rb

. (78)

Then a general density fluctuation δn (r,t) around equilibrium,
as parametrized by (74) in terms of a solenoidal displacement
η(r,t) and a dilatation amplitude ζ (t), is connected to the time
derivative of the fluctuation δs(r,t) of the Josephson phase by

b ∈ {x,y,z},

h̄
∂

∂t
δs(r,t)=−

∑
b

[
∂

∂rb

∫
DTF

d3r ′U (r,r′)nTF (r′; λ)ηb (r′,t)

+ ζb (t)
∂

∂λb

∫
DTF

d3r ′U (r,r′) nTF (r′; λ)

]
. (79)

Indeed, this exact representation of the quasiclassical hydro-
dynamic phase fluctuations of a BEC for interactions U (r,r′)
that obey (78) represents a convenient starting point for our
analytic calculation of the collective density oscillations of a
spin-polarized dipolar interacting BEC in a trap.

Like the density fluctuations in (72) we may also expand the
Cartesian components ηa(r,t) of the displacement vector field:

a,b,c ∈ {x,y,z},
ηa(r,t) = η(0)

a (t) +
∑

b

η
(1)
ab (t) rb +

∑
b,c

η
(2)
abc (t) rbrc · · · .

(80)

The zero-order term η(0)
a (t) describes a homogeneous

displacement of the center of mass of a BEC cloud in a trap.
Actually, any system of particles that interact via two-body
forces obeying (78) has the property that the motion of the
center of mass separates from the equations of motion of
the other degrees of freedom of the system. As a result, the
frequency of the dipole modes of a trapped atom gas cloud
is independent of any such interactions, because the center of
mass of the cloud moves like a single particle of mass Nm�

in the external trap potential VT (r). For a harmonic trap, the
frequencies of the dipole modes coincide, therefore, with the
bare frequencies ωa of the trap. In experiments this feature is
useful to measure and calibrate the trap frequencies.

The first-order terms η
(1)
ab (t) together with the displacement

amplitudes ζb (t) are connected to density oscillations with
s-wave and d-wave symmetry. Second-order displacement
amplitudes like η

(2)
abc (t) are connected to the octupolar collec-

tive density excitations δn
(3)
abc (t). These and even higher-order

modes are considered elsewhere [16].
It follows directly from (74) that only certain linear com-

binations of the first-order displacement amplitudes η
(1)
ab (t)

together with the dilatation amplitudes ζb (t) couple to s-wave
and d-wave symmetry density oscillation amplitudes δn(0) (t)
and δn

(2)
ab (t), while the homogeneous zero-order displacement

amplitudes η(0)
a (t) couple to the dipole modes:

δn (r,t) = 2n0

[
1

λ2
x

ρxx(t)r2
x + 1

λ2
y

ρyy(t)r2
y + 1

λ2
z

ρzz(t)r
2
z

−1

2

(
1 − r2

x

λ2
x

− r2
y

λ2
y

− r2
z

λ2
z

)
ρ00(t)

+
∑
a<b

1

λaλb

ρab(t)rarb

+ 1

λ2
x

ρx(t)rx + 1

λ2
y

ρy(t)ry + 1

λ2
z

ρz(t)rz

]
, (81)

where

a,b ∈ {x,y,z},
ρab(t) = δab

[
ζa (t)

λa

− η(1)
aa (t)

]
− (1 − δab)λaλb

[
1

λ2
a

η
(1)
ab (t) + 1

λ2
b

η
(1)
ba (t)

]
,

(82)

ρ00(t) =
∑

a

ρaa(t),

ρa(t) = −η(0)
a (t).

Particle number conservation implies the solenoidal
constraint

η(1)
xx (t) + η(1)

yy (t) + η(1)
zz (t) = 0 (83)

so there follows immediately

ρ00(t) =
∑

a

ρaa(t) = ζx (t)

λx

+ ζy (t)

λy

+ ζz (t)

λz

. (84)

In general, a BEC cloud may get excited by a combination of
actions, involving translations of the trap minimum, rotations
of the trap axes, or changes of the curvature of the trap.
The homogeneous displacement amplitudes η(0)

a (t) correspond
to infinitesimal translations of the position of the center of
the BEC cloud. Thus, a density oscillation with a dipolar
p-wave symmetry proportional to ρa(t) can be excited by
a translation of the minimum of the trap. Being mainly
interested in the effect of interactions on the collective modes,
however, we set in the following without loss of generality
η(0)

a (t) = 0. With regard to the first-order off-diagonal dis-
placement amplitudes η

(1)
ab (t) we easily identify antisymmetric

displacement amplitudes η
(1)
ab (t) = −η

(1)
ba (t) as infinitesimal

rotations around a rotation axis perpendicular to the rarb plane,
while symmetric off-diagonal amplitudes η

(1)
ab (t) = η

(1)
ba (t)

correspond totransverse shear. So, in the geometry under
consideration density oscillations with a quadrupolar dab

symmetry proportional to ρab(t) can be excited by rotations or
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by transversal shear of the trap. Density oscillations displaying
an isotropic s-wave symmetry proportional to ρ00(t), and also
showing a quadrupolar d2

z -wave or dx2−y2 -wave symmetry
proportional to certain linear combinations of the diagonal
amplitudesρaa(t), can be excited by a sudden change of the
curvature of the trap.

According to (79) the time derivative h̄ ∂
∂t

δs(r,t) of a phase
fluctuation associated with such a density fluctuation δn (r,t)
is given by

a,b,c ∈ {x,y,z},

h̄
∂

∂t
δs(r,t) = −gs

{∑
b,c

η
(1)
bc (t)

∂

∂rb

[
(1 − εD)nTF(r)rc

−3εD(m · ∇r)2 1

4π

∫
DTF

d3r ′ 1

|r − r′|nTF(r′)r ′
c

]

+
∑

a

ζa(t)
∂

∂λa

[
(1 − εD)nTF(r)

−3εD(m · ∇r)2 1

4π

∫
DTF

d3r ′ 1

|r − r′|nTF(r′)

]}
. (85)

We now express the three-dimensional integrals over the
Thomas-Fermi ellipsoid DTF as one-dimensional integrals
using Chandrasekhar’s integrals (25) and (26):

1

4π

∫
DTF

d3r ′ 1

|r − r′|nTF(r′) = n0�1 (r) (86)

and

1

4π

∫
DTF

d3r ′ 1

|r − r′|nTF(r′) r ′
c = − n0

λ2
c

4

∂

∂rc

�2 (r). (87)

The crucial trick to prove this representation for the first
moment of the Thomas-Fermi density profile nTF (r) is to use
the identity

nTF (r)rc =
(

−n0
λ2

c

4

∂

∂rc

)(
1 − r2

x

λ2
x

− r2
y

λ2
y

− r2
z

λ2
z

)2

. (88)

One finds then on partial integration a surface integral over the
boundary ∂DTF and a volume integral over the Thomas-Fermi
domainDTF. However, the surface integral vanishes identically
taking into account that nTF(r′) ≡ 0 for r′ ∈ ∂DTF. So only the
volume integral contributes, confirming the result (87).

We now rewrite the wave equation (71) for the density
fluctuations,

0 = ∂2

∂t2
δn (r,t) + 1

m�

{
nTF (r)∇2

r h̄
∂

∂t
δs(r,t)

+
∑

a

∂nTF (r)

∂ra

∂

∂ra

h̄
∂

∂t
δs(r,t)

}
. (89)

To calculate the term ∇2
r h̄

∂
∂t

δs(r,t) we need

l = 1,2, . . . ,
(90)

∇2
r �l (r) = −

(
1 − r2

x

λ2
x

− r2
y

λ2
y

− r2
z

λ2
z

)l

.

Straightforward calculations lead to

∇2
r h̄

∂

∂t
δs(r,t)

= −4gsn0

{
(1 − εD)

[
1

λ2
x

ρxx (t) + 1

λ2
y

ρyy(t) + 1

λ2
z

ρzz(t)

]
+ 3εD

[
cos2(ϑ0)

λ2
z

ρzz(t) + sin2(ϑ0)

λ2
x

ρxx(t)

+ sin(2ϑ0)

2λxλz

ρxz(t)

]
+
[

1 − εD

2

(
1

λ2
x

+ 1

λ2
y

+ 1

λ2
z

)
+ 3εD

2

(
cos2(ϑ0)

λ2
z

+ sin2(ϑ0)

λ2
x

)]
ρ00(t)

}
. (91)

Likewise, we obtain

a,b,c ∈ {x,y,z},∑
a

∂nTF(r)

∂ra

∂

∂ra

h̄
∂

∂t
δs(r,t)

= − 4n2
0gs

{
(1 − εD)

∑
a,c

ra

λ2
a

[
1

λ2
a

η(1)
ac (t) + 1

λ2
c

η(1)
ca (t)

]
rc

− 3

2
εD

∑
a,b,c

ra

4λ2
a

∂

∂ra

[
η

(1)
bc (t)λ2

c

∂2

∂rb∂rc

(m · ∇r)2 �2(r)

]
− (1 − εD)

∑
a,b

ζb(t)

λb

(1 + 2δab)
r2
a

λ4
a

+ 3

2
εD

∑
a,b

ra

λ2
a

∂

∂ra

×
[
ζb(t)

(
− 1

λb

+ ∂

∂λb

)
(m · ∇r)2�1(r)

]}
. (92)

A glance at Chandrasekhar’s representation (26) for the poten-
tial functions �l (r) of inhomogenous ellipsoids reveals that for
a point r inside the ellipsoid DTF the potential function for l =
1 is a fourth-order multinomial in the variables {1,r2

x ,r2
y ,r2

z }
with coefficients proportional to the index integrals Ia and Iab,
and for l = 2 it is a sixth-order multinomial with coefficients
proportional to the index integrals Ia , Iab, and Iabc (see
Appendix A). The task to calculate the term (92) is therefore
reduced to calculating linear combinations of derivatives of
certain multinomials in the variables {1,r2

x ,r2
y ,r2

z }:

a,b,c ∈ {x,y,z},∑
a

ra

4λ2
a

∂

∂ra

∑
b,c

η
(1)
bc (t)λ2

c

∂2

∂rb∂rc

(m · ∇r)2�2(r)

= −[Fxx(t)r2
x + Fyy(t)r2

y + Fzz(t)r
2
z + Fxy(t)rxry

+Fyz(t)ryrz + Fxz(t)rxrz

]
(93)
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and

a,b,c ∈ {x,y,z},∑
a

ra

λ2
a

∂

∂ra

∑
b

ζb(t)

(
− 1

λb

+ ∂

∂λb

)
(m · ∇r)2�1(r)

= − [Gxx(t)r2
x + Gyy(t)r2

y + Gzz(t)r2
z

+Gxy(t)rxry + Gyz(t)ryrz + Gxz(t)rxrz

]
,

(94)

Gxy ≡ 0 ≡ Gyz.

In terms of the triple-index integrals (see Appendix A)

Iabc(λx,λy,λz) = λxλyλz

∫ ∞

0

du√(
λ2

x + u
)(

λ2
y + u

)(
λ2

z + u
)

× 1(
λ2

a + u
)(

λ2
b + u

)(
λ2

c + u
) ,

a,b,c ∈ {x,y,z}, (95)

the coefficients Fab(t) are determined as linear combinations
of the displacement fluctuation amplitudes η

(1)
ab (t), and the

coefficients Gab(t) are determined as linear combination of the
dilatation fluctuation amplitudes ζa(t). To evaluate the gradient
terms in the wave equation (89), however, only the differences
Gab(t) − Fab(t) are needed, which can be represented as linear
combinations of the fluctuation amplitudes ρab(t) defined in
(82). Explicit expressions for Gab(t) − Fab(t) in terms of the
triple-index integrals Iabc are presented in Appendix C.

Altogether we find the following second-order multinomial
in the variables {1, rx

λx
,

ry

λy
,

rz

λz
} for the gradient part of (89):

a ∈ {x,y,z},
1

m�

∑
a

[
∂nTF (r)

∂ra

∂

∂ra

h̄
∂

∂t
δs(r,t) + nTF (r)

∂2

∂r2
a

h̄
∂

∂t
δs(r,t)

]

= 4n2
0gs

m�

[
−w00(t) +

∑
a

waa(t)
r2
a

λ2
a

+
∑
a<b

wab(t)
rarb

λaλb

]
.

(96)

For the coefficient proportional to unity we find

w00(t) =
{

(1 − εD)

[
1

λ2
x

ρxx(t) + 1

λ2
y

ρyy(t) + 1

λ2
z

ρzz(t)

]
+ 3εD

[
cos2(ϑ0)

λ2
z

ρzz(t) + sin2(ϑ0)

λ2
x

ρxx(t)

+ sin (2ϑ0)

2λxλz

ρxz(t)

]
+
[

1 − εD

2

(
1

λ2
x

+ 1

λ2
y

+ 1

λ2
z

)
+ 3εD

2

(
cos2(ϑ0)

λ2
z

+ sin2(ϑ0)

λ2
x

)]
ρ00(t)

}
. (97)

The coefficients of the diagonal terms r2
a

λ2
a

for a ∈ {x,y,z} in
(96) are

waa(t) = w00(t) + (1 − εD)
1

λ2
a

[2ρaa(t) + ρ00(t)]

+ 3

2
εDλ2

a[Gaa(t) − Faa(t)], (98)

while the coefficients of the off-diagonal terms rarb

λaλb
for a,b ∈

{x,y,z} and a < b are

wab(t) = (1 − εD)

(
1

λ2
a

+ 1

λ2
b

)
ρab(t)

+ 3

2
εDλaλb [Gab(t) − Fab(t)] . (99)

It follows directly from what has been said that the right-
hand side of (89) represents a second-order quadratic form:

0
!= −
[

1

2

∂2

∂t2
ρ00(t) + 2n0gs

m�
w00(t)

]
+
∑

a

[
∂2

∂t2
ρaa(t) + 1

2

∂2

∂t2
ρ00(t) + 2n0gs

m�
waa(t)

]
r2
a

λ2
a

+
∑
a<b

[
∂2

∂t2
ρab(t) + 2n0gs

m�
wab(t)

]
rarb

λaλb

. (100)

Equating the coefficients of the linearly independent basis
functions 1,

r2
a

λ2
a
, rarb

λaλb
for a,b ∈ {x,y,z} to zero leads to a set

of seven coupled ordinary differential equations for the sought
fluctuation amplitudes ρab(t). As a matter of fact, the equation
for the variable ρ00(t) is obsolete, because the solenoidal
constraint (84) implies

ρ00(t) = ρxx(t) + ρyy(t) + ρzz(t). (101)

This is consistent because certain identities obeyed by the
triple-index integrals Iabc imply the following sum rule (see
Appendix B): ∑

a

waa(t) = 5w00(t). (102)

Indeed, adding the differential equations for the diagonal fluc-

tuation amplitudes proportional to r2
a

λ2
a

leads immediately to

1

2

∂2

∂t2
ρ00(t) + 2n0gs

m�
w00(t) = 0. (103)

Consequently, the derivative term ∂2

∂t2 ρ00(t) and the term
w00(t) in the differential equations (100) for the diagonal
density fluctuation amplitudes ρaa(t) cancel each other. We
obtain finally the following six differential equations for six
fluctuation amplitudes ρab(t):

a,b ∈ {x,y,z},

0= ∂2

∂t2
ρaa(t) + 2n0g

(s)

m�

{
(1 − εD)

1

λ2
a

[
3ρaa(t) +

∑
b �=a

ρbb(t)

]

+ 3

2
εDλ2

a[Gaa(t) − Faa(t)]

}
,

0 = ∂2

∂t2
ρab(t) + 2n0g

(s)

m�

{
(1 − εD)

(
1

λ2
a

+ 1

λ2
b

)
ρab(t)

+ 3

2
εDλaλb[Gab(t) − Fab(t)]

}
.

(104)

To determine the eigenmodes of oscillation we look for a
solution of the form

ρab(t) = ρ̂ab (�) cos (�t + δ�) , (105)
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where � is the eigenfrequency of the mode and ρ̂ab (�) denotes
a component of the associated eigenvector:

2n0g
(s)

m�

⎡⎢⎢⎢⎢⎢⎣
Cxx,xx Cxx,yy Cxx,zz Cxx,xz 0 0
Cyy,xx Cyy,yy Cyy,zz Cyy,xz 0 0
Czz,xx Czz,yy Czz,zz Czz,xz 0 0
Cxz,xx Cxz,yy Cxz,zz Cxz,xz 0 0

0 0 0 0 Cyz,yz Cyz,xy

0 0 0 0 Cxy,yz Cxy,xy

⎤⎥⎥⎥⎥⎥⎦

×

⎡⎢⎢⎢⎢⎢⎣
ρ̂xx (�)
ρ̂yy (�)
ρ̂zz (�)
ρ̂xz (�)
ρ̂yz (�)
ρ̂xy (�)

⎤⎥⎥⎥⎥⎥⎦ = �2

⎡⎢⎢⎢⎢⎢⎣
ρ̂xx (�)
ρ̂yy (�)
ρ̂zz (�)
ρ̂xz (�)
ρ̂yz (�)
ρ̂xy (�)

⎤⎥⎥⎥⎥⎥⎦ . (106)

We find it convenient to eliminate the interaction constant
using (34):

2n0
g(s)

m�
= ω2

yλ
2
y

1 − εD + 3εD

2 λ2
y[cos2(ϑ0)Izy + sin2(ϑ0)Ixy]

.

(107)

On inspection of the coupled differential equations (104) for
the coefficients Cab,cd , explicit expressions, which are listed
in Appendix C, follow.

The collective modes associated with the 4 × 4 submatrix
in (106) describe small-amplitude oscillations of the density,
which are linear combinations of s-wave and quadrupolar
dx2-y2 , dz2 , and dxz waves, while the modes associated with
the 2 × 2 submatrix describe small-amplitude oscillations of
the density consisting solely of combinations of quadrupolar
dyz and dxy waves:

δn�(r,t) = 2n0

[
1

λ2
x

ρ̂xx(�)r2
x + 1

λ2
y

ρ̂yy(�)r2
y + 1

λ2
z

ρ̂zz(�)r2
z

− 1

2

(
1 − r2

x

λ2
x

− r2
y

λ2
y

− r2
z

λ2
z

)
ρ̂00(�)

+
∑
a<b

1

λaλb

ρ̂ab(�)rarb

]
cos(�t + δ�). (108)

By construction there holds∫
DTF

d3rδn�(r,t) = 0.

It is instructive to visualize the spatial dependence of the
eigenmodes of small-amplitude oscillations of the density by
plotting the instantaneous boundary of the BEC cloud when
only a single mode with eigenfrequency � is excited. This
instantaneous boundary is implicitly defined as the surface

n�(r,t) = nTF (r) + δn�(r,t) != 0. (109)

Finally, let us discuss which collective modes can be excited
by changing the trap potential, always keeping the trap strictly

harmonic while changing it. It follows directly from (82):

a,b ∈ {x,y,z},

ρ̂ab(�) = δab

[
ζ̂a (�)

λa

− η̂ (1)
aa (�)

]
− (1 − δab) λaλb

×
[

1

λ2
a

η̂
(1)
ab (�ab) + 1

λ2
b

η̂
(1)
ba (�ab)

]
. (110)

Sudden changes of the trap potential may excite collective
density oscillations around the quantum degenerate ground
state. For example, a rotation around a trap axis perpendicular
to the ab plane, as represented by the antisymmetric compo-
nents of the tensor η̂

(1)
ab , or changes of the curvature of the

trap, as represented by dilatation amplitudes ζ̂a (�), but also
transversal or longitudinal shear movements of the trap, as
represented by the symmetric components of the tensor η̂

(1)
ab ,

can be used to excite the collective modes (81) of the particle
density of a trapped BEC cloud. A sudden translation of the
origin of a harmonic trap, on the other hand, excites only the
dipole modes with eigenfrequency �a ≡ ωa . It should be noted
that during these collective oscillations of a spin polarized
dipolar BEC cloud, as described by the density fluctuation
(108), the atoms always keep the orientation of their magnetic
moments strictly along the external polarizing field B.

B. Pure scissors modes and mixed
monopole-quadrupole excitations

Consider a harmonic trap where the principal axis ez,T

of the trap is aligned parallel to the polarizing external
field B, i.e., ϑT = 0. In this case the off-diagonal matrix
elements Cxy,yz,Cyz,xy , Cxz,aa , and Caa,xz vanish identically
for arbitrary strength εD of the dipole interaction parameter.
There follows, then, a simpler eigenvalue problem determining
the eigenmodes of the small-amplitude density oscillations:

ϑT = 0,

2n0g
(s)

m�

⎡⎢⎢⎢⎢⎢⎣
Cxx,xx Cxx,yy Cxx,zz 0 0 0
Cyy,xx Cyy,yy Cyy,zz 0 0 0
Czz,xx Czz,yy Czz,zz 0 0 0

0 0 0 Cxz,xz 0 0
0 0 0 0 Cyz,yz 0
0 0 0 0 0 Cxy,xy

⎤⎥⎥⎥⎥⎥⎦

×

⎡⎢⎢⎢⎢⎢⎣
ρ̂xx (�)
ρ̂yy (�)
ρ̂zz (�)
ρ̂xz (�)
ρ̂yz (�)
ρ̂xy (�)

⎤⎥⎥⎥⎥⎥⎦ = �2

⎡⎢⎢⎢⎢⎢⎣
ρ̂xx(�)
ρ̂yy(�)
ρ̂zz(�)
ρ̂xz(�)
ρ̂yz(�)
ρ̂xy(�)

⎤⎥⎥⎥⎥⎥⎦ . (111)

Three modes with indices a �= b display a pure quadrupolar
dxz, dyz, and dxy symmetry. Also there exists a mixed
symmetry coupling between two basis functions with d-wave
symmetry and one basis function with s-wave symmetry. This
is reminiscent of the symmetry of the discrete group D4h

lifting the fivefold degeneracy of the l = 2 spherical harmonics
into three one-dimensional manifolds, namely A1g , B1g , and
B2g , and a two-dimensional Eg manifold. We refer to the
one-dimensional (trivial) representation of the isotropic basis
function with s-wave symmetry as a1g .
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In the geometry under consideration the Eg manifold is
spanned by basis functions with dyz and dxy symmetry, while
B2g is spanned by a single basis function with dxz symmetry
and B1g is spanned by a single basis function with dx2-y2

symmetry. The one-dimensional manifold A1g represents a
fixed linear combination of basis elements with dz2 - and s-wave
symmetry. So the upper 3 × 3 block in (111) describes a
coupling between members of the a1g , A1g , and B1g manifolds.
For ωx = ωy �= ωz there exists a pure B1g mode and two
coupled modes with mixed a1g and A1g symmetry.

The eigenfrequencies of the B2g and Eg modes are obtained
from the diagonal matrix elements Cxz,xz, Cyz,yz, and Cxy,xy ,
taking the limit ϑ0 → 0:

�2
xz = ω2

y

(
λ2

y

λ2
x

+ λ2
y

λ2
z

)
(1 − εD) + 9

2εD
λ2

x

λ2
z
I xzz

1 − εD + 3εD

2
λ2

y

λ2
z
I zy

,

�2
yz = ω2

y

(
1 + λ2

y

λ2
z

)
(1 − εD) + 9

2εD
λ2

y

λ2
z
I yzz

1 − εD + 3εD

2
λ2

y

λ2
z
I zy

, (112)

�2
xy = ω2

y

(
1 + λ2

y

λ2
x

)
(1 − εD) + 3

2εD
λ2

x

λ2
z

λ2
y

λ2
z
I xyz

1 − εD + 3εD

2
λ2

y

λ2
z
I zy

.

The spatial variation of the associated density fluctuation of
these modes is purely two dimensional:

a,b ∈ {x,y,z},
a �= b,

ρ̂a′b′ (�ab) = δaa′δbb′ , (113)

δn�ab
(r,t) = 2n0ρ̂ab(�ab)

rarb

λaλb

cos(�abt + δ�ab
).

In the limit εD → 0 it is found that λa

λb
→ ωb

ωa
. Then one obtains

for a BEC without dipole-dipole interactions confined inside
a harmonic trap

a �= b,
(114)

lim
εD→0

�ab =
√

ω2
a + ω2

b.

These are the so-called scissors modes first predicted by
Guéry-Odelin and Stringari [12] and then observed in experi-
ments [17,18].

In order to specify conditions that enable excitation of the
scissors modes (113) for a dipolar BEC cloud confined in a
harmonic trap we point out that the components ρ̂a′b′ (�ab) =
δaa′δbb′ of the eigenvectors of the respective modes are
connected to the off-diagonal displacement amplitudes η̂

(1)
ab ,

see (82), by

a �= b,

ρ̂ab (�ab) = −λaλb

[
1

λ2
a

η̂
(1)
ab (�ab) + 1

λ2
b

η̂
(1)
ba (�ab)

]
. (115)

For an infinitesimal rotation of the BEC cloud around one
of its symmetry axes, say ec,0 = ea,0∧ eb,0, the associated
displacement amplitude is antisymmetric, η̂

(1)
ab = −η̂

(1)
ba . So

one recognizes immediately that in the highly symmetric case
ϑT = 0 a scissors mode with amplitude ρ̂ab (�ab) cannot be

excited by a rotation around a principal axis of the BEC
cloud perpendicular to the ab plane, if the semiaxes λa and
λb of the BEC cloud in that plane are equal, i.e., λa = λb.
However, even then a scissors mode may get excited by a
sudden tranverse shear movement of the trap as described by
a symmetric displacement amplitude η̂

(1)
ab = η̂

(1)
ba . If the BEC

is confined inside a harmonic trap with triaxial symmetry,
one may always excite the scissors modes �ab by a sudden
infinitesimal rotation of the trap potential around a symmetry
axis perpendicular to the respective ab plane.

Let us now discuss the coupled modes corresponding
to the 3 × 3 sub-block in (111). These are small-amplitude
oscillations of the density that are linear combinations of the
three diagonal amplitudes ρ̂aa(�). In the limit εD → 0 the
corresponding eigenfrequencies and eigenvectors of the triplet
of coupled modes can be obtained by solving a cubic equation
for the frequencies �(0):⎡⎢⎣3ω2

x ω2
x ω2

x

ω2
y 3ω2

y ω2
y

ω2
z ω2

z 3ω2
z

⎤⎥⎦
⎡⎢⎣ρ̂xx(�(0))

ρ̂yy(�(0))

ρ̂zz(�(0))

⎤⎥⎦ = [�(0)]2

⎡⎢⎣ρ̂xx(�(0))

ρ̂yy(�(0))

ρ̂zz(�(0))

⎤⎥⎦.

(116)

One easily sees that for a triaxial trap the eigenmodes of this
triplet are mixtures of basis functions with isotropic s-wave and
quadrupolar dz2 -wave and dx2-y2 -wave symmetry, respectively.

When the harmonic trap has a uniaxial (cylindrical) sym-
metry, ωz �= ωy = ωx = ω⊥, simple analytic formulas for the
eigenfrequencies and eigenmodes of the density oscillations of
a BEC cloud can be derived from (116) that apply for εD = 0.
One easily obtains the well-known results first derived by
Stringari for the three eigenfrequencies �

(0)
x2-y2 , �(0)

s , �(0)
z2 [19].

In Appendix D we present a detailed discussion of these modes
as a function of the anisotropy ratio

ν = ωz

ω⊥
. (117)

C. Spherical harmonic trap

For the special case of a spherical harmonic trap, say, with
trap frequency ωa ≡ ω, setting λ(0)

a ≡ �, we immediately find
from (116) for a BEC without dipole-dipole interaction (see
Appendix D)

� = �
(0)
x2-y2 =

√
2ω,

(118)

δn�(r,t) = 2n0 cos (�t + δ�)
r2
x − r2

y

�2
,

� ≡ �
(0)
+ =

√
5ω,

(119)

δn�(r,t) = n0 cos(�t + δ�)

(
5
r2
x + r2

y + r2
z

�2
− 3

)
,

� = �
(0)
− =

√
2ω,

(120)

δn�(r,t) = n0 cos(�t + δ�)
2r2

z − r2
x − r2

y

�2
.
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So for εD = 0, a BEC cloud confined inside a harmonic
spherical trap may get excited as an s-wave breather mode with
frequency �

(0)
+ = √

5ω, or as a quintuplet of degenerate modes
with quadrupolar symmetry and frequency �

(0)
x2-y2 = �

(0)
− =

�(0)
xz = �(0)

yz = �(0)
xy = √

2ω, namely three scissors modes with
dxz, dyz, and dxy symmetry and two modes with dx2-y2 and dz2

symmetry.
Next we take into account the effect of the dipole-dipole

interaction. According to (49) for εD > 0, the ground state of
a spin-polarized dipolar BEC cloud confined in a spherical
trap with trap frequency ωa ≡ ω displays uniaxial symmetry
along the direction of the magnetic field B, so λx = λy < λz.
Let us check if, for εD �= 0, the modes of a dipolar BEC
cloud confined in a spherical trap are qualitatively similar to
the aforementioned collective modes of a BEC cloud without
dipole-dipole interaction, εD = 0, for the case of a prolate trap
with cylindrical symmetry: ωz < ωy = ωx .

Indeed, for a spherical trap with trap frequency ω we have
ϑ0 = 0, so all matrix elements in (111) can be expressed in
terms of the following expressions:

A =
1 − εD + 3

2εD
λ4

y

λ4
z
I yyz

1 − εD + 3εD

2
λ2

y

λ2
z
I zy

,

B =
1 − εD + 9

2εD
λ2

y

λ2
z
I yzz

1 − εD + 3εD

2
λ2

y

λ2
z
I zy

, (121)

C = 1 − εD + 15
2 εDI zzz

1 − εD + 3εD

2
λ2

y

λ2
z
I zy

.

It follows then from (111) that

�2
xz = �2

yz =
(

1 + λ2
y

λ2
z

)
ω2B,

�2
xy = 2ω2A, (122)

ρ̂a′b′ (�ab) = δaa′δbb′ .

So the scissors modes with dxz and dyz symmetry remain
degenerate.

For εD �= 0 the 3 × 3 sub-block in (111) represents a triplet
of coupled modes. For the case of a dipolar BEC confined in a
spherical trap there follows

ω2

⎡⎢⎢⎣
3A A B

A 3A B

λ2
y

λ2
z
B

λ2
y

λ2
z
B 3

λ2
y

λ2
z
C

⎤⎥⎥⎦
⎡⎢⎣ ρ̂xx (�)

ρ̂yy (�)

ρ̂zz (�)

⎤⎥⎦ = �2

⎡⎢⎣ ρ̂xx (�)

ρ̂yy (�)

ρ̂zz (�)

⎤⎥⎦ .

(123)

It is easy to see that the mode with quadrupolar dx2-y2 symmetry
remains an exact eigenstate for εD �= 0:

�2
x2-y2 = 2ω2A = �2

xy,
(124)⎡⎢⎣ρ̂xx(�x2-y2 )

ρ̂yy(�x2-y2 )

ρ̂zz(�x2-y2 )

⎤⎥⎦ =

⎡⎢⎣ 1

−1

0

⎤⎥⎦ .

So for εD �= 0 the quadrupolar modes with dx2-y2 and dxy

symmetry remain degenerate for the case of a spherical
harmonic trap.

Next we show that the isotropic breather mode of a dipolar
BEC inside a spherical trap with frequency ω is an eigenstate
of the small-amplitude density oscillations of the BEC cloud,
displaying an exact s-wave symmetry for any value of the
dipole interaction strength εD �= 0:

�2
s = 5ω2,

(125)⎡⎣ ρ̂xx (�s)
ρ̂yy (�s)
ρ̂zz (�s)

⎤⎦ =
⎡⎣1

1
1

⎤⎦ .

If this claim was correct, then it should be true that

4A + B = 5,
(126)

λ2
y

λ2
z

(2B + 3C) = 5.

Indeed, making use of identities (A7) and (A8) obeyed by the
triple-index integrals Iabc, we see that

4
λ2

y

λ2
z

I yyz + 3I yzz = 5I zy, (127)

4A + B = 4
1 − εD + 3

2εD
λ4

y

λ4
z
I yyz

1 − εD + 3εD

2
λ2

y

λ2
z
I zy

+
1 − εD + 9

2εD
λ2

y

λ2
z
I yzz

1 − εD + 3εD

2
λ2

y

λ2
z
I zy

=
5(1 − εD) + 3

2εD
λ2

y

λ2
z

(
4

λ2
y

λ2
z
I yyz + 3I yzz

)
1 − εD + 3εD

2
λ2

y

λ2
z
I zy

= 5,

and

5I zzz + 2
λ2

y

λ2
z

I yzz = 5I zz, (128)

λ2
y

λ2
z

(2B + 3C) = 2
λ2

y

λ2
z

1 − εD + 9
2εD

λ2
y

λ2
z
I yzz

1 − εD + 3εD

2
λ2

y

λ2
z
I zy

+ 3
λ2

y

λ2
z

1 − εD + 15
2 εDI zzz

1 − εD + 3εD

2
λ2

y

λ2
z
I zy

= λ2
y

λ2
z

5(1 − εD) + 9
2εD

(
2

λ2
y

λ2
z
I yzz + 5I zzz

)
1 − εD + 3εD

2
λ2

y

λ2
z
I zy

= 5
λ2

y

λ2
z

1 − εD + 9
2εDI zz

1 − εD + 3εD

2
λ2

y

λ2
z
I zy

= 5.

The last line follows because the self-consistency equation (46)
implies for the case of a spherical trap

λ2
y

λ2
z

=
1 − εD + 3εD

2
λ2

y

λ2
z
I yz

1 − εD + 9εD

2 I zz

. (129)
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Because for a finite value εD > 0 a spin-polarized dipolar BEC
cloud confined in a spherical harmonic trap with frequency
ω has the shape of an uniaxial (prolate) ellipsoid orientated
parallel to B, so λx = λy < λz, we find it remarkable that the
isotropic breather mode (125) remains an exact eigenmode
of the small-amplitude density fluctuations with s-wave
symmetry, oscilllating at a constant frequency �s = √

5ω that
is independent on the value of the dipole interaction strength
for − 1

2 < εD < 1.
Knowledge of two eigenvalues is sufficient to determine

the third one from the trace of the coefficient matrix in
(123):

�2
s + �2

x2-y2 + �2
z2 = 6ω2

(
A + λ2

y

2λ2
z

C

)
. (130)

This leads for the eigenfrequency and the eigenvector of the
density oscillations with a predominant dz2 symmetry to the
result

�2
z2 = ω2

(
4A + 3

λ2
y

λ2
z

C − 5

)
,

(131)⎡⎢⎣ρ̂xx(�z2 )

ρ̂yy(�z2 )

ρ̂zz(�z2 )

⎤⎥⎦ =

⎡⎢⎢⎢⎣
− λ2

z

λ2
y

5−4A
2B

− λ2
z

λ2
y

5−4A
2B

1

⎤⎥⎥⎥⎦ .

It follows from what has been said that the degeneracy of
the small-amplitude collective modes of a dipolar BEC cloud
confined in a spherical harmonic trap is only partially lifted
for εD �= 0. For a spherical trap the modes with dx2-y2 and dxy

symmetry, and the modes with dyz and dxz symmetry, remain
degenerate, irrespective of the value of the dipole interaction
εD . In Fig. 6 we plot the collective mode frequencies �s , �z2 ,
�xy , and �xz vs the interaction strength parameter εD . For
small |εD|the splitting of the quadrupolar modes �z2 , �xy ,
and �xz is weak. Most remarkably, the breather mode �s

displays for − 1
2 < εD < 1 an exact s-wave symmetry, the

s

z2

xz , yz

x2 y2 , xy

0.4 0.2 0.0 0.2 0.4 0.6 0.8 1.0 D
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FIG. 6. (Color online) Eigenfrequencies �s , �z2 , �xz = �yz. and
�xy = �x2-y2 of small-amplitude density oscillations of BEC cloud
vs dipole interaction strength εD for a spherical harmonic trap with
trap frequeny ω.

eigenfrequency assuming a constant value �s = √
5ω, even

though for εD �= 0 the shape of the ground state is not isotropic.
The following reason can be given for the breather mode

frequency of a dipolar BEC being independent on the dipole
interaction strength εD for an isotropic harmonic trap. The
microscopic Hamiltonian of a dipolar interacting gas cloud
consisting of N atoms is

Ĥ = Ĥkin + Ĥpot + Ĥint,

Ĥkin =
N∑

n=1

1

2m�

∑
a∈{x,y,z}

p(n)
a p(n)

a ,

(132)

Ĥpot =
N∑

n=1

m�ω2

2

∑
a∈{x,y,z}

r (n)
a r (n)

a ,

Ĥint = 1

2

N∑
n,n′=1
n′ �=n

U (r(n),r(n′)).

The breather mode (or monopole mode) of small-amplitude
collective density oscillations of such an atom cloud may
get excited by a sudden change of the curvature of the trap
potential, say, by changing the trap frequency ω → ω + δω.
The associated excitation operator is

δV̂ = m�ωδω

N∑
n=1

∑
a∈{x,y,z}

r (n)
a r (n)

a . (133)

It is important to realize that the interaction potential
U (r(n),r(n′)) for the spin-polarized dipolar BEC in (4) trans-
forms under a scaling transformation r → �r like a homoge-
neous function with scaling degree −3:

U (�r(n),�r(n′)) = �−3U (r(n),r(n′)). (134)

Together with Newton’s law of action and reaction (78) this
implies

[[δV̂ ,Ĥ ],Ĥ ] = 2h̄2ωδω (2Ĥpot − 2Ĥkin − 3Ĥint). (135)

If �0 denotes the ground state and E0 the ground-state energy
of the system under consideration, there holds

0 = 〈�0,([δV̂ ,Ĥ ]E0 − E0[δV̂ ,Ĥ ])�0〉
= 〈�0,[[δV̂ ,Ĥ ],Ĥ ]�0〉. (136)

Inserting the double commutator (135), it is found that the full
interaction energy of a dipolar interacting BEC in the ground
state is proportional to a difference of kinetic and potential
energy only:

〈Ĥint〉�0 = 2
3 〈Ĥpot〉�0 − 2

3 〈Ĥkin〉�0 . (137)

It should be emphasized that if in (4) the scaling degree of
the long-ranged interaction (6) under r →�r differed from
the scaling degree −3 of the short-ranged s-wave contact
interaction (5), the derived virial identity (137) would not
apply.

Next we employ a well-known sum rule [19,20] providing
an upper bound for the low-lying excitation energies E1 − E0
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that can be excited by a Hermitian perturbation operator
δV̂ :

(E1 − E0)2 � 〈�0,[[δV̂ ,Ĥ ],[[δV̂ ,Ĥ ],Ĥ ]]�0〉
〈�0,[δV̂ ,[Ĥ ,δV̂ ]]�0〉

. (138)

For the operator δV̂ exciting the breather mode [see (133)], it
is found that

[δV̂ ,[Ĥ ,δV̂ ]] = 8h̄2(δω)2Ĥpot (139)

and

[[δV̂ ,Ĥ ],[[δV̂ ,Ĥ ],Ĥ ]]

= 4h̄4(ωδω)2(4Ĥpot + 4Ĥkin + 9Ĥint). (140)

From what has been said there follows now for the
frequency �s of the breather mode an upper bound

(h̄�s)
2 � (h̄ω)2 2〈Ĥpot〉�0 + 2〈Ĥkin〉�0 + 9

2 〈Ĥint〉�0

〈Ĥpot〉�0

= (h̄ω)2

(
5 − 〈Ĥkin〉�0

〈Ĥpot〉�0

)
. (141)

For the optimized ground state (1) of a BEC, as constructed
from a solution to the Gross-Pitaevskii equation (2), the ratio
of kinetic to potential energy scales as

〈Ĥkin〉�0

〈Ĥpot〉�0

= o
(
N− 4

5
)
. (142)

So, in the Thomas-Fermi approximation, the derived upper
bound for the breather mode frequency is indeed independent
of the strength of the dipole-dipole interaction parameter εD .
The fact that this upper bound actually coincides with the
previously derived result �s = √

5ω, which was obtained
solving the eigenvalue problem (123) for the small-amplitude
collective modes of density oscillations, suggests that
the spectral weight of the mode is indeed exhausted by the
specified excitation operator δV̂ (133) of the monopole mode.

It is instructive to visualize the spatial variation of the
associated density eigenmodes δn�(r,t) by plotting the in-
stantaneous surface of the BEC cloud as defined by (109).
In Fig. 7 and in Fig. 8 these eigenmodes are plotted at
stroboscopic times t = 0, t = π

2�
, and t = π

�
, corresponding to

maximal, zero, and minimal deviation from the boundary ∂DTF

of the ground-state cloud DTF, respectively. The plots shown
are based on a self-consistent calculation of the ground-state
cloud for a dipole interaction strength parameter εD = 0.7,
assuming that the BEC cloud is confined inside a spherical
harmonic trap with trap frequency ω. The amplitudes of the
respective eigenmodes δn�(r,t) of the density fluctuation have
been scaled by a suitable factor for each mode separately to
make the typical shapes better visible. The s-wave breather
mode is clearly distinguished in its appearance from the three
characteristic scissors modes with their dxz-, dyz-, and dxy-
wave symmetry and the dx2-y2 -wave and d2

z -wave quadrupolar
modes.

D. Spectrum of low-lying excitations for the case ϑT = 0

We now discuss the collective density oscillations of a
dipolar BEC cloud confined in a triaxial harmonic trap in

FIG. 7. (Color online) Visualization of density fluctuations
n�(r,t) = nTF(r) + δn�(r,t) of scissors modes for dipolar BEC cloud
confined inside a spherical trap for a dipole interaction strength
εD = 0.7.

the highly symmetric case, when the principal axis ez,T of
the trap is orientated collinear to the spin-polarizing magnetic
field B, so ϑT = 0. In Figs. 9 and 10 the collective mode
frequencies � corresponding to the solution of the eigenvalue
problem (111) are plotted vs the dipole interaction strength εD .
Shown are three scissors modes with dxz-, dyz-, and dxy-wave
symmetry and three hybridized modes combined from basis
elements with s-wave, dz2 -wave, and dx2-y2 -wave symmetry.
The anisotropy ratio chosen is ωx :ωy :ωz = 712:128:942 in
Fig. 9, and in reverse order, ωx :ωy :ωz = 942:128:712 in
Fig. 10, respectively.

There exists fair agreement between our exact analytical
results and the numerical results obtained in Ref. [21], which
are based on the method of solving Newton equations of
motion for time-dependent Thomas-Fermi radii. As is evident
from (110), small-amplitude fluctuations of the Thomas-
Fermi radii are described in our approach by the dilatation
amplitudes ζ̂a(t). However, in the highly symmetric case
ϑT = 0, these dilatation amplitudes couple only to the diagonal
basis elements of the tensor ρ̂ab:

ρ̂aa(�) = ζ̂a (�)

λa

− η̂ (1)
aa (�). (143)
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FIG. 8. (Color online) Visualization of density fluctuations
n�(r,t) = nTF(r) + δn�(r,t) of dipolar BEC cloud confined inside
a spherical trap for a dipole interaction strength εD = 0.7. (First row)
Isotropic breather mode �s ; (second row) quadrupolar mode �x2-y2 ;
(third row) quadrupolar mode �z2 .
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FIG. 9. (Color online) Eigenfrequencies of small-amplitude col-
lective modes combining isotropic s-wave and quadrupolar d-wave
basis elements vs the dipole interaction strength εD for a dipolar
BEC cloud confined in a harmonic trap with the anisotropy ratio
ωx :ωy :ωz = 712:128:942 in the highly symmetric case ϑT = 0.
Displayed are three scissors modes (blue lines) and three hybridized
modes that are combinations of s-wave and dx2-y2 - and dz2 -basis
elements (red line, black line, and green line, respectively).
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FIG. 10. (Color online) Dependence of eigenfrequencies of
small-amplitude collective modes combining isotropic s-wave and
quadrupolar d-wave basis elements vs dipole interaction strength
εD for dipolar BEC cloud confined in a harmonic trap with
reversed anisotropy ratio ωx :ωy :ωz = 942:128:712 in the highly
symmetric case ϑT = 0. Displayed are three scissors modes (blue
lines) and three hybridized modes that are combinations of s-
wave and dx2-y2 - and dz2 -basis elements (red line, black line, and
green line).

In the highly symmetric case ϑT = 0, no coupling of the
dilation amplitudes ζ̂a (�) to the off-diagonal elements a �=
b of the tensor ρ̂ab exists, as is evident from (115). To
ease comparison of our results with the results presented
in Ref. [9], we also plot in Figs. 11 and 12 the relative
change of the collective mode frequencies �−�(0)

�
vs εD for

the three hybridized modes displayed in Figs. 9 and 10 that
couple via the dilatation amplitudes ζ̂a to the time-dependent
Thomas-Fermi radii.

It should be pointed out that a purely diagonal shear
movement of the dipolar BEC cloud at constant Thomas-Fermi
radii, ζ̂a = 0, as described by the diagonal elements η̂ (1)

aa

of the tensor η̂
(1)
ab spanning the (solenoidal) displacement

vector field (80), may also excite these hybridized modes
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FIG. 11. (Color online) Relative change �−�(0)

�
vs εD for the three

hybridized collective modes as displayed in Fig. 9 for the highly
symmetric case ϑT = 0.
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FIG. 12. (Color online) Relative change �−�(0)

�
vs εD for the three

hybridized collective modes as displayed in Fig. 13 for the highly
symmetric case ϑT = 0.

coupling to ρ̂aa . This degeneracy is a special property of
any quantum degenerate BEC ground state with an ellipsoidal
shaped density profile.

E. Spectrum of low-lying excitations for the case ϑT �= 0

Sudden changes of the trap potential may excite various
collective modes of a dipolar BEC cloud. If the polarizing
external magnetic field B is not in alignment with the principal
axis ez,T of the trap, so ez,T includes a finite angle ϑT �= 0
with B in the xz plane (see Fig. 1), the s-wave and d-
wave symmetry parts of the collective density oscillations
combine to a quadruplet and a doublet of modes. It is found
from (106) that the modes with mixed dx2-y2 -, dz2 -, dxz-,
and s-wave symmetry, consisting of a linear combination
of the three diagonal amplitudes ρ̂xx , ρ̂yy , ρ̂zz and one off-
diagonal amplitude ρ̂xz, combine together to a quadruplet (see

xz
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FIG. 13. (Color online) Dependence on dipole interaction
strength εD of eigenfrequencies � of small-amplitude density oscill-
ations corresponding to 4 × 4 block in (106) when the BEC cloud
is confined in a triaxial harmonic anisotropic trap for ωx :ωy :ωz =
6:3:2 (red line with squares) and ωx :ωy :ωz = 2:3:6 (black line with
circles), choosing a trap orientation angle ϑT = 5.7◦. All frequencies
normalized to geometric mean ω = (ωxωyωz)

1
3 .
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FIG. 14. (Color online) Dependence on dipole interaction
strength εD of eigenfrequencies � of small-amplitude density oscilla-
tions corresponding to a 2 × 2 block in (106) when the BEC cloud is
confined in a triaxial harmonic anisotropic trap for ωx :ωy :ωz = 6:3:2
(red line with squares) and ωx :ωy :ωz = 2:3:6 (black line with circles),
choosing a trap orientation angle ϑT = 5.7◦. All frequencies are
normalized to geometric mean ω = (ωxωyωz)

1
3 .

Fig. 13), and the modes with mixed dxy and dyz symmetry
combine together to a doublet of scissors modes (see Fig. 14).
From (115) it is evident that for εD �= 0 an infinitesimal
rotation around the principal axis ey,T of a harmonic triaxial
trap may then excite via its coupling to the ρ̂xz compo-
nents of the eigenvectors all four modes of the mentioned
quadruplet of small-amplitude oscillations of the density
simultaneously.

Likewise, a rotation around the principal axis ez,T (or ex,T )
of the triaxial harmonic trap may excite, via the coupling
to the off-diagonal amplitudes ρ̂yzand ρ̂xy , the mentioned
doublet of scissors modes simultaneously. Alternatively, these
scissors modes can also be excited by transversal shear
movements of the anisotropic harmonic trap, thus creating
an excitation of the BEC cloud that may be described
by a (solenoidal) displacement vector field (80) that is
spanned by the symmetric off-diagonal elements of the tensor
η̂

(1)
ab .

A sudden change of the curvature of the trap potential, as
described by the dilatation amplitudes ζ̂a in (143), excites in
the geometry under consideration the modes of the quadruplet
but never the scissors modes of the doublet with mixed dxy and
dyz symmetry.

The results displayed in Figs. 13 and 14 reveal that a triaxial
harmonic trap with trap frequencies ωx = ω1, ωy = ω2, ωz =
ω3 (say, ω1 > ω2 > ω3) shows a characteristic shift of the
eigenfrequencies of these quadruplet- and doublet-collective
modes compared to a trap with reversed trap frequencies, i.e.,
a harmonic trap with ωx = ω3, ωy = ω2, and ωz = ω1.

From measurements of these characteristic shifts of the
collective mode frequencies of the quadruplet- and doublet-
collective modes of a dipolar BEC cloud for two such
mutually reciprocal triaxial traps the strength of the interaction
parameter εD could be determined accurately [21]. Knowing
the mass m� and the magnetic dipole moment |〈M〉| of a single
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atom, one then obtains immediately from (8) the isotropic
s-wave scattering length of the atoms [9]:

as = µ0|〈M〉|2
12πh̄2

m� εD

. (144)

The experiment suggested here consists in preparing a
quantum degenerate spin-polarized dipolar BEC cloud con-
fined in a harmonic trap with triaxial symmetry so the
principal axis ez,T of the trap is first orientated collinear to
the spin-polarizing magnetic field B, i.e., at the beginning
of the experiment ϑT = 0 = ϑ0 (see Fig. 1). Then, say, at
time t = 0, the trap orientation angle ϑT is changed suddenly
to a new value by making a rotation around the principal
axis ey,T of the trap by a constant small rotation angle, say,
ϑT = 5.7◦, the value chosen in Figs. 13 and 14. A dipolar BEC
cloud excited in this manner will then oscillate, not around the
old cloud orientation angle ϑ0 = 0, but around a new cloud
orientation angle ϑ0 (ϑT ), which is via the self-consistency
equations (45), (46), and (47) dependent not only on the
strength of the dipole interaction parameter εD but also on
the chosen trap orientation angle ϑT . The principal axis ez,0 of
the new equilibrium BEC cloud confined in a harmonic trap
with trap orientation angle ϑT then includes with the fixed
magnetic field B a finite angle ϑ0 that is smaller or larger than
ϑT , depending on the anisotropy ratio of the trap (see Fig. 2).
It follows from what has been said that the eigenfrequencies
� of the collective modes of the density fluctuations that can
be excited in this manner are functions of εD and the trap
orientation angle ϑT .

In Figs. 15 and 16 the dependence of the collective mode
frequencies of a dipolar BEC cloud on the trap orientation
angle ϑT is shown for three values of the interaction strength
parameter εD .

If a dipolar BEC cloud is confined in a harmonic trap
with triaxial symmetry, so the spin polarizing magnetic field
B is orientated in a completely general fashion, i.e., B its
not orientated parallel to any symmetry plane of the trap,
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FIG. 15. (Color online) Dependence on trap orientation angle
ϑT of eigenfrequencies � of small-amplitude density oscillations
corresponding to 4 × 4 block in (106) when the BEC cloud is
confined in triaxial harmonic anisotropic trap for ωx :ωy :ωz = 6:3:2.

All frequencies normalized to geometric mean ω = (ωxωyωz)
1
3 . The

strength of the dipole interaction is εD = 0.2 (dotted line), εD =
0.5 (dashed line), and εD = 0.8 (solid line).
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FIG. 16. (Color online) Dependence on trap orientation angle
ϑT of eigenfrequencies � of small-amplitude density oscillations
corresponding to the 2 × 2 block in (106) when the BEC cloud is
confined in a triaxial harmonic anisotropic trap for ωx :ωy :ωz = 6:3:2.

All frequencies normalized to geometric mean ω = (ωxωyωz)
1
3 . The

strength of the dipole interaction is εD = 0.2 (dotted line), εD =
0.5 (dashed line), and εD = 0.8 (solid line).

the quantum degenerate ground state of the BEC cloud is
then characterized by three Euler angles determining the
orientation of the ellipsoid DTF relative to the axes of the
trap. We shall present, in a separate publication, a study of
such spin-polarized dipolar BEC clouds [16], together with
a discussion of the octupolar modes of density oscillations,
which can be described by fluctuation amplitudes η

(2)
a;bc(t)

associated with a solenoidal vector field with a quadratic
spatial variation, i.e., ηa(r,t) =∑b,.c η

(2)
a;bc(t)rbrc.

IV. CONCLUSIONS

We have studied the ground state and the low-lying
collective modes of a dipolar Bose-Einstein condensate for the
case that the external magnetic field is not necessarily oriented
parallel to one of the principal axes of the harmonic anisotropic
trap. In particular, we have determined the eigenfrequencies of
six low-lying collective modes that combine, respectively, to a
quadruplet and doublet of atom density oscillations with mixed
s- and d-wave symmetry and obtained analytical expressions
for them. We have found the following results: The mode
frequencies depend on the dipole interaction parameter in a
characteristic way that could be used to measure the s-wave
scattering length of the atoms accurately. In the special case
that the harmonic trap is spherical we find the remarkable re-
sult that the eigenfrequency of the isotropic breather mode does
not depend on the dipole interaction strength, even though
the shape of the condensate does. Thus, this mode could be
used as a reference frequency for the other collective modes
that depend on the dipole interaction strength. A rigorous
sum-rule argument shows that this feature of the breather
mode is a consequence of the scaling property (134) of the
interaction potential in a dipolar BEC and the Thomas-Fermi
approximation.

Note added in proof. Recently an article appeared [24], that
addresses the problem to determine the Thomas-Fermi ground
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state and the low-lying collective excitations of a dipolar BEC,
that is confined inside a triaxial harmonic trap for the highly
symmetric case, when the polarizing field is orientated strictly
parallel to a principal axis of the trap.
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APPENDIX A: INDEX INTEGRALS

Consider the index integrals

a,b,c ∈ {x,y,z},
Ia(λx,λy,λz)

= λxλyλz

∫ ∞

0

du√(
λ2

x + u
) (

λ2
y + u

) (
λ2

z + u
) 1(

λ2
a + u

) ,
Iab(λx,λy,λz) = λxλyλz

∫ ∞

0

du√(
λ2

x + u
) (

λ2
y + u

) (
λ2

z + u
)

× 1(
λ2

a + u
) (

λ2
b + u

) ,
Iabc(λx,λy,λz) = λxλyλz

∫ ∞

0

du√(
λ2

x + u
) (

λ2
y + u

) (
λ2

z + u
)

× 1(
λ2

a + u
) (

λ2
b + u

) (
λ2

c + u
) . (A1)

These integrals are symmetric under permutations of the
indices a,b,c ∈ {x,y,z}. It is also evident that

Ia − Ib = − (λ2
a − λ2

b

)
Iab,

(A2)
Iac − Ibc = − (λ2

a − λ2
b

)
Iabc.

Also index integrals Iab and Iabc are connected by a derivative
operation:(

1

λc

− ∂

∂λc

)
Iab = (1 + 2δac + 2δbc) λcIabc. (A3)

Let us note the identity(
−2

d

du

)⎡⎣ 1√(
λ2

x + u
) (

λ2
y + u

) (
λ2

z + u
)
⎤⎦

= 1√(
λ2

x + u
) (

λ2
y + u

) (
λ2

z + u
) ∑

a∈{x,y,z}

1

λ2
a + u

. (A4)

Likewise,(
−2

d

du

)⎡⎣ 1√(
λ2

x + u
) (

λ2
y + u

) (
λ2

z + u
) 1

λ2
b + u

⎤⎦
= 1√(

λ2
x + u

) (
λ2

y + u
) (

λ2
z + u

) 1

λ2
b + u

×
⎡⎣ 2

λ2
b + u

+
∑

a∈{x,y,z}

1

λ2
a + u

⎤⎦ (A5)

and

(
−2

d

du

)⎡⎣ 1√(
λ2

x + u
) (

λ2
y + u

) (
λ2

z + u
) 1

λ2
b + u

1

λ2
c + u

⎤⎦
= 1√(

λ2
x + u

) (
λ2

y + u
) (

λ2
z + u

) 1

λ2
b + u

1

λ2
c + u

×
⎡⎣ 2

λ2
b + u

+ 2

λ2
c + u

+
∑

a∈{x,y,z}

1

λ2
a + u

⎤⎦ . (A6)

On integration with respect to the variable u from 0 to ∞ there
follow now several useful identities:

2 =
∑

a∈{x,y,z}
Ia,

2

λ2
b

= 2Ibb +
∑

a∈{x,y,z}
Iba, (A7)

2

λ2
bλ

2
c

= 2Ibbc + 2Ibcc +
∑

a∈{x,y,z}
Ibca,

Using these relations, various useful algebraic connections
between the integrals Ia and Iab, and between Iab and Iabc,
become evident [11]:

a,b,c ∈ {x,y,z},
a �= b �= c,

3Iaaλ
2
a + Iabλ

2
b + Iacλ

2
c = 3Ia, (A8)

5Iaaaλ
2
a + Iaabλ

2
b + Iaacλ

2
c = 5Iaa,

3Iaabλ
2
a + 3Iabbλ

2
b + Iabcλ

2
c = 5Iab.

Making the substitution

u → u = �2u′, (A9)

we obtain useful scaling relations

Ia(λx,λy,λz) = Ia

(
λx

�
,
λy

�
,
λz

�

)
≡ I a,

Iab(λx,λy,λz) = 1

�2
Iab

(
λx

�
,
λy

�
,
λz

�

)
≡ 1

�2
I ab, (A10)

Iabc(λx,λy,λz) = 1

�4
Iabc

(
λx

�
,
λy

�
,
λz

�

)
≡ 1

�4
I abc.

In our calculations we find it convenient to choose � = λz > 0.
The task to calculate double-index integrals Iab can be

reduced to calculating simpler single-index integrals Ia . This
is enabled by using

I zz = 2 − I zx − I zy

3
, (A11)
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an immediate consequence of (A7). Provided λa �= λz, the
integrals I za can be reduced to calculating the simpler integrals
I z and I a using the identity

a ∈ {x,y},
(A12)

I za = −I z − I a

1 − λ2
a

λ2
z

.

So for λa �= λz all double-index integrals I za can be reduced to
single-index integrals I a . Carlson [22] has provided an elegant
and efficient algorithm based on the well-known method of
the arithmetic-geometric mean to calculate the single-index
integral I a directly, a method we highly recommend because
of its accuracy and speed [23].

For λa = λz the right-hand side becomes formally unde-
fined. However, in this case we may calculate the integrals I zx

and I zy in closed form:

lim
λa→λz

I za = lim
λa→λz

λx

λz

λy

λz

∫ ∞

0

du√(
λ2

x

λ2
z
+ u
)(

λ2
y

λ2
z
+ u
)

(1 + u)

× 1

(1 + u)
(

λ2
a

λ2
z
+ u
)
,

lim
λx→λz

I zx = λy

λz

∫ ∞

0

du√
λ2

y

λ2
z
+ u

1

(1 + u)3 ≡ I

(
λy

λz

)
,

lim
λy→λz

I zy = λx

λz

∫ ∞

0

du√
λ2

x

λ2
z
+ u

1

(1 + u)3 ≡ I

(
λx

λz

)
,

I (q) = q

∫ ∞

0

du√
q2 + u

1

(1 + u)3

= q

4(q2 − 1)2

(
2q3 − 5q + 3

arccosh (q)√
q2 − 1

)
. (A13)

In the isotropic case λz = λx = λy

lim
λx→λz

lim
λy→λz

I zy = lim
λy→λz

lim
λx→λz

I zx = I (1) = 2

5
. (A14)

APPENDIX B: SUM RULE

The sum rule ∑
a

waa(t) = 5w00(t) (B1)

follows directly from the defining equations (98) and the
properties of the triple-index integrals:

∑
a

waa(t) =
{

3

2
εD × [λ2

x[cos2(ϑ0)(3Ixxz + Ixyz + 3Ixzz) + 3 sin2(ϑ0)(5Ixxx + Ixxy + Ixxz)]ρxx(t)

+ λ2
y[cos2(ϑ0)(Ixyz + 3Iyyz + 3Iyzz) + sin2(ϑ0)(3Ixxy + 3Ixyy + Ixyz)]ρyy(t)

+ λ2
z[3 cos2(ϑ0)(Ixzz + Iyzz + 5Izzz) + sin2(ϑ0)(3Ixxz + Ixyz + 3Ixzz)]ρzz(t)

+ sin(2ϑ0)λzλx(3Ixxz + Ixyz + 3Ixzz)ρxz(t)
]+ 5(1 − εD)

[
1

λ2
x

ρxx(t) + 1

λ2
y

ρyy(t) + 1

λ2
z

ρzz(t)

]
+
[

5
1 − εD

2

(
1

λ2
x

+ 1

λ2
y

+ 1

λ2
z

)
+ 9εD

2

(
cos2(ϑ0)

λ2
z

+ sin2(ϑ0)

λ2
x

)]
ρ00(t)

+ 9εD

[
sin2(ϑ0)

λ2
x

ρxx(t) + cos2(ϑ0)

λ2
z

ρzz(t) + sin (2ϑ0)

2λxλz

ρxz(t)

]}
. (B2)

There holds the following identity for the index integrals
Iabc:

a,b ∈ {x,y,z},
(B3)

2Iaab + 2Iabb + Iabx + Iaby + Iabz = 2

λ2
aλ

2
b

.

Taking into account that the index integrals Iabc are invariant
under permutations of their indices a,b,c ∈ {x,y,z}, it follows
for the linear combinations encountered in (B2) that

3Ixxz + Ixyz + 3Ixzz

= 2Ixxz + 2Ixzz + Ixzx + Ixzy + Ixzz = 2

λ2
xλ

2
z

,

5Ixxx + Ixxy + Ixxz

= 2Ixxx + 2Ixxx + Ixxx + Ixxy + Ixxz = 2

λ2
xλ

2
x

= 2

λ4
x

,

Ixyz + 3Iyyz + 3Iyzz

= 2Iyyz + 2Iyzz + Iyzx + Iyzy + Iyzz = 2

λ2
yλ

2
z

,

3Ixxy + 3Ixyy + Ixyz

= 2Ixxy + 2Ixyy + Ixyx + Ixyy + Ixyz = 2

λ2
xλ

2
y

,

Ixzz + Iyzz + 5Izzz

= 2Izzz + 2Izzz + Izzx + Izzy + Izzz = 2

λ2
zλ

2
z

= 2

λ4
z

.
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Making use of these identities, and taking into account (101),
we indeed see that

∑
a∈{x,y,z}

waa(t) =
{

3εD

([
cos2(ϑ0)

1

λ2
z

+ 3 sin2(ϑ0)
1

λ2
x

]
ρxx(t) +

[
cos2(ϑ0)

1

λ2
z

+ sin2(ϑ0)
1

λ2
x

]
ρyy(t)

+
[

3 cos2(ϑ0)
1

λ2
z

+ sin2(ϑ0)
1

λ2
x

]
ρzz(t) + sin (2ϑ0)

1

λxλz

ρxz(t)

)
+ 5(1 − εD)

[
1

λ2
x

ρxx(t) + 1

λ2
y

ρyy(t) + 1

λ2
z

ρzz(t)

]

+
[

5
1 − εD

2

(
1

λ2
x

+ 1

λ2
y

+ 1

λ2
z

)
+ 9εD

2

(
cos2(ϑ0)

λ2
z

+ sin2(ϑ0)

λ2
x

)]
ρ00(t)

+ 9εD

[
sin2(ϑ0)

λ2
x

ρxx(t) + cos2(ϑ0)

λ2
z

ρzz(t) + sin (2ϑ0)

2λxλz

ρxz(t)

]}

=
{

3εD

[
cos2(ϑ0)

1

λ2
z

+ sin2(ϑ0)
1

λ2
x

] [
ρxx(t) + ρyy(t) + ρzz(t)

]
+ 5(1 − εD)

[
1

λ2
x

ρxx(t) + 1

λ2
y

ρyy(t) + 1

λ2
z

ρzz(t)

]

+
[

5
1 − εD

2

(
1

λ2
x

+ 1

λ2
y

+ 1

λ2
z

)
+ 9εD

2

(
cos2(ϑ0)

λ2
z

+ sin2(ϑ0)

λ2
x

)]
ρ00(t)

+ 3εD (3 + 2)

[
sin2(ϑ0)

λ2
x

ρxx(t) + cos2(ϑ0)

λ2
z

ρzz(t) + sin (2ϑ0)

2λxλz

ρxz(t)

]}

= 5

{
(1 − εD)

[
1

λ2
x

ρxx(t) + 1

λ2
y

ρyy(t) + 1

λ2
z

ρzz(t)

]
+ 3εD

[
cos2(ϑ0)

λ2
z

ρzz(t) + sin2(ϑ0)

λ2
x

ρxx(t) + sin (2ϑ0)

2λxλz

ρxz(t)

]

+
[

1 − εD

2

(
1

λ2
x

+ 1

λ2
y

+ 1

λ2
z

)
+ 3εD

2

(
cos2(ϑ0)

λ2
z

+ sin2(ϑ0)

λ2
x

)]
ρ00(t)

}
= 5w00(t). (B4)

APPENDIX C: EXPLICIT EXPRESSIONS FOR
Gab(t) − Fab(t) AND MATRIX ELEMENTS Cab,cd

We collect here explicit expressions for the linear combi-
nations Gab(t) − Fab(t) that occur in (98),

Gxx(t) − Fxx(t) = 1

λ2
x

{
3λ2

x[cos2(ϑ0)Ixxz + 5 sin2(ϑ0)Ixxx]ρxx(t) + λ2
y[cos2(ϑ0)Ixyz + 3 sin2(ϑ0)Ixxy]ρyy(t)

+ 3λ2
z[cos2(ϑ0)Ixzz + sin2(ϑ0)Ixxz]ρzz(t) + 3 sin (2ϑ0) Ixxzλxλzρxz(t)

}
,

Gyy(t) − Fyy(t) = 1

λ2
y

{
λ2

x[cos2(ϑ0)Ixyz + 3 sin2(ϑ0)Ixxy]ρxx(t) + 3λ2
y[cos2(ϑ0)Iyyz + sin2(ϑ0)Ixyy]ρyy(t)

+ λ2
z[3 cos2(ϑ0)Iyzz + sin2(ϑ0)Ixyz]ρzz(t) + sin (2ϑ0) Ixyz · λxλzρxz(t)

}
,

Gzz(t) − Fzz(t) = 1

λ2
z

{
3λ2

x[cos2(ϑ0)Ixzz + sin2(ϑ0)Ixxz]ρxx(t) + λ2
y[3 cos2(ϑ0)Iyzz + sin2(ϑ0)Ixyz]ρyy(t)

+ 3λ2
z[5 cos2(ϑ0)Izzz + sin2(ϑ0)Ixzz]ρzz(t) + 3 sin (2ϑ0) Ixzzλxλzρxz(t)

}
, (C1)
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and also in (99),

Gxz(t) − Fxz(t) =
{

3

(
1

λ2
x

+ 1

λ2
z

)
λxλz

[
cos2(ϑ0)Ixzz + sin2(ϑ0)Ixxz

]
ρxz(t)

+ sin (2ϑ0) [3

(
1 + λ2

x

λ2
z

)
Ixxzρxx(t) +

(
λ2

y

λ2
x

+ λ2
y

λ2
z

)
Ixyzρyy(t) + 3

(
λ2

z

λ2
x

+ 1

)
Ixzzρzz(t)]

}
,

Gyz(t) − Fyz(t) =
(

1

λ2
y

+ 1

λ2
z

)
[sin (2ϑ0) λxλyIxyzρxy(t) + λyλz[3 cos2(ϑ0)Iyzz + sin2(ϑ0)Ixyz]ρyz(t)],

Gxy(t) − Fxy(t) =
(

1

λ2
x

+ 1

λ2
y

)
[λxλy[cos2(ϑ0)Ixyz + 3 sin2(ϑ0)Ixxy]ρxy(t) + λyλz sin (2ϑ0) Ixyzρyz(t)].

The matrix elements Cab,cd occurring in the eigenvalue problem (106) are explicitly given by

2n0g
(s)

m�
Cxx,xx = ω2

y

λ2
y

λ2
x

3(1 − εD) + 9
2εD

λ4
x

λ4
z
[cos2(ϑ0)I xxz + 5 sin2(ϑ0)I xxx]

1 − εD + 3εD

2
λ2

y

λ2
z
[cos2(ϑ0)I zy + sin2(ϑ0)I xy]

,

2n0g
(s)

m�
Cxx,yy = ω2

y

λ2
y

λ2
x

(1 − εD) + 3
2εD

λ2
x

λ2
z

λ2
y

λ2
z
[cos2(ϑ0)I xyz + 3 sin2(ϑ0)I xxy]

1 − εD + 3εD

2
λ2

y

λ2
z
[cos2(ϑ0)I zy + sin2(ϑ0)I xy]

,

(C2)

2n0g
(s)

m�
Cxx,zz = ω2

y

λ2
y

λ2
x

(1 − εD) + 9
2εD

λ2
x

λ2
z
[cos2(ϑ0)I xzz + sin2(ϑ0)I xxz]

1 − εD + 3εD

2
λ2

y

λ2
z
[cos2(ϑ0)I zy + sin2(ϑ0)I xy]

,

2n0g
(s)

m�
Cxx,xz = ω2

y

9
2εD sin(2ϑ0) λx

λz

λ2
y

λ2
z
I xxz

1 − εD + 3εD

2
λ2

y

λ2
z
[cos2(ϑ0)I zy + sin2(ϑ0)I xy]

,

2n0g
(s)

m�
Cyy,xx = ω2

y

(1 − εD) + 3
2εD

λ2
x

λ2
z

λ2
y

λ2
z
[cos2(ϑ0)I xyz + 3 sin2(ϑ0)I xxy]

1 − εD + 3εD

2
λ2

y

λ2
z
[cos2(ϑ0)I zy + sin2(ϑ0)I xy]

,

2n0g
(s)

m�
Cyy,yy = ω2

y

3(1 − εD) + 9
2εD

λ4
y

λ4
z
[cos2(ϑ0)I yyz + sin2(ϑ0)I xyy]

1 − εD + 3εD

2
λ2

y

λ2
z
[cos2(ϑ0)I zy + sin2(ϑ0)I xy]

,

(C3)

2n0g
(s)

m�
Cyy,zz = ω2

y

(1 − εD) + 3
2εD

λ2
y

λ2
z
[3 cos2(ϑ0)I yzz + sin2(ϑ0)I xyz]

1 − εD + 3εD

2
λ2

y

λ2
z
[cos2(ϑ0)I zy + sin2(ϑ0)I xy]

,

2n0g
(s)

m�
Cyy,xz = ω2

y

3
2εD sin(2ϑ0) λx

λz

λ2
y

λ2
z
I xyz

1 − εD + 3εD

2
λ2

y

λ2
z
[cos2(ϑ0)I zy + sin2(ϑ0)I xy]

,

2n0g
(s)

m�
Czz,xx = ω2

y

λ2
y

λ2
z

(1 − εD) + 9
2εD

λ2
x

λ2
z
[cos2(ϑ0)I xzz + sin2(ϑ0)I xxz]

1 − εD + 3εD

2
λ2

y

λ2
z
[cos2(ϑ0)I zy + sin2(ϑ0)I xy]

,

2n0g
(s)

m�
Czz,yy = ω2

y

λ2
y

λ2
z

(1 − εD) + 3
2εD

λ2
y

λ2
z
[3 cos2(ϑ0)I yzz + sin2(ϑ0)I xyz]

1 − εD + 3εD

2
λ2

y

λ2
z
[cos2(ϑ0)I zy + sin2(ϑ0)I xy]

,

(C4)
2n0g

(s)

m�
Czz,zz = ω2

y

λ2
y

λ2
z

3(1 − εD) + 9
2εD[5 cos2(ϑ0)I zzz + sin2(ϑ0)I xzz]

1 − εD + 3εD

2
λ2

y

λ2
z
[cos2(ϑ0)I zy + sin2(ϑ0)I xy]

,

2n0g
(s)

m�
Czz,xz = ω2

y

9
2εD sin(2ϑ0) λx

λz

λ2
y

λ2
z
I xzz

1 − εD + 3εD

2
λ2

y

λ2
z
[cos2(ϑ0)I zy + sin2(ϑ0)I xy]

,
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2n0g
(s)

m�
Cxz,xx = ω2

y

(
1 + λ2

x

λ2
z

) 9
2εD sin(2ϑ0) λx

λz

λ2
y

λ2
z
I xxz

1 − εD + 3εD

2
λ2

y

λ2
z
[cos2(ϑ0)I zy + sin2(ϑ0)I xy]

,

2n0g
(s)

m�
Cxz,yy = ω2

y

(
λ2

y

λ2
x

+ λ2
y

λ2
z

) 3
2εD sin(2ϑ0) λx

λz

λ2
y

λ2
z
I xyz

1 − εD + 3εD

2
λ2

y

λ2
z
[cos2(ϑ0)I zy + sin2(ϑ0)I xy]
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.

Here, the quantities I ab and I abc denote (scaled) double- and
triple-index integrals, as explained in (A10).

APPENDIX D: COUPLED MONOPOLE-QUADRUPOLE
MODES OF DENSITY OSCILLATIONS

For completeness, we discuss here the coupled small-
amplitude monopole-quadrupole oscillations of density for a
BEC confined in a harmonic trap with cylindrical (uniaxial)
symmetry, restricting to the case of zero dipole-dipole interac-
tion, εD = 0. Setting ωz �= ωy = ωx = ω⊥ in the eigenvalue
problem (116) we easily find analytical expressions for three
eigenmodes. First,

�
(0)
x2-y2 = √

2ω⊥,
(D1)⎡⎢⎢⎣

ρ̂xx

(
�

(0)
x2-y2

)
ρ̂yy

(
�

(0)
x2-y2

)
ρ̂zz

(
�

(0)
x2-y2

)
⎤⎥⎥⎦ =

⎡⎣ 1
−1
0

⎤⎦ .

It follows directly from (81) that this eigenmode corresponds
for all anisotropy ratios to a density fluctuation δn�(r,t) with
pure dx2-y2 symmetry:

� = �
(0)
x2-y2 , δn�(r,t) = 2n0 cos (�t + δ�)

r2
x − r2

y[
λ

(0)
⊥
]2 .

The second and third eigenmodes ρ̂aa(�(0)
± ) with eigenfrequen-

cies �
(0)
± form a doublet consisting of a combination of basis

elements with s-wave and dz2 -wave symmetry. We obtain as
a function of the anisotropy ratio ν = ωz

ω⊥
the following exact

results for the eigenfrequencies and the eigenvectors:

�
(0)
+ = ω⊥

[
4+3ν2+√

16−16ν2+9ν4

2

] 1
2
,

(D2)⎡⎢⎣ ρ̂xx(�(0)
+ )

ρ̂yy(�(0)
+ )

ρ̂zz(�
(0)
+ )
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16−16ν2+9ν4

4ν2
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4ν2

1

⎤⎥⎦ .

For ν → ∞ this mode becomes quasi-one-dimensional:

ν � 1,

�
(0)
+ =

√
3ωz

(
1 + 1

9ν2
+ · · ·

)
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+ )
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(0)
+ )

⎤⎥⎦ =
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3ν2 + · · ·
1

⎤⎦ ,

while for ν → 0 it is quasi-two-dimensional:
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16
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For an anisotropy ratio ν � 1(slightly deformed sphere) the
associated density fluctuation δn�(r,t) is of the breather type,
i.e., a strongly weighted isotropic s-wave part is combined with
only a small admixture of quadrupolar dz2 -wave symmetry:

� = �
(0)
+ ,

δn�(r,t) = 2n0 cos(�t + δ�)

×
[(

4 − 3ν2 + √
16 − 16ν2 + 9ν4
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2

)
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+ 3

2

)
r2
z[

λ
(0)
z

]2
−
(
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4ν2
+ 1

2

)]
. (D3)

The other eigenmode of the doublet is characterized by
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(0)
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2

) 1
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For ν → ∞ this mode behaves asymptotically as
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For ν → 0 we find
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32ν2 + · · ·

− 1
4 − 5

32ν2 + · · ·
1

⎤⎥⎥⎦ .

For an anisotropy ratio ν � 1 (slightly deformed sphere) this
mode describes a density fluctuation with a strongly weighted
dz2 -wave part and only a small admixture of isotropic s-wave
symmetry:

� = �
(0)
− ,

δn�(r,t) = 2n0 cos (�t + δ�)

×
[(

4 − 3ν2 − √
16 − 16ν2 + 9ν4

2ν2
+ 1

2

)
r2
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y

[λ(0)
⊥ ]2
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(
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2

)
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z

λ2
z

−
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4ν2
+ 1

2

)]
. (D5)

The derived frequencies for the coupled monopole-quadrupole
oscillations of a BEC without dipole-dipole interaction, i.e.,
εD = 0, that is confined inside a harmonic trap with uniaxial
(cylindrical) symmetry, coincide with well-known results first
derived by Stringari [19] using a different method, that enabled
him also to derive all the higher-lying frequencies.

[1] C. J. Pethick and H. Smith, Bose-Einstein Condensation in Dilute
Gases, 2nd ed. (Cambridge University Press, New York, 2008).

[2] L. Santos, G. V. Shlyapnikov, P. Zoller, and M. Lewenstein,
Phys. Rev. Lett. 85, 1791 (2000).

[3] T. Lahaye, C. Menotti, L. Santos, M. Lewenstein, and T. Pfau,
Rep. Prog. Phys. 72, 126401 (2009).

[4] M. Vengalattore, S. R. Leslie, J. Guzman, and D. M.
Stamper-Kurn, Phys. Rev. Lett. 100, 170403 (2008).

[5] S. Ospelkaus, A. Pe’er, K.-K. Ni, J. J. Zirnel, B. Neyenhuis,
S. Kotochigova, P. S. Julienne, J. Ye, and D. S. Jin, Nat. Phys. 4,
622 (2008).

[6] K. Chebakov, A. Sokolov, A. Akimov, D. Sukachev,
S. Kanorsky, N. Kolachevsky, and V. Sorokin, Opt. Lett. 34,
2955 (2009).

[7] A. J. Berglund, J. L. Hanssen, and J. J. McClelland, Phys. Rev.
Lett. 100, 113002 (2008).

[8] M. Lu, S. H. Youn, and B. L. Lev, Phys. Rev. Lett. 104, 063001
(2010).

[9] A. Griesmaier, J. Stuhler, T. Koch, M. Fattori, T. Pfau, and
S. Giovanazzi, Phys. Rev. Lett. 97, 250402 (2006).

[10] C. Eberlein, S. Giovanazzi, and D. H. J. O’Dell, Phys. Rev. A
71, 033618 (2005).

[11] S. Chandrasekhar, Lectures in Theoretical Physics (University
of Colorado Press, Boulder, 1964), Vol. VI, pp. 1–72.
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