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Hydrodynamic equation of a spinor dipolar Bose-Einstein condensate
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We introduce equations of motion for spin dynamics in a ferromagnetic Bose-Einstein condensate with
magnetic dipole-dipole interaction, written using a vector expressing the superfluid velocity and a complex scalar
describing the magnetization. This simple hydrodynamical description extracts the dynamics of spin wave and
affords a straightforward approach by which to investigate the spin dynamics of the condensate. To demonstrate
the advantages of the description, we illustrate dynamical instability and magnetic fluctuation preference, which
are expressed in analytical forms.
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I. INTRODUCTION

One of the salient features of a gaseous Bose-Einstein
condensate (BEC) is the internal spin degrees of freedom.
In spinor BECs, namely, in BECs with internal degrees of
freedom, spin and gauge degrees of freedom couple in various
manners, leading to nontrivial properties of spin waves and
topological excitations. For example, ferromagnetic BECs
have continuous spin-gauge symmetry, thus the circulation of
the superfluid velocity is not quantized [1–3], whereas spin-1
polar BECs and spin-2 cyclic BECs can host fractional vortices
due to the discrete spin-gauge symmetry [4–7]. In recent
experiments, in situ imaging of transverse magnetization has
revealed the real-time dynamics of the spontaneous symmetry
breaking, spin texture formation, and nucleation of spin
vortices [8–10], opening up a new paradigm for studying the
static and dynamic properties of spin textures.

On the other hand, BECs with magnetic dipole-dipole
interaction (MDDI) have also attracted much attention both
experimentally and theoretically in recent years. The long-
range and anisotropic nature of the MDDI is predicted to
yield exotic phenomena, such as new equilibrium shapes,
roton-maxon spectra, supersolid states, and two-dimensional
solitons [11]. In particular, when the BEC has spin degrees of
freedom, the MDDI is predicted to develop spin textures, even
when the MDDI is much weaker than the contact interaction
[12–14]. This work is motivated by experiments done by
the Berkeley group [9], where small magnetic domains were
observed to develop from a helical spin structure in a spin-1
87Rb BEC. The method presented in this paper simplifies the
spin dynamics in a complicated system of spinor dipolar BECs,
although we have shown in our previous work that mean-field
calculations do not reproduce the experimental results [15].

In this paper, we propose a hydrodynamic description
of a ferromagnetic BEC with MDDI. The hydrodynamic
equation of spinor BECs has been discussed for both ferro-
magnetic phases [16–18] and nonmagnetized phases [18,19].
In Ref. [16], Takahashi et al. consider the strong MDDI limit
by using the classical spin model, i.e., by neglecting the
spin-gauge coupling. On the other hand, Lamacraft takes into
account the spin-gauge coupling by introducing the so-called
Mermin-Ho relation, and considers the weak MDDI [17].
In these papers, the authors use a unit vector to describe
the local magnetization in the ferromagnetic phase. Here we

use a single complex scalar variable instead of a unit vector
to describe the local magnetization and treat both the spin-
gauge coupling and MDDI. This simple description allows
a straightforward approach to analyze the spin dynamics of
the condensate. In order to demonstrate the advantages of
our description, we analyze the dynamical instability and
magnetization fluctuation preference of the BEC with MDDI.

The rest of the paper is organized as follows. In Sec. II,
hydrodynamic equations described using the spin density
vector are derived from the Gross-Pitaevskii (GP) equation.
We then rewrite the equations by means of stereographic
projection for some simple cases: quasi-two-dimensional (2D)
systems under zero external field and under a strong magnetic
field. For both zero-field and strong-field cases, the wave-
vector dependence of the dynamical instability is obtained
straightforwardly in an analytical form in Sec. III. In Sec. IV,
we also illustrate the magnetic fluctuation preference for the
unstable modes discussed in Sec. III. Conclusions are given in
Sec. V.

II. HYDRODYNAMIC DESCRIPTION

A. Equations of motion of mass and spins

We consider a spin-F BEC under a uniform magnetic field
B applied in the z direction. The GP equation for the spinor
dipolar system is given by

ih̄
∂

∂t
�m(r,t) = (H0 + pm + qm2)�m

+
2F∑

S=0,even

4πh̄2

M
aS

S∑
MS=−S

F∑
n,m′,n′=−F

×〈mn|SMS〉〈SMS |m′n′〉�∗
n�m′�n′

+ cdd

∑
µ=x,y,z

F∑
n=−F

bµ(Fµ)mn�n, (1)

where �m(r,t) is the condensate wave function for the atoms in
the magnetic sublevel m and H0 = −h̄2∇2/(2M) + Utrap(r),
with M being the atomic mass and Utrap the spin-independent
trapping potential. The linear and quadratic Zeeman energies
per atom are given by p = gF µBB and q = (gF µBB)2/Ehf ,
respectively, where gF is the hyperfine g-factor, µB is the
Bohr magneton, and Ehf is the hyperfine energy splitting. The
second term on the right-hand side of Eq. (1) comes from
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the short-range part of the two-body interaction given by

Vs(r,r ′) = δ(r − r ′)
2F∑

S=0,even

4πh̄2

M
aSPS, (2)

where PS = ∑S
MS=−S |SMS〉〈SMS | projects a pair of spin-1

atoms into the state with total spin S, and aS is the s-wave
scattering length for the corresponding spin channel S. The
scattering amplitude for odd S vanishes due to Bose sym-
metrization, and 〈mn|SMS〉 in Eq. (1) is the Clebsch-Gordan
coefficient. The last term on the right-hand side of Eq. (1)
corresponds to the MDDI, where cdd = µ0(gF µB)2/(4π ), with
µ0 being the magnetic permeability of the vacuum. Here, we
define the nonlocal dipole field by

bµ(r) =
∫

d3r ′ ∑
ν

Qµν(r − r ′)fν(r ′), (3)

where Qµν(r) is the dipole kernel, given in Sec. II C, and

fµ =
∑
mn

�∗
m(Fµ)mn�n (4)

is the spin density, with Fx,y,z being the spin-F matrices. Below
we omit the summation symbol: Greek indices that appear
twice are to be summed over x, y, and z, and Roman indices
are to be summed over −F, . . . ,F .

From the GP equation, we can immediately derive the mass
continuity equation:

∂ntot

∂t
+ ∇ · (ntotvmass) = 0, (5)

where

ntot = �∗
m�m, (6)

ntotvmass = h̄

2Mi
[�∗

m(∇�m) − (∇�∗
m)�m] (7)

are the number density and superfluid current, respectively.
By introducing a normalized spinor ζm defined by �m(r,t) =√

ntot(r,t)ζm(r,t), the superfluid velocity vmass can be written
as

vmass = h̄

2Mi
[ζ ∗

m(∇ζm) − (∇ζ ∗
m)ζm]. (8)

In the absence of the linear and quadratic Zeeman effects and
the MDDI, the continuity equation of the spin density can also
be derived from the GP equation as

∂fµ

∂t
+ ∇ · (ntotv

µ
spin

) = 0, (9)

where v
µ
spin is the spin superfluid velocity defined by

vµ
spin = h̄

2Mi
(Fµ)mn[ζ ∗

m(∇ζn) − (∇ζ ∗
m)ζn]. (10)

The short-range interaction does not contribute to the equation
of motion of spin, since it conserves the total spin of two
colliding atoms. The detailed calculation is given in the
Appendix. In the presence of the external magnetic field along
the z direction, the linear Zeeman effect induces a torque term
(p/h̄)(ẑ × f )µ on the right-hand side of Eq. (9), which causes
the precession of spins. In a similar manner, the dipole field
also induces a torque term (cdd/h̄)(b × f )µ. On the other hand,
the quadratic Zeeman term does not conserve the transverse

magnetization, and its effect is written as (2q/h̄)εµzνntotN̂zν ,
where εijk is the Levi-Civita symbol, and

N̂µν = 1
2ζ ∗

m(FµFν + FνFµ)mnζn (11)

is a nematic tensor. The derivations of these three terms are
given in the Appendix. As a result, we obtain the equation of
motion of spins in the presence of the MDDI and linear and
quadratic Zeeman effects under the external field parallel to
the z axis:

∂fµ

∂t
+ ∇ · (ntotv

µ
spin

) = cdd

h̄
(b × f )µ + p

h̄
(ẑ × f )µ

+ 2q

h̄
ntotεµzνN̂zν . (12)

Equations (5) and (12) hold in all phases, independent of
scattering length.

B. Ferromagnetic BEC

In the following, we consider a ferromagnetic BEC. We
assume that the BEC is fully magnetized, | f | = Fntot, and
only the direction of the spin density can vary in space. This
assumption is valid when the ferromagnetic interaction energy
is large enough compared with the other spinor interaction
energies, MDDI energy, quadratic Zeeman energy, and the
kinetic energy arising from the spacial variation of the direction
of f . The linear Zeeman effect is not necessarily weaker
than the ferromagnetic interaction, since it merely induces the
Larmor precession. For example, the short-range interaction
(2) for a spin-1 BEC can be written as [20]

〈mn|Vs(r,r ′)|m′n′〉
= δ(r − r ′)[c0δmnδm′n′ + c1(Fµ)mn(Fµ)m′n′ ], (13)

where c0 = 4πh̄2(2a2 + a0)/(3M) and c1 = 4πh̄2(a2 −
a0)/(3M). The ground state is ferromagnetic for c1 < 0.
The above assumption is valid when q � |c1|ntot, cdd � |c1|,
and the length scale of the spatial spin structure is larger
than the spin healing length ξsp = h̄/

√
2M|c1|ntot. Moreover,

in the incompressible limit, namely, when the spin-
independent interaction (c0ntot for the case of a spin-1 BEC) is
much stronger than the ferromagnetic interaction and MDDI,
the number density ntot is determined regardless of the spin
structure and assumed to be stationary. This is the case for the
spin-1 87Rb BEC.

We then rewrite the equations of motion (5) and (12) in
terms of a unit vector f̂ ≡ f /(Fntot) that describes the
direction of the spin density and the superfluid velocity vmass

defined in Eq. (8). The order parameter for the spin-polarized
state in the z direction is given by ζ (0)

m = δmF . The general order
parameter is obtained by performing the gauge transformation
and Euler rotation as

ζ = eiφe−iFzαe−iFyβe−iFzγ ζ (0)

= ei(φ−Fγ )e−iFzαe−iFyβζ (0), (14)

where α, β, and γ are Euler angles shown in Fig. 1 and φ

is the overall phase. Due to the spin-gauge symmetry of the
ferromagnetic BEC, i.e., the equivalence between the phase
change φ and spin rotation γ , distinct configurations of ζ are
characterized with a set of parameters (α,β,φ′ ≡ φ − Fγ ).
Here, α and β denote the direction of f̂ as shown in Fig. 1.
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FIG. 1. Euler rotation of the unit vector f̂ .

Actually, f̂ for the order parameter (14) is calculated as

F f̂ = ζ ∗
m Fmnζn

= ζ (0)∗
m (eiFyβeiFzα Fe−iFzαe−iFyβ)mnζ

(0)
n

= Rz(α)Ry(β)
[
ζ (0)∗
m Fmnζ

(0)
n

]

= F

⎛
⎜⎝

sin β cos α

sin β sin α

cos β

⎞
⎟⎠ , (15)

where Rz(α) and Ry(β) are the 3 × 3 matrices describing the
rotation about the z axis by α and about the y axis by β,
respectively. In a similar manner, we obtain the nematic tensor
N̂ for the order parameter (14) as

N̂µν = Rz(α)Ry(β)N̂ (0)
µν RT

y (β)RT
z (α)

= F

2
δµν + F (2F − 1)

2
f̂µf̂ν, (16)

where T denotes the transpose and N̂ (0)
µν = 1

2ζ (0)∗
m (FµFν +

FνFµ)mnζ
(0)
n is the nematic tensor for ζ (0), which is given

by

N̂ (0) =

⎛
⎜⎝

F/2 0 0

0 F/2 0

0 0 F 2

⎞
⎟⎠

= F

2

⎛
⎜⎝

1 0 0

0 1 0

0 0 1

⎞
⎟⎠+ F (2F − 1)

2

⎛
⎜⎝

0 0 0

0 0 0

0 0 1

⎞
⎟⎠ . (17)

Substituting Eq. (14) and

∇ζ = i[∇φ′ − (∇α)Fz − (∇β)e−iFzαFye
iFzα]ζ (18)

into Eq. (8), the superfluid velocity can be written as

vmass = h̄

M
[∇φ′ − F (∇α) cos β], (19)

which satisfies the Mermin-Ho relation [21]:

∇ × vmass = h̄F

2M
εµνλf̂µ(∇f̂ν × ∇f̂λ). (20)

As we mentioned before, ntot is stationary in the incompress-
ible limit. Thus, Eq. (5) becomes

∇ · (ntotvmass) = 0. (21)

Equations (20) and (21) are equations for the superfluid
velocity. Next, we consider the equation for the spin superfluid
velocity. Making use of Eq. (16), Eq. (10) can be rewritten in
terms of f̂ and vmass as

vµ
spin = h̄

M
[(∇φ′)F f̂µ − (∇α)N̂µz − (∇β)N̂µy cos α + (∇β)N̂µx sin α]

= F f̂µvmass − h̄F

2M

⎡
⎢⎣(∇α) sin β

⎛
⎜⎝

− cos β cos α

− cos β sin α

sin β

⎞
⎟⎠+ (∇β)

⎛
⎜⎝

− sin α

cos α

0

⎞
⎟⎠
⎤
⎥⎦

µ

= F f̂µvmass − h̄F

2M
εµνλf̂ν∇f̂λ. (22)

Substituting Eqs. (16), (21), and (22) into Eq. (12), we
obtain the hydrodynamic equation in terms of f̂ and vmass

as

∂ f̂
∂t

+ (vmass · ∇) f̂ = − f̂ × Beff, (23)

with

Beff = − h̄

2M
(a · ∇) f̂ − h̄

2M
∇2 f̂ + cdd

h̄
b + p

h̄
êB

+ q(2F − 1)

h̄
(êB · f̂ )êB,

where a = (∇ntot)/ntot and êB is the unit vector along the
external field (êB = ẑ in this paper). Here we note that Eq. (23)
has the same form as the extended Landau-Lifshitz-Gilbert

equation (without damping) which includes the adiabatic spin
torque term [22].

C. Quasi-2D system

We next consider a quasi-2D system, that is, we con-
sider a BEC confined in a quasi-2D trap whose Thomas-
Fermi radius in the normal direction to the 2D plane is
smaller than the spin healing length. We approximate the
wave function in the normal direction by a Gaussian with
width d: �m(r⊥,rn) = ψm(r⊥)h(rn), where r⊥ is the position
vector in the 2D plane, rn is the coordinate in the normal di-
rection, and h(rn) = exp[−r2

n /(4d2)]/(2πd2)1/4. Multiplying
the wave function to Eq. (1) and integrating over rn, we obtain
the 2D GP equation. The equation is the same as Eq. (1) if one
replaces �m with ψm, aS with ηaS , cdd with ηcdd, and b with
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b̄, where η = ∫
drnh

4(rn)/
∫

drnh
2(rn) = 1/

√
4πd2 and

b̄µ =
∫

d2r ′
⊥Q(2D)

µν (r⊥ − r ′
⊥) [ψ∗

m(r ′
⊥) (Fν)mnψn(r ′

⊥)], (24)

with

Q(2D)
µν (r⊥ − r ′

⊥) = 1

η

∫ ∫
drndr ′

nh
2(rn)h2(r ′

n)Qµν(r − r ′).

(25)

Starting from the 2D GP equation and following the above
procedure, we derive the 2D hydrodynamic equation:

∂ f̂
∂t

+ (vmass · ∇) f̂ = − f̂ × B̄eff, (26)

with

B̄eff = − h̄

2M
(a · ∇) f̂ − h̄

2M
∇2 f̂ + ηcdd

h̄
b̄ + p

h̄
êB

+ q(2F − 1)

h̄
(êB · f̂ )êB,

where vmass and ∇ are the two-dimensional vector and vector
operator, respectively. When we consider a quasi-2D BEC,
ntot, f̂ , and vmass are defined by means of ψm instead of �m.

D. Dipole kernel

This section provides the detailed form of the dipole kernel
in three-dimensional (3D) and quasi-2D systems under zero
external field and under a strong magnetic field (p 
 cddntot).
The derivations are given in Ref. [15].

The dipole kernel in the laboratory frame of reference is
given by

Q(lab)
µν (r) = δµν − 3r̂µr̂ν

r3
, (27)

with r = |r| and r̂ = r/r . The 2D dipole kernel in the
laboratory frame is calculated by substituting Eq. (27) into
Eq. (25). For r⊥ = (x,y) and rn = z, the 2D dipole kernel is
given by

Q(2D,lab)
µν (r⊥) =

∑
k⊥

eik⊥·r⊥Q̃
(2D,lab)
k⊥µν , (28)

where

Q̃
(2D,lab)
k⊥ = −4π

3

⎛
⎜⎝

1 0 0

0 1 0

0 0 −2

⎞
⎟⎠

+ 4πG(k⊥d)

⎛
⎜⎝

k̂2
x k̂x k̂y 0

k̂x k̂y k̂2
y 0

0 0 −1

⎞
⎟⎠ , (29)

with k⊥ = (kx,ky), k⊥ = |k⊥|, k̂x,y = kx,y/k⊥, and G(k) ≡
2kek2 ∫∞

k
e−t2

dt = √
πkek2

erfc(k). It can be shown that G(k)
is a monotonically increasing function that satisfies G(0) = 0
and G(∞) = 1.

When the linear Zeeman energy is much larger than the
MDDI energy, we choose the rotating frame of reference in
spin space by replacing �m with e−ipmt/h̄�m, and eliminate
the linear Zeeman term from the GP equation. In this case, the
contribution of the MDDI is time-averaged due to the Larmor
precession, and we use the dipole kernel which is averaged
over the Larmor precession period given by [23]

Q(rot)
µν (r) = −1

2

1 − 3r̂2
z

r3
(δµν − 3δzµδzν). (30)

Substituting Eq. (30) into Eq. (25), we obtain the time-
averaged 2D dipole kernel in the rotating frame as

Q(2D,rot)
µν (r⊥) = (

δµν − 3δzµδzν

)∑
k⊥

eik⊥·r⊥Q̃k⊥ , (31)

where

Q̃k⊥= 2π

3
{1 − 3(ên · êB)2 − 3G(k⊥d)[(êB

⊥ · k̂⊥)2 − (ên · êB)2]}.
(32)

Here, k̂⊥ = k⊥/k⊥, ên is the unit vector normal to the plane,
and êB

⊥ is the vector of êB projected onto the 2D plane.

E. Stereographic projection

The spin dynamics are now described by Eqs. (20), (21),
and (23) or (26). We rewrite the equations by means of
stereographic projection [24]: we employ a complex number
ϕ = (f̂x + if̂y)/(1 + f̂z) to express the spin variables,

f̂x = ϕ + ϕ∗

1 + ϕϕ∗ , f̂y = −i(ϕ − ϕ∗)

1 + ϕϕ∗ , f̂z = 1 − ϕϕ∗

1 + ϕϕ∗ . (33)

Equation (20) is rewritten as

∇ × vmass = iF
2h̄

M

∇ϕ × ∇ϕ∗

(1 + ϕϕ∗)2
, (34)

while Eq. (21) remains the same. In order to rewrite the
equation of spins, we need to specify the dimensionality of the
system and the direction and strength of the external field. In
this paper, we consider the following two cases: (i) a quasi-2D
system normal to the z axis under zero magnetic field, and (ii)
a quasi-2D system normal to the y axis with a strong magnetic
field along the z axis. Case (ii) corresponds to the situation in
the Berkeley experiment [9].

For case (i), we take ên = ẑ and p = q = 0 and use
Eqs. (24), (26), (28), and (29). Using the stereographic
projection, the equation of motion of spins is given by

∂ϕ(r,t)
∂t

= −vmass · ∇ϕ + ih̄

2Mntot
∇ntot · ∇ϕ + ih̄

2M
∇2ϕ − ih̄

M

ϕ∗(∇ϕ)2

1 + ϕϕ∗

− iηcddF

2h̄

∫
d2r ′ntot(r ′)

∑
k

eik·(r−r ′)
[
−h1(k)

ϕ(r ′)
1 + ϕ(r ′)ϕ∗(r ′)

+ h2(k)
ϕ∗(r ′)

1 + ϕ(r ′)ϕ∗(r ′)

]
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+ iηcddF

2h̄
ϕ2
∫

d2r ′ntot(r ′)
∑

k

eik·(r−r ′)
[
−h1(k)

ϕ∗(r ′)
1 + ϕ(r ′)ϕ∗(r ′)

+ h∗
2(k)

ϕ(r ′)
1 + ϕ(r ′)ϕ∗(r ′)

]

+ iηcddF

h̄
ϕ

∫
d2r ′ntot(r ′)

∑
k

eik·(r−r ′)h1(k)
1 − ϕ(r ′)ϕ∗(r ′)
1 + ϕ(r ′)ϕ∗(r ′)

, (35)

where the subscript ⊥ was omitted for simplicity and

h1(k) = 8π

3
− 4πG(kd), (36)

h2(k) = 4πG(kd) (k̂x + ik̂y)2. (37)

For case (ii), we take ên = ŷ, êB = ẑ, and p = 0, and use
Eqs. (24), (26), (31), and (32). Then, the equation of motion
of spins is described as

∂ϕ(r,t)
∂t

= −vmass · ∇ϕ + ih̄

2Mntot
∇ntot · ∇ϕ + ih̄

2M
∇2ϕ − ih̄

M

ϕ∗(∇ϕ)2

1 + ϕϕ∗ − iηcddF

h̄

∫
d2r ′ntot(r ′)

∑
k

eik·(r−r ′)Q̃k
ϕ(r ′)

1 + ϕ(r ′)ϕ∗(r ′)

+ iηcddF

h̄
ϕ2
∫

d2r ′ntot(r ′)
∑

k

eik·(r−r ′)Q̃k
ϕ∗(r ′)

1 + ϕ(r ′)ϕ∗(r ′)
− 2iηcddF

h̄
ϕ

∫
d2r ′ntot(r ′)

∑
k

eik·(r−r ′)Q̃k
1 − ϕ(r ′)ϕ∗(r ′)
1 + ϕ(r ′)ϕ∗(r ′)

+ iq(2F − 1)

h̄

1 − ϕϕ∗

1 + ϕϕ∗ ϕ, (38)

where r⊥ → r = (x,z) and k⊥ → k = (kx,kz).

III. DYNAMICAL INSTABILITY

The hydrodynamic equations derived above give a rather
straightforward approach to the analysis of the spin dynamics
in a spinor BEC. In this section, we analyze the dynamical
instability for cases (i) and (ii). Here we consider a uniform
quasi-2D system and assume ∇ntot = 0.

A. Case (i): Instability under zero external field

Here we analyze the dynamical instability under zero
external field for two initial stationary structures: uniform spin
structures polarized normal to the x-y plane (ϕ0 = 0) and in
the x-y plane (ϕ0 = 1).

First, we consider the case in which the spins are polarized
normal to the x-y plane, i.e., in the z direction, ϕ0 = 0.
Substituting ϕ = 0 + δϕ and vmass = v0 + δv into Eq. (35), we
obtain linearized equations of δϕ and δϕ∗. Performing Fourier
expansions δϕ = ∑

k δϕ̃ke
ik·r and δϕ∗ = ∑

k δϕ̃∗
−ke

ik·r , we
have

d

dt

(
δϕ̃k

δϕ̃∗
−k

)
= i

h̄

(−g0 − g1 −g2

g∗
2 −g0 + g1

)(
δϕ̃k

δϕ̃∗
−k

)
, (39)

where

g0(k) = h̄v0 · k, (40)

g1(k) = h̄2k2

2M
− 2πc̃dd[2 − G(kd)], (41)

g2(k) = 2πc̃ddG(kd)(k̂x + ik̂y)2. (42)

Here, c̃dd = ηcddntotF and k = (kx,ky). The eigenvalues of the
2 × 2 matrix in Eq. (39) are

λ±(k) = − i

h̄
g0 ± 1

h̄

√
|g2|2 − g2

1 . (43)

The system becomes dynamically unstable when one of the
eigenvalues has a positive real part; that is when Reλ+(k) > 0
(or |g2|2 − g2

1 > 0). The wave-vector dependence of Reλ+ is
shown in Fig. 2. When the BEC is polarized perpendicular
to the 2D plane, the MDDI is repulsive and isotropic in the
2D plane. Thus, the BEC is unstable against spin flip, and
the unstable modes distribute isotropically in the momentum

kx/2π (µm-1)

k y
/2

π 
(µ

m
-1

)

 s  -1

FIG. 2. Reλ+(k) of the uniform spin structure polarized in the
z direction under zero external field. The fluctuations in the black
region are dynamically unstable and grow exponentially. Here, ntot is
given by

√
2πd2n3D with n3D = 2.3 × 1014 cm−3 and d = 1.0 µm.

The other parameters are given by the typical values for a spin-1
87Rb atom: M = 1.44 × 10−25 kg, F = 1, gF = −1/2, and Ehf =
6.835 GHz × h.
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space. The unstable region in the momentum space has a
ring shape. The radius and width of the ring are estimated
as k0 = (2/h̄)

√
2πMc̃dd and �k  (

√
π/8)k2

0d(4 − √
πk0d),

respectively, for kd � 1.
Next, we consider the uniform spin structure polarized in

the x direction, ϕ0 = 1. We obtain the linearized equations in a
similar way to the above. Substituting ϕ = 1 + δϕ and vmass =
v0 + δv into Eq. (35) and performing the Fourier expansion,
we obtain the equation of the same form as Eq. (39) with

g0(k) = h̄v0 · k, (44)

g1(k) = h̄2k2

2M
+ 2πc̃dd

[
1 − G(kd)

(
1 − k̂2

y

)]
, (45)

g2(k) = 2πc̃dd
[
1 − G(kd)

(
1 + k̂2

y

)]
. (46)

In this case, it can be shown that g2
2 − g2

1 is always negative.
Then, the eigenvalues which are given by the same form as
Eq. (43) are purely imaginary regardless of k. Hence, the
spin-polarized state along the 2D plane is stable under zero
magnetic field.

B. Case (ii): Instability under a strong magnetic field

Here we analyze the dynamical instability for the helical
spin structure, ϕ0 = ei(κα ·r−ωαt), characterized by the helix
wave vector κα in the x-z plane under a strong magnetic field
in the z direction. Substituting ϕ = ϕ0 and vmass = v0 into
Eq. (38) gives ωα = v0 · κα . Substituting ϕ = ϕ0(1 + δϕ) and
vmass = v0 + δv into Eqs. (21) and (34), and holding the terms
up to the first order of the fluctuations, we have ∇ · v0 = 0, ∇ ·
δv = 0, ∇ × v0 = 0, and ∇ × δv = h̄

2M
(∇δϕ + ∇δϕ∗) × κα .

After Fourier expansions of δϕ, δϕ∗ and δv = ∑
k δṽke

ik·r ,
we have

δṽk = h̄

2M
(δϕ̃k + δϕ̃∗

−k)

[
κα − (k · κα)k

k2

]
. (47)

Substituting ϕ = ϕ0(1 + δϕ) into Eq. (38) and applying
Eq. (47), we obtain an equation of the same form as Eq. (39)
with

g0(k) = h̄v0 · k, (48)

g1(k) = h̄2k2

2M
+ h̄2

2M

[
κ2

α

2
− (k · κα)2

k2

]

+ c̃dd

4
(Q̃k+κα

+ Q̃k−κα
) − c̃dd(Q̃κα

+ Q̃k)

+ q(2F − 1)

2
, (49)

g2(k) = h̄2

2M

[
κ2

α

2
− (k · κα)2

k2

]
− c̃dd

4
(Q̃k+κα

+ Q̃k−κα
)

− c̃ddQ̃k + q(2F − 1)

2
. (50)

Here, k = (kx,kz) and the Fourier transform of the dipole ker-
nel is now simply given by Q̃k = (2π/3)[1 − 3(kz/k)2G(kd)].
The eigenvalues of the 2 × 2 matrix in Eq. (39) are given by
Eq. (43) with Eqs. (48)–(50). When κα ‖ ẑ, v0 = 0, and neither
the MDDI nor the quadratic Zeeman effect exist (c̃dd = q = 0),
the eigenvalues coincide with the dispersion relation derived
in Ref. [17].

Figure 3 illustrates the wave-number dependence of
Reλ+(k) for uniform and helical spin structures under various
magnetic field strengths, indicating the region of dynamically
unstable modes. The dynamical instability discussed here
agrees qualitatively with that obtained by the Bogoliubov
analysis [15,25]. However, there is a quantitative discrepancy
in the magnetic field dependence of unstable modes caused
by the fact that the local magnetization of the condensate is
assumed to be fully polarized in our method. However, when
q is not sufficiently small compared with the ferromagnetic
interaction, the amplitude of the magnetization decreases as q

increases. For the parameters used in the calculation for Fig. 3,
our assumption is valid for B � 480 mG.

kx/2π (µm-1)

(a)   uniform (b)   uniform (c)   uniform

(d)  helix 120µm (e)  helix 120µm (f)  helix 60µm (g)  helix 60µm

k z
/2

π 
(µ

m
-1

)

120 mG 160 mG 200 mG

120 mG 160 mG 120 mG 160 mG

 s  -1

FIG. 3. Reλ+(k) for (a)–(c) uniform spin structures and (d)–(g) spin helices in the z direction with a pitch 2π/κα under a strong magnetic
field. The helical pitch for (d) and (e) is 120 µm, and that for (f) and (g) is 60 µm. The external field B is [(a), (d), and (f)] 120 mG, [(b), (e),
and (g)] 160 mG, and (c) 200 mG. The other parameters are the same as those in Fig. 2.
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IV. MAGNETIC FLUCTUATION PREFERENCE

We also investigate the magnetic fluctuation preference for
two cases, that of dynamical instability under zero field for the
uniform spin structure polarized normal to the x-y plane (ϕ0 =
0), which is discussed in Sec. III A, and that of dynamical
instability under a strong magnetic field for the helical spin
structure (ϕ0 = ei(κα ·r−ωαt)), which is discussed in Sec. III B.

For the case of zero external field for ϕ0 = 0, two kinds of
magnetic fluctuations are considered: the x-direction fluctua-
tion δf̂x and the y-direction fluctuation δf̂y . They are described
by the first order of δϕ as δf̂x = 2Re(δϕ) and δf̂y = 2Im(δϕ).
Namely, the x- and y-direction fluctuations are characterized
by the real and imaginary parts of δϕ, respectively.

Let us reconsider the Fourier expansion of δϕ,

δϕ = 1

2

∑
k �=0

(δϕ̃ke
ik·r + δϕ̃−ke

−ik·r ) + δϕ̃0

= 1

2

∑
k �=0

[AR sin(k · r + αR) + iAI sin(k · r + αI)] + δϕ̃0,

(51)

where

AR =
√

[Re(δϕ̃k + δϕ̃−k)]2 + [Im(δϕ̃k − δϕ̃−k)]2, (52)

AI =
√

[Im(δϕ̃k + δϕ̃−k)]2 + [Re(δϕ̃k − δϕ̃−k)]2, (53)

and αR = tan−1[Re(δϕ̃k + δϕ̃−k)/Im(δϕ̃−k − δϕ̃k)] and αI =
tan−1[Im(δϕ̃k + δϕ̃−k)/Re(δϕ̃k − δϕ̃−k)]. As λ+(k = 0) = 0,
δϕ̃0 = 0. We introduce the quantity θ , which characterizes the
magnetic fluctuation preference:

θ = tan−1(AR/AI). (54)

Here, we calculate θ (k) for the unstable modes shown in
Fig. 2. The eigenvector which corresponds to the eigenvalue
λ+ of the 2 × 2 matrix in Eq. (39) is given by

(
δϕ̃k

δϕ̃∗
−k

)
=
((

g1 + i

√
|g2|2 − g2

1

)/√
2|g2|2

−g∗
2/
√

2|g2|2

)
, (55)

where g1 and g2 are defined by Eqs. (41) and (42), respectively.
Then, from Eqs. (52)–(55), we obtain

θ (k) = tan−1

⎡
⎣ |g2|2 − g1Re(g2) + Im(g2)

√
|g2|2 − g2

1

|g2|2 + g1Re(g2) − Im(g2)
√

|g2|2 − g2
1

⎤
⎦

1/2

.

(56)

We can consider the x-direction fluctuation to be dominant for
π/4 < θ < π/2 and the y-direction fluctuation to be dominant
for 0 < θ < π/4.

The wave-vector dependence of θ (k) for the unstable
mode shown in Fig. 2 is illustrated in Fig. 4(a). In the
red (blue) regions, the x(y)-direction fluctuation is more
dominant than the y(x)-direction fluctuation. The schematic
pictures of the magnetic patterns induced by the dynamical
instability at points P and Q are illustrated in Figs. 4(b)
and 4(c), respectively. At point P in Fig. 4(a), x-direction
fluctuation occurs and the wave vector of the magnetic pattern
is directed in the x direction as shown in Fig. 4(b). The MDDI
energy for this configuration is higher than that of Fig. 4(c),
where y-direction fluctuation is induced. In other words, the
MDDI energy is reduced by the magnetic fluctuation, and
the reduction is larger in pattern (c) than in pattern (b). The
reduction in MDDI energy is converted into kinetic energy
(∼k2), which is higher at point Q than at point P in Fig. 4(a).
This explains why the magnetic fluctuations change from
x-direction to y-direction along the kx axis.

Now, we investigate the magnetic fluctuations for the
situation discussed in Sec. III B. The fluctuations are con-
sidered to be longitudinal or transverse. The longitudinal and
transverse fluctuations are represented by δf̂z and δ(f̂x + if̂y),
respectively. Substituting ϕ = ϕ0(1 + δϕ) and |ϕ0|2 = 1 into
Eq. (33), we obtain the expressions for the two types of fluc-
tuations described by the first order of δϕ as δf̂z = −Re(δϕ)
and δ(f̂x + if̂y) = ϕ0Im(δϕ). Namely, the longitudinal and
transverse fluctuations are characterized by the real and
imaginary parts of δϕ, respectively.

We can also apply the above method to discuss the
magnetic fluctuation preference, which is characterized by

kx/2π (µm-1)

k y
/2

π 
(µ

m
-1

)

0.1

-0.05

0.05

-0.1

0

0 π/2

x

y

(a) (b) (c)

P Q

0.10.050-0.05-0.1

FIG. 4. (Color) (a) Magnetic fluctuation preference θ (k) for the unstable mode shown in Fig. 2. The x-direction fluctuation is dominant
in the red regions (π/4 < θ < π/2) and the y-direction fluctuation is dominant in the blue regions (0 < θ < π/4). (b) and (c) Schematic
pictures of the magnetic patterns induced by the dynamical instability at points (b) P and (c) Q designated in (a). The arrows show the local
magnetizations projected onto the x-y plane. The MDDI energy for configuration (c) is lower than that for (b).
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kx/2π (µm-1)

k z
/2

π 
(µ

m
-1

)

(a)  uniform (b)   uniform

(d)  helix 60 µm(c)  helix 120 µm

120 mG 200 mG

120 mG 120 mG

0.04

0.02

-0.04

-0.02

0

0.040.020-0.02-0.04

0 π/2

FIG. 5. (Color) Magnetic fluctuation preference θ (k) for uniform
and helical spin structures in the z direction with a pitch 2π/κα µm
under a strong magnetic field. The initial structure is uniform for (a)
and (b), a helix with a pitch (c) 120 µm, and (d) 60 µm. The external
field B is [(a), (c), and (d)] 120 mG and (b) 200 mG. The fluctuations
are longitudinal in the red regions (π/4 < θ < π/2) and transverse
in the blue regions (0 < θ < π/4). The other parameters are the same
as those in Fig. 3.

θ = tan−1(AR/AI), in the present case. Since g2 = g∗
2 , we can

simplify Eq. (56) as

θ (k) = tan−1

√
g2 − g1

g2 + g1
, (57)

where g1 and g2 are defined by Eqs. (49) and (50), respectively.
The magnetic fluctuation is longitudinal if π/4 < θ < π/2 and
transverse if 0 < θ < π/4.

The wave-vector dependence of θ (k) for the unstable modes
shown in Figs. 3(a), 3(c), 3(d), and 3(f) are demonstrated
in Fig. 5. When the dynamical instability has a round shape
[Figs. 5(a), 5(c), and 5(d)], the fluctuations are transverse
for small k and longitudinal for large k. Figure 5(b) looks
more complex than the schematics for the other cases:
fluctuations are transverse for k ‖ ẑ and longitudinal for

k ‖ x̂. The magnetic fluctuation preference is consistent
with that obtained by the Bogoliubov analysis [15,25], and
discrepancies appear in strong fields for the same reason as
that for the dynamical instability.

V. CONCLUSIONS

Employing our hydrodynamic description derived in Sec. II,
we have demonstrated some simple examples of the analysis
of dynamical instability and magnetic fluctuation preference
in Secs. III and IV, respectively. Once one finds a stationary
solution of the hydrodynamic equations, it is a straightforward
task to obtain the analytical form of the dynamical instability:
the only necessary step is the diagonalization of a 2 × 2 matrix.
The eigenvalues and eigenvectors of the matrix lead to the
dynamical instability and the magnetic fluctuation preference,
respectively. Although we have discussed just a few types of
spin structures and external fields for simplicity, our method
can be applied to other conformations.

In conclusion, we have introduced the hydrodynamic
equations for a ferromagnetic spinor dipolar BEC with an
arbitrary spin by means of stereographic projection. This
simple description provides a straightforward approach by
which to investigate spin dynamics, i.e., dynamical instability
and magnetization fluctuation preference, which are expressed
in analytical forms. The description should also be useful for
the study of the exact solutions of hydrodynamic equations of
a spinor BEC.

ACKNOWLEDGMENTS

The authors thank M. Ueda for his useful comments. This
work is supported by MEXT JSPS KAKENHI (No. 22103005,
No. 22340114, No. 22740265), the Photon Frontier Network
Program of MEXT, Japan, the Hayashi Memorial Foundation
for Female Natural Scientists, and JSPS and FRST under the
Japan-New Zealand Research Cooperative Program.

APPENDIX: CONTRIBUTIONS FROM THE
SHORT-RANGE INTERACTION, MDDI,

AND LINEAR AND QUADRATIC ZEEMAN EFFECTS

The contribution from the short-range interaction to the
equation of motion of fz is calculated as

[
∂fz

∂t

]
s

= 1

ih̄
(Fz)mn

[(
ih̄

∂�∗
m

∂t

)
�n + �∗

m

(
ih̄

∂�n

∂t

)]
s

=
2F∑

S=0,even

4πh̄

iM
aS

S∑
MS=−S

∑
lm′l′

(Fz)mn[−〈ml|SMS〉〈SMS |m′l′〉�l�
∗
m′�

∗
l′�n + �∗

m〈nl|SMS〉〈SMS |m′l′〉�∗
l �m′�l′]

=
2F∑

S=0,even

4πh̄

iM
aS

S∑
MS=−S

∑
lm′l′

m〈ml|SMS〉〈SMS |m′l′〉[−�m�l�
∗
m′�

∗
l′ + �∗

m�∗
l �m′�l′ ]

=
2F∑

S=0,even

4πh̄

iM
aS

S∑
MS=−S

∑
mm′

(m − m′)〈m,MS − m|SMS〉〈SMS |m′,MS − m′〉�∗
m�∗

MS−m�m′�MS−m′

=
2F∑

S=0,even

2πh̄

iM
aS

S∑
MS=−S

[∑
mm′

(m − m′)〈m,MS − m|SMS〉〈SMS |m′,MS − m′〉�∗
m�∗

MS−m�m′�MS−m′
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+
∑
ll′

(−l + l′)〈MS − l,l|SMS〉〈SMS |MS − l′,l′〉�∗
MS−l�

∗
l �MS−l′�l′

]

= 0, (A1)

where we have used (Fz)mn = mδmn. Here, [· · ·]s denotes that
only those terms that come from the short-range interaction
are extracted. In the following, this notation is applied to
the contributions from the MDDI ([· · ·]dd), linear ([· · ·]p),
and quadratic ([· · ·]q) Zeeman effects. Since the short-range
interaction (2) is invariant under spin rotation, [∂fx/∂t]s and
[∂fy/∂t]s also vanish, which are shown in a similar way
by choosing the spin quantization axis along the x and
y directions, respectively.

The contribution from the MDDI to the equation of motion
of spin is calculated as[

∂fµ

∂t

]
dd

= 1

ih̄
(Fµ)mn

[(
ih̄

∂�∗
m

∂t

)
�n + �∗

m

(
ih̄

∂�n

∂t

)]
dd

= cdd

ih̄
(Fµ)mn

[−b∗
ν (F ∗

ν )ml�
∗
l �n + �∗

mbν(Fν)nl�l

]
= cdd

ih̄
bν�

∗
m(FµFν − FνFµ)mn�n

= cdd

ih̄
bνiεµνλfλ

= cdd

h̄
(b × f )µ. (A2)

We have used the relations F †
µ = Fµ and [Fµ,Fν] = iεµνλFλ.

Suppose the magnetic field is applied parallel to the z

axis. Then, the contribution from the linear Zeeman effect

is calculated as[
∂fµ

∂t

]
p

= 1

ih̄
(Fµ)mn

[(
ih̄

∂�∗
m

∂t

)
�n + �∗

m

(
ih̄

∂�n

∂t

)]
p

= p

ih̄
(Fµ)mn

[−(F ∗
z )ml�

∗
l �n + �∗

m(Fz)nl�l

]
= p

ih̄
iεµzνfν

= p

h̄
(ẑ × f )µ. (A3)

The contribution from the quadratic Zeeman effect is
calculated in the same way as that shown above.[

∂fµ

∂t

]
q

= 1

ih̄
(Fµ)mn

[(
ih̄

∂�∗
m

∂t

)
�n + �∗

m

(
ih̄

∂�n

∂t

)]
q

= q

ih̄
(Fµ)mn

[−(F ∗
z )2

ml�
∗
l �n + �∗

m(Fz)
2
nl�l

]
= q

ih̄
�∗

m(Fz[Fµ,Fz] + [Fµ,Fz]Fz)mn�n

= q

ih̄
iεµzν�

∗
m(FνFz + FzFν)mn�n

= 2q

h̄
ntotεµzνN̂zν, (A4)

where N̂µν is a nematic tensor defined by

N̂µν = 1
2ζ ∗

m(FµFν + FνFµ)mnζn. (A5)
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