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Atomic ionization by intense laser pulses of short duration: Photoelectron
energy and angular distributions
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We introduce an adequate integral representation of the wave function in the asymptotic region, valid for
the stage postinteraction between a one-electron atom and a laser pulse of short duration, as a superposition of
divergent radial spherical waves. Starting with this representation, we derive analytic expressions for the energy
and angular distributions of the photoelectrons and we show their connection with expressions used before in
the literature. Using our results, we propose a method to extract the photoelectron distributions from the time
dependence of the wave function at large distances. Numerical results illustrating the method are presented for
the photoionization of hydrogenlike atoms from the ground state and several excited states by extreme ultraviolet
pulses with a central wavelength of 13.3 nm and several intensities around the value I0 ≈ 3.51 × 1016 W/cm2.
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I. INTRODUCTION

Many theoretical studies [1] aiming to the accurate de-
scription of the photoionization or photodetachment of atomic
systems in interaction with laser pulses rely on the numerical
integration of time-dependent Schrödinger equation (TDSE)
by grid (or combined grid spectral) methods. In principle all
the quantities which characterize the emitted electrons can be
determined from the wave function, once its dependence on
coordinates and time is known. In practice the problem of
extraction of the photoelectron distributions from the wave
function is not a trivial one, especially in the case of a
many-electrons system, and its solution is strongly influenced
by the representation used for the wave function.

To solve the mentioned problem several methods were
developed along the years. A first group of methods [2,3]
uses the information contained in the wave packet at a
fixed time, conveniently chosen after the conclusion of the
laser pulse. To fix the ideas we refer to the most detailed
photoelectron distribution, fully differential in energies and
emission directions or, equivalently, in photoelectron kinetic
momenta. This distribution can be determined by projecting
the wave function on continuum states with adequate asymp-
totic behavior, namely satisfying the incoming-wave boundary
condition [4]. However, the numerical calculation of these
states for complex atomic systems is itself a complicated
problem [5], sometimes comparable as difficulty with the
integration of TDSE. In Ref. [3] a practical method was
presented to extract the photoelectron kinetic momentum
distribution from the wave function by appropriate projections
in restricted regions of the space. The procedure allows one to
replace the exact continuum states for the original problem by
either Coulomb or free particle continuum states.

We mention that for the photoelectron energy spectrum, a
less detailed distribution, there are known efficient calculation
methods, like, for example, the window operator method (see
Ref. [2]), which do not require the explicit building of the
continuum states.

A second group of methods exploits the information
contained in the time dependence of the wave function. The
possibility to calculate the photoelectron angular distribution
by the time integration of the probability current, involving

the knowledge of the wave function at large distances, was
frequently used. An interesting approach, relating the Fourier
spectrum of the wave function autocorrelation and the energy
spectrum, was developed in [6]. The same paper also presents a
recipe to separate the contribution of the various partial waves
to the spectrum. “Virtual detector” methods, quantal [7] or
based on semiclassical assumptions [8], were also proposed
and applied to determine the electron momentum distribution.
A method of a different type, designed to extract the amplitudes
for single and double ionization from the wave packet, was
presented in [9]. These amplitudes are computed using the
solution of a driven time-independent equation, where the
driving term is represented by the wave function at the end
of the radiation pulse (emulating in fact the TDSE integration
over an infinite duration).

In this paper we propose yet a procedure to determine the
photoelectron distributions, which uses the time dependence
of the wave function in the asymptotic region, fully avoiding
the explicit use of (exact or approximate) continuum states.
At formal level, our procedure is closest to that of Ref. [7],
with differences coming from the study of different processes.
In Sec. II we first introduce by Eq. (2) an appropriate
representation for the wave function in terms of divergent
radial spherical waves, valid at large distances from the atomic
core and after the end of the laser pulse. We show the
connection of the amplitude of these spherical waves with
the coefficients in the expansion of the wave function in terms
of stationary solutions of the Schrödinger equation, then we
obtain the photoelectron distributions we are looking for. The
most differential distribution is given by Eq. (12).

In Sec. III we develop a numerical method to determine the
photoelectron distributions, based on Eq. (12). The method
relies on the numerical integration of TDSE, followed by
the extraction of the photoelectron distributions from the
time dependence of the wave function on the confines of
the spatial region used for TDSE integration. We compare
the present method with the procedure of projecting the wave
packet on incoming continuum states, then in Sec. IV we
apply our method to the case of a hydrogenlike atom exposed
to an intense extreme ultraviolet (xuv) laser pulse and we
present as graphs our numerical results for the photoelectron
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distributions. The laser pulse parameters (wavelength and
intensity) are in the same ranges as those corresponding to the
pulses used in recent experiments described in Refs. [10,11],
done at the new free-electron laser in Hamburg (FLASH).
In these experiments surprising results were obtained for
the photoionization of a Xenon gaseous target at intensities
approaching I0 and for wavelengths in the extreme ultraviolet
range. The strong nonlinearity of the photoionization versus
laser intensity (tens of photons absorbed per pulse by a Xenon
atom) seems to indicate new facets of light-matter interaction.
A first theoretical interpretation of the experimental results
in Ref. [10], within perturbation theory using multiphoton
ionization cross sections obtained through a scaling technique,
was presented in Ref. [12].

Besides the illustration of the method, the aim of our nu-
merical simulations is to generate results which may contribute
to the understanding of the photoionization mechanism for
xuv pulses of high intensity. In particular, we explore the role
of excess photonionization and resonances, for xuv pulses
similar to those considered in [10,11]. In our opinion precise
results for “simple” systems are still of considerable interest
for the current stage of theoretical description: they can help
validate of the various working hypotheses adopted for the
description of complex atomic systems and they can support
the deciphering of finer details of the future photoionization
experiments.

Atomic units (a.u.) are used throughout this paper unless
specified otherwise.

II. PHOTOELECTRON ENERGY AND ANGULAR
DISTRIBUTIONS

We consider an electron moving in an atomic potential
V (r) which supports at least one bound state. Our system,
assumed as being initially in a bound state or in a superposition
of bound states, interacts with an intense laser pulse on a
finite time interval ti < t < tf . The quantitative description
of the photoionization is expressed by various probability
distributions like the photoelectron energy spectrum, the
angular distribution or, in more detail, the angle-resolved
energy distribution.

As mentioned in Sec. I, we are interested to compute the
photoelectron distributions without resorting to the projection
of the wave function on continuum states. In the following we
relate the computation of the distributions to the behavior of the
wave function ψ(r,t) for r → ∞ and after the interaction with
the laser pulse, in correspondence with the direct experimental
evaluation of these quantities, which involves measurements
made usually at large distances from the target.

The outline of this section is as follows: (i) Starting
with the behavior of the wave function at large distances
expressed as in Eq. (2) and using the general expansion of the
wave function in terms of energy eigenfunctions, we obtain
Eq. (6), an expression for the photoelectron energy spectrum;
(ii) we derive then, using the expression of the density of
probability current, a formula for the angular distribution,
Eq. (8); (iii) we interpret the results and we reach Eq. (9) for
the fully differential distribution; and (iv) we derive Eq. (12),
representing the receipt we use for computing the angle-
resolved photoelectron energy spectrum from the temporal

Fourier transform of the wave function in the asymptotic
region.

The asymptotic behavior of the wave function for t > tf
follows from the fact that at large distances from the origin
the photoelectron is practically free and moves away from
the nucleus. This implies that for every radial direction the
wave function ψ(r,t) can be written as a superposition of
divergent radial spherical waves ei(kr−Et)/r , where k > 0 and
E = k2/2. It is intuitively clear that the convergent waves
ei(−kr−Et)/r should not contribute, as these would describe
electrons coming from infinity toward the origin. That this is
the case can be justified by analyzing the evolution in time
of the corresponding wave packets. We work with a reduced
wave function,

F (r,t) ≡ r ψ(r,t), (1)

and we write its asymptotic behavior, guided by the aforemen-
tioned considerations, as follows:

F (r,t) → 1√
2π

∫ ∞

0
f (E,n) ei(kr−Et) dE , r → ∞, (2)

with n ≡ r/r . The right-hand side of this equation is a wave
packet moving in outward radial direction. The amplitude
f (E,n) of a wave from the packet depends on photoelectron
energy E and this dependence changes with the radial direction
n. It will become evident in the following that this quantity
contains the whole information about photoionization. We note
that Eq. (2) is written for a potential which decreases at large
distances faster than 1/r . We discuss at the end of this section
the modifications for the case of a potential having a Coulomb
tail.

In order to express the probability density of the photo-
electron energy by the amplitude f (E,n) from Eq. (2) we
expand the wave function, after the end of the laser pulse,
in terms of stationary solutions of TDSE, then we consider
its asymptotic behavior. We use the two familiar complete
systems of energy eigenfunctions, one composed from the set
{uj (r)}, the eigenfunctions corresponding to the energies in
the discrete spectrum, together with {u(−)(k,r)} and the other
one composed from the set {uj (r)} together with {u(+)(k,r)}.
The functions u(−)(k,r) and u(+)(k,r) are the continuum
eigenfunctions, asymptotically behaving as a superposition
of a plane wave and a convergent, respectively, divergent
spherical wave, and normalized in the wave vector k scale.
In the mentioned expansions,

ψ(r,t) =
∑

j

cj uj (r) e−iEj t +
∫

c(∓)(k) u(∓)(k,r) e−iEt dk,

(3)

all the coefficients are constant in time and, of course, c(+)(k)
and c(−)(k) are not independent.

The relations,

f (E,n) = −i c(−)(kn), (4)

and

f (E,n) = −i

[
c(+)(kn) + ik

2π

∫
4π

f (+)(k,n) c(+)(k) d�k̂

]
,

(5)
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connecting the amplitude f (E,n) and the expansion coeffi-
cients c(∓)(k), follow from the comparison of Eq. (2) with
Eq. (3) taken at large distances and long times. In the last
expression f (+)(k,n) is the elastic scattering amplitude on the
potential V (r).

As being an expansion over energy eigenfunctions, Eq. (3)
gives directly the energy distribution dp(E) of the electron; for
E > 0 it follows either as dp(E) = k[

∫
4π

|c(−)(kn)|2d�]dE,
or as dp(E) = k[

∫
4π

|c(+)(kn)|2d�]dE, with the solid angle
element d� around the direction n [13]. Using now Eq. (4) it
follows that

dp(E) = k

[∫
4π

|f (E,n)|2d�

]
dE. (6)

The relation (6) expresses the photoelectron energy spectrum
by the amplitude f (E,n).

To determine the photoelectron angular distribution we start
from the total probability dp(n) that the electron crosses a
surface element dS = n r2 d� at the asymptotic position r =
r n. We obtain this probability integrating in time the product
J(r,t) · dS, where J(r,t) is the density of probability current.
The integral is extended over the time interval (t1,t2) in which
the wave function ψ(r,t) and, together with it, J(r,t) take
non-negligible values at the position r . For a given laser pulse
and a given initial state these moments depend solely on r .
In order to use the expression of J in the absence of the
electromagnetic field we have to ensure the condition t1 �
tf , which can always be realized for large enough r . More
precisely, this condition is satisfied if we take r � a, with a

defined such that the probability to find the electron outside
the sphere of radius a, at the moment tf , is negligible. Using
the well-known expression of J [14], we obtain

dp(n) = Im

[∫ t2

t1

F ∗(r,t)
∂F (r,t)

∂r
dt

]
d�. (7)

This relation connects the photoelectron angular distribution
and the reduced wave function. After using the function F and
its complex conjugate according to the asymptotic formula (2),
the resulting temporal integral takes the form

∫ t2
t1

exp[i(E −
E′)t] dt . Letting the duration t2 − t1 to increase to infinity
[it is possible to do so since F (r,t) is negligible outside the
interval (t1,t2)], this integral becomes 2πδ(E − E′). Then one
of the integrals in energy can also be done and we obtain the
relation:

dp(n) =
[∫ ∞

0
k |f (E,n)|2 dE

]
d�, (8)

expressing the photoelectron angular distribution by the
amplitude f (E,n).

The photoelectron energy spectrum (6) and the angular
distribution (8) are obtained by the integration of the same
positive quantity over emission directions and energies, respec-
tively. The aspect of these equations compels us to interpret
the quantity,

d2p = k |f (E,n)|2 dE d�, (9)

as the emission probability of a photoelectron with an
energy in (E,E + dE), in a direction n of a solid angle
element d�. Equivalently, expressing the volume element in

momentum space as dk = k dE d�, we interpret the quantity
|f (E,n)|2 dk as the probability to find a value for the
photoelectron kinetic momentum in dk.

The relation (9) describes the fully differential distribution,
in energies and emission directions of the photoelectron. This
distribution is calculated from the ionization amplitude f (E,n)
introduced through Eq. (2). It is then necessary to find practical
ways to extract this amplitude from the wave function.

Before describing our procedure, we remark that Eq. (4)
allows us to rewrite Eq. (9) as follows:

d2p = |c(−)(k)|2 dk =
∣∣∣∣
∫

u(−)∗(k,r) ψ(r,t) d r

∣∣∣∣
2

dk. (10)

This relation, valid for any time t � tf , was applied many
times [15] and expresses the property that |c(−)(k)|2 is the
probability density of the photoelectron kinetic momentum.
We note that |c(+)(k)|2 = | ∫ u(+)∗(k,r) ψ(r,t) d r|2 does not
have the same significance as |c(−)(k)|2. This shows the special
role of the incoming waves u(−)(k,r) for the description of
the photoionization process. To determine only the energy
spectrum we can project equally well on the outgoing waves
u(+)(k,r) [see the paragraph including Eq. (6)].

As the procedure based on the projection of the wave
packet on u(−)(k,r) implies the preliminary determination of
these eigenfunctions and raises delicate numerical problems,
we focus on the possibility to completely avoid the use of
continuum states. In this purpose, we return to Eq. (2) and
we note that, for a given position vector r , with r → ∞, the
correspondence between F (as function of time) and f (as
function of energy) may be inverted, the result being

f (E,n) = e−ikr

√
2π

∫ t2

t1

F (r,t) eiEt dt, (11)

where the function F (r,t) is supposed as previously mentioned
[see the context of Eq. (7)] to be negligible outside the interval
(t1,t2), with t1 � tf . Replacing the ionization amplitude
f (E,n) in Eq. (9) we obtain the compact result,

d2p = k

2π

∣∣∣∣
∫ t2

t1

F (r,t) eiEt dt

∣∣∣∣
2

dE d� , (12)

connecting the probability distribution with the temporal
Fourier transform of the reduced wave function F (r,t) at large
distances.

We mention that Eq. (12) remains valid also for a potential
of Coulomb type at large distances, V (r) → −Z/r , for
r → ∞, a property which can be understood if we examine
what become Eqs. (2) and (11) in this case (the intermediate
equations are not affected by the Coulomb tail of the potential).
They are replaced, respectively, by

F (r,t) → 1√
2π

∫ ∞

0
f (E,n) ei(kr+η ln 2kr−Et) dE, r → ∞,

(13)

with η ≡ Z/k, and

f (E,n) = e−i(kr+η ln 2kr)

√
2π

∫ t2

t1

F (r,t) eiEt dt, r → ∞. (14)
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The phase factor in front of the integral disappears when taking
the squared modulus and, consequently, Eq. (12) keeps its form
unchanged.

By the integration of Eq. (9) we can find the other
related distributions, Eqs. (6) and (8), and the total ionization
probability,

Pion =
∫ ∞

0

∫
4π

k |f (E,n)|2 dE d�. (15)

From Pion one can calculate the survival probability of the
atom as Psurv = 1 − Pion, relation which may also serve
for numerical verification if Psurv can be evaluated in an
independent way.

We finally remark that Eq. (12) is not restricted to
photoionization only: it applies to any other ionization process
of a one-electron atom from an initial bound state, due to an
interaction with finite duration.

III. NUMERICAL METHOD

After describing our method to determine the photoelectron
distributions, based on the use of Eq. (12), we mention
several calculations we made in order to test its accuracy.
A comparison of our method and that based on Eq. (10)
follows. In the next section we present our results concerning
the photoionization of hydrogenlike atoms.

We integrate numerically the time-dependent Schrödinger
equation on a space domain composed from an inner region
D, chosen such that it contains at the conclusion of the laser
pulse the whole wave function, and an outer region D′, whose
role is to absorb the wave function using a mask function or an
absorbing potential. The integration of TDSE begins from the
chosen initial state and is continued after the end of the pulse
until the continuum part of the wave function escapes from D.
From the time dependence of the reduced wave function F (r,t)
on the confines ofD, recorded during the TDSE integration, we
calculate its temporal Fourier transform and the angle-resolved
photoelectron energy distribution (12). The other distributions
are then obtained by integration over photoelectron energies
[Eq. (8)] or emission directions [Eq. (6)]. In practice the
simplest choice of the inner region D is that of a sphere,
of radius a. An estimation for the radius a may be derived
from the condition that the fastest photoelectrons, treated as
particles in free classical motion, generated near the nucleus
at the beginning of the pulse, are still in D at the end of
the pulse; the result is acl = 2πNc

√
2Nph/ω, where Nc is the

number of cycles of the laser pulse and Nph is the maximum
number of photons absorbed in excess by the photoelectron.
The time duration τa ≡ t2 − t1 used to analyze the wave packet
is dictated by the lowest energy E0 of the photoelectrons for
which we want to predict results. An useful approximation of
this duration is τa;cl = a/

√
2E0.

For checking the accuracy of the present method we
have made comparisons between distributions generated by
our code and distributions known from literature [16], with
satisfactory results.

Now we compare our method, that we conventionally name
method I, and the method of projecting the wave packet on
incoming energy eigenfunctions u(−)(k,r), involving Eq. (10)
at the end of the laser pulse, that we name method II. In favor of

method I we mention the simplicity, its application involving
only the calculation of the temporal Fourier transform of
the wave function, which can be made efficiently using FFT
algorithms. It can be applied to noncentral potentials, with no
major difficulties once the wave function is calculated. Method
II requires a precise computation of the functions u(−)(k,r),
a difficult task, and then the projection of the wave packet
on them. An advantage of method II is that it can be applied
right at the end of the interaction with the laser pulse, while
method I requires an additional computing time τa for the free
propagation of the wave packet after the termination of the laser
pulse. However, in many situations this time can be kept to a
reasonable fraction of total computing time (a typical value of
this fraction in our calculations, reported below, is 0.4) and we
expect the case of complex targets to be even more favorable. A
potential advantage of method I versus method II, not exploited
in this paper, is connected to the radius a of the radial box.
Apparently both methods require an increasing value a with
the pulse duration and if longer pulses are considered their use
becomes impractical. However, a generalization of method
I1 is possible such that a could be kept fixed (independent
on pulse duration), its value being determined only by the
condition that the relevant atomic states are well represented
inside D.

Now we give some details, most of them being of interest
also for the next section, about the systems for which the
comparison was done. We consider an electron in a central
potential, in interaction with a linearly polarized laser pulse.
We have adopted two choices of the atomic potential: (a) the
potential V1(r) = −[1 + (1 + κr) exp(−2κr)]/r , with κ =
17/16 a.u., useful to describe the helium atom behavior [17]
in the single active electron approximation (SAE), and (b)
the point Coulomb potential V2(r) = −Z/r of a hydrogenlike
atom with the atomic number Z.

The z axis of the reference frame, with the unit vector
denoted by ez, is chosen along the laser polarization direction.
The pulse is described by the vector potential:

A(t) = F0

ω
ez s(t) cos ωt, (16)

where F0 is the electric field amplitude, ω is the laser
frequency, and s(t) is the pulse envelope. The laser peak
intensity is I = F 2

0 . We worked with a flat top pulse whose
envelope s(t) increases from 0 to 1 as cos2(πt/2τon) for −τon <

t < 0, remains equal to 1 for a duration τflat, then decreases
to 0 as cos2[π (t − τflat)/2τon] for τflat < t < τon + τflat. The
pulse is turned off in a time interval τoff = τon. The parameters
τon and τflat are chosen as integer multiples of the laser period
T = 2π/ω.

We exploit the cylindrical symmetry of the system around
the z axis by choosing to work in spherical coordinates r , θ ,
and ϕ (with the z axis as polar axis). For the present case,
the Schrödinger equation admits factorized solutions of the
form F (r,t) = X(r,θ,t) eimϕ√

2π
, where the new reduced wave

function X(r,θ,t) only depends on two spatial variables. These

1The generalization, which will be presented elsewhere, is based
on the property that in the Kramers-Henneberger reference frame the
photoelectron is free at large distances during the laser pulse.
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FIG. 1. (Color online) Photoelectron angular distribution for a
ground-state helium atom (in SAE approximation) exposed to a flat
top xuv pulse [Eq. (16)] with a peak intensity I3 = 10 I0, the central
frequency ω = 3.42 a.u., and a total duration of 50 cycles. Four curves
are obtained with method I [based on Eq. (12)] and correspond to the
values 140 T (dotted line), 150 T (dot-dashed line), 155 T (dashed
line), and 200 T (solid line) for the duration τa used to analyze the
wave packet. The data represented by small circles are determined by
method II [based on Eq. (10)].

solutions are suitable to satisfy the type of initial condition used
in this paper: the atomic state before the pulse turns on is a
stationary state with well-defined angular momentum. Inside
the numerical code used to integrate TDSE (in velocity gauge)
the wave function is alternatively represented either by its
values X(r,θ,t) on a double grid in variables r and θ or by the
values of its radial components Xl(r,t) on the radial grid. The
first representation is used to perform the radial propagation
corresponding to the interaction between the atom and the
laser field, the rest of the propagation being done in the second
representation.

The numerical results we present were obtained for one
value of the frequency, ω = 3.42 a.u. (which corresponds to a
wavelength of 13.3 nm), belonging to the xuv range, and for
three values of the laser intensity, I1 = I0/4.5, I2 = I0, and
I3 = 10 I0, where I0 ≈ 3.51 × 1016 W/cm2. We used a total
pulse duration of 50 cycles (from which τon = τoff = 5 T and
τflat = 40 T ), in order to keep the running time to a reasonable
value.

The comparison of methods I and II is illustrated in Figs. 1
and 2 and in Fig. 3, the latter presented in Sec. IV. The results
from Figs. 1 and 2 refer to the ionization from the ground
state in the case of potential V1(r) and for the laser intensity
I3. We have used the value a = 750 a.u. for the radius of the
inner region D (a value slightly higher than the estimation
acl ≈ 680 a.u., calculated for the actual laser pulse and eight
photons absorbed in excess by the electron) and a maximum
duration of 250 T for the free propagation of the electronic
wave packet.

In Fig. 1 we present the photoelectron angular distributions
obtained with the two methods. The results of method I are
shown for four values of τa: 140 T (dotted line), 150 T

(dot-dashed line), 155 T (dashed line), and 200 T cycles
(continuous line). The results obtained with method II are
marked by circles. We note the very good agreement between
the results of the two methods for τa = 200 T and also that
the curve corresponding to τa = 155 T represents a good
approximation of these results.

0.6 0.75 0.9
E/ω

0

2

4

6

dp
/d

E
 (

a.
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E/ω
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-4
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0

dp
/d

E
 (

a.
u.

)

(a)

(b)

FIG. 2. (Color online) Photoelectron energy spectrum, as a
function of the ratio between the photoelectron energy and the laser
frequency, for the same system and laser pulse as in Fig. 1. Small
circles represent the results obtained with method II. The other curves
are obtained with method I, using in (a) the same durations τa as in
Fig. 1, and the values 200 T (solid line) and 250 T (long dashed line)
in (b).

In Fig. 2 we extend the comparison to the photoelectron
energy spectra. The curves from the upper panel correspond
to the same conditions as in Fig. 1. The results represented in
the lower panel are determined with method I for τa = 200 T

(solid line) and τa = 250 T (long dashed line), and with
method II (circles). In panel (a) only the first photoelectron
peak is represented. In panel (b) we adopted a semilogarithmic
scale to represent the results in order to be able to show
the whole spectrum. Very small discrepancies are observed
at both ends of the energy spectrum. For the low-energy
region these discrepancies are compatible with the estimations
based on τa;cl, which indicate that correct predictions are
expected for E > 0.43 ω if τa > 238 T , and for E > 0.33 ω

if τa > 272 T . We note, however, that the contribution of the
range E <∼ 0.45 ω to the total ionization probability is very
small (less than 10−3). For the other end of the spectrum very
small differences, without any practical relevance, are visible
in the region E > 6 ω.

IV. NUMERICAL RESULTS FOR HYDROGENLIKE
ATOMS

In this section we present our results concerning the pho-
toionization of hydrogen atom and of hydrogenlike ions under
the influence of xuv pulses. As initial atomic states we have
considered stationary states nlm with n � 3 and m = 0. For
all these initial states the angular distributions are symmetric
around θ = 90◦ and have peak values along the polarization
axis. The number of minima of the angular distribution is
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FIG. 3. (Color online) Photoelectron angular distributions for a
hydrogen atom exposed to the same laser pulse as in Fig. 1. The results
correspond to six different initial states, specified in the figure. For
the case of the 3d initial state the ordinates are amplified by a factor
of 100. For every initial condition two sets of data are represented,
obtained using method I with τa = 250 T (solid line) and method II
(small circles).

generally l + 1 for all the situations investigated.2 For initial
states of type ns, in particular, the single minimum present is
located at θ = 90◦. We first present results for the hydrogen
atom (Z = 1) and for the laser intensity I3 = 10 I0.

In Fig. 3 we show the photoelectron angular distributions
corresponding to the initial states 1s, 2s, 2p, 3s, 3p, and 3d,
the values for the case of the 3d initial state being multiplied
by a factor of 100. The agreement between the results obtained
with method I (solid line) for a duration of analysis of 250 T ,
and those obtained with method II (circles) is similar with that
encountered in the case of Fig. 1.

The photoelectron distributions presented in Figs. 4–6 are
determined using our method (method I). In Fig. 4 we show
the energy spectrum for the same intensity and the same initial
states as in Fig. 3. For a given initial state the peak height
decreases monotonically and rapidly with the order of the
peak 3. The energies corresponding to the spectral maxima are

2The same number of minima is predicted by the lowest-order
perturbation theory (LOPT) using the angular momentum selection
rules. LOPT also explains correctly the absence of some peaks (those
for which the number of photons absorbed and the angular momentum
l of the initial state have different parities) in Figs. 5 and 6, for θ = 90◦.

3We did not try to achieve the numerical convergence of the spectra
for energies corresponding to the last peaks (especially those for
which the background begins to saturate), versus any parameter
which may have impact on it. These last peaks are shown here
[and in Figs. 2(b), 5, and 6] mainly to observe the data trend.
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FIG. 4. (Color online) Photoelectron energy spectra, for the same
conditions as in Fig. 3. The initial states are 1s, 2s, and 2p (a), and
3s, 3p, and 3d (b). The abscissas of the vertical dashed lines are
calculated applying the energy conservation law to the ionization by
one-photon absorption.

close to those given by the law of energy conservation for the
case of a monochromatic field of low intensity (the latter are
indicated by vertical dashed lines for the position of the first
peak).

We now refer to the results we have obtained for the most
detailed distribution, given by Eq. (12). In Fig. 5 we show, for
1s, 2s, and 2p initial states and laser intensity I3, the angle-
resolved photoelectron energy spectra for several directions,
with θ = 5◦, 45◦, 60◦, and 90◦. We notice that these spectra are
affected by the emission direction; both the relative magnitude
and the number of the photoelectron energy peaks (in a given
interval on the axis of ordinates) change significantly from
the direction parallel with the polarization axis to a direction
perpendicular on the same axis. The most pronounced changes
of the spectrum manifest around θ = 90◦, where the only peaks
which survive are: the second and the fourth for 1s and 2s

initial states, and the first and the third for the 2p initial state
(see also Footnote 2).

We mention that for laser intensities less than I3 the
photoelectron distributions are similar with those presented
in Figs. 3–5. By lowering the laser intensity the weight of
the excess photon ionization (EPI) decreases monotonically.
To characterize quantitatively how important EPI is for the
considered range of intensities we introduce the notation Pn0+s

for the probability of ionization with the absorption of n0 + s

photons (n0 being the minimum number of photons necessary
for ionization, in our case one photon) and we examine the
values of the ratio ρ ≡ PEPI/Pn0 , where PEPI = ∑

s>0 Pn0+s

is the probability of excess photon ionization. Even at high
intensities, of the order of I0, the ratio ρ is small compared to
unity. In particular, in the case of 1s initial state, we obtained
for ρ the values 3.45 × 10−2, 3.45 × 10−3, and 7.66 × 10−4,
corresponding to intensities I3, I2, and I1, respectively. From

We note that the oscillations induced by the spectral width of the
pulse were smoothed replacing every ordinate (with the exception of
those around the principal maxima) by its local arithmetic average, a
procedure adopted also in the case of Figs. 2, 5, and 6.
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FIG. 5. (Color online) Angle-resolved photoelectron energy
spectrum for the same conditions as in Fig. 3. The three curves from
every panel correspond to 1s, 2s, and 2p initial states. From upper
(a) to lower (d) panels, the values of angle θ are as follows: 5◦, 45◦,
60◦, and 90◦.

this numerical example, which seems to indicate a proportion-
ality relation between ρ and I , we would be tempted to infer
the validity of the power law, Pn0+s ∼ I n0+s , for the probability
Pn0+s as function of intensity. However, the ratio of the two
values of Pn0 corresponding to intensities I3 and I2 is 5.91,
very different from the ratio of intensities (I3/I2 = 10). This
is a clear indication that it is necessary to include the depletion
effect of the initial atomic state to correct the power law.

In the case of hydrogenlike ions we have at our disposal
a parameter, the atomic number Z, which can be modified to
achieve, for the same xuv pulse, the variation of the minimum
number n0 of photons required for ionization. This possibility
can prove useful to a (at least) qualitative understanding of
the sequential ionization of the atoms with many electrons. In
the case of Z = 1 (Figs. 3–5), where the ionization potential
of the ground state is 0.5 a.u., the laser frequency we have
used (3.42 a.u.) in simulations is a high frequency. The same
frequency should be considered a low one for a high Z ground-
state hydrogenlike ion. The role of Z can be seen using the
scaling rules of various quantities with the atomic number.
These rules are obtained from the Schrödinger equation for a
hydrogenlike atom with an atomic number Z by the variable
changes r̃ = Zr and t̃ = Z2t . This leads to the Schrödinger
equation for the hydrogen atom in a laser pulse described again

by Eq. (16) but with the frequency ω̃ = ω/Z2 and an electric
field amplitude F̃0 = F0/Z

3. We mention that we preferred to
use this transformation even for the numerical integration of
TDSE: the numerical calculation was done for the hydrogen
atom and the photoelectron distributions were correspondingly
scaled. The energy spectrum, angle resolved or integrated, was
divided by Z2; this supplementary rule follows from Eq. (12)
and from the normalization condition of the wave function.

In the following we present results obtained for the intensity
I3 and for three values of the atomic number, Z = 2, 3, and 5,
the scaled frequency ω̃ taking, respectively, the values 0.855,
0.38, and 0.1368 a.u.. The minimum number n0 of photons
required for ionization from the ground state is one for Z = 2,
two for Z = 3, and increases to four for Z = 5. This fact has
significant consequences for photoionization: For Z = 2 the
atom is completely ionized at the conclusion of the laser pulse
while the total ionization probability is 0.66 for Z = 3 and 0.01
for Z = 5. In Fig. 6 we show the angle-resolved photoelectron
spectra for the initial state 1s and emission directions with θ =
15◦, 30◦, 45◦, 60◦, 75◦, and 90◦. The three curves in every panel
correspond to the mentioned values of the atomic number.
Besides the differences concerning the position, the width and
height of the peaks, we note their different structure. In the
case Z = 3 every peak is split in several subpeaks of unequal
magnitude. Three subpeaks are clearly visible and two of them
are prominent. This distinctive feature is the consequence of
the finite bandwidth of the pulse and of the (approximate)
fulfillment of the resonance condition: the scaled frequency
ω̃ = 0.38 a.u. is close to the energy difference of 0.375 a.u.
between the levels 1s and 2p of the hydrogen atom. We note
for the case Z = 5 a small (but visible) shift of the spectrum
toward lower energies [see the relative position of the first peak
versus the dashed line from panel (c)] and the nonmonotonic
variation of the peaks height for some directions. At θ = 90◦
the peaks which survive are the second and the fourth for
Z = 2 (like in the case Z = 1) and the first, the third, and the
fifth for Z = 3 and Z = 5.

We mention that, in order to interpret the energy spectra
from Fig. 6, we made independent calculations based on
single-state Floquet theory (SSFT). The calculations were
done with the numerical code STRFLO presented in [18].
In the framework of SSFT the behavior of an atom in a
monochromatic laser field 4 is described by a quasistationary
solution of TDSE, corresponding to a complex energy, termed
quasienergy. A quasienergy which reduces in the absence
of the field to an atomic level E(0) can be written as E =
E(0) +  − i�/2, where  and � are the shift and width of the
level, induced by the field. In SSFT the photoelectron energy
spectrum is a “comb” formed by the lines corresponding to
the energies E(0) +  + (n0 + s) ω, with s integer � 0. If
several Floquet states are initially populated, then each of them
contributes with its own comb to the photoelectron energy
spectrum. In Fig. 7 we present an excerpt of the spectrum
from panel (a) of Fig. 6, for photoelectron energies between
0.1 ω and 0.9 ω. The relevant Floquet states in this context are
proven to be those corresponding to the atomic states 1s for

4We note that the monochromaticity condition of the pulse described
by Eq. (16) (in fact, of any pulse) is satisfied with approximation.
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FIG. 6. (Color online) Angle-resolved photoelectron energy
spectra for the same conditions as in Fig. 3 and for the 1s initial
state. The three curves from every panel correspond to Z = 2, 3, and
5. From upper (a) to lower (f) panels, the values of angle θ are as
follows: 15◦, 30◦, 45◦, 60◦, 75◦, and 90◦. The dashed lines, determined
as in Fig. 4, are drawn once for every Z.

Z = 2 and Z = 5, and 1s, 2p, 3p in the case Z = 3. For every
state involved, two vertical lines are drawn, their abscissas
being En/ω + n0 (En is the corresponding Bohr level) for the
dashed line and (En + nl)/ω + n0 for the solid line. From the
left to the right, the first two pairs of vertical lines correspond,
respectively, to the ground state for Z = 5 and Z = 2. The next
three pairs of lines are for Z = 3 and correspond, respectively,
to the states 2p, 1s, and 3p. The figure clearly shows that the
Floquet calculation reproduces with accuracy the position of
peaks from the energy spectra. We note the negative value of
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FIG. 7. (Color online) Magnification of the region between
E/ω = 0.1 and E/ω = 0.9 from panel (a) of Fig. 6. The abscissas
of vertical lines (two lines for every state) are calculated with the
energy conservation law as explained in the text. The pairs of lines
correspond (from left to right), respectively, to the states 1s for Z = 5,
1s for Z = 2, 2p, 1s, and 3p (the last three for Z = 3).

1s for the ground state in the case Z = 5 (which explains the
global shift of the spectrum to lower energies), a feature which
is typical for low frequencies [19].

Finally, we remark that the scaling properties can also be
used to predict the change of ionization mechanism (for a
fixed xuv pulse of high peak intensity), from multiphoton
ionization for low Z to tunnel ionization for high values of Z.
Taking as example Z = 9, the scaled frequency corresponding
to ω = 3.42 a.u. is ω̃ ≈ 0.04 a.u., a value belonging to the
infrared range of frequencies. At this frequency, the onset
of nonperturbative effects in the case of the hydrogen atom
is expected to appear above Ĩ ≈ 1013 W/cm2. However, the
xuv intensity corresponding to Ĩ is I ≈ 5.3 × 1018 W/cm2, a
value much larger than the highest intensities for this range of
frequencies, available at the present time. In the light of these
considerations it is also possible to make an extrapolation to
the photoionization of atoms with more than one electron in the
presence of xuv pulses. For higher charge states some features
encountered in the case of ionization by optical or infrared
laser pulses may manifest also for xuv pulses, whenever the
energy of an xuv photon is much lower than the ionization
potential of these ions. As in the case of hydrogenlike atoms,
the manifestation of these features may imply intensities higher
than I0. For experiments made at such intensities it is expected
that the mechanisms of “atomic antenna” [20], or electron
rescattering [21] will play a much more important role than in
the case of experiments presented in [10,11].

V. CONCLUSIONS

We have introduced the integral representation Eq. (2)
of the wave function at large distances, valid for the stage
postinteraction between a one-electron atom and a short
laser pulse, which contains the whole information we need
to describe the photoionization process. This representation
is used to give a derivation of formula (12) for the fully
differential photoelectron distribution. The expression (12)

053419-8



ATOMIC IONIZATION BY INTENSE LASER PULSES OF . . . PHYSICAL REVIEW A 82, 053419 (2010)

leads to a method to extract the photoelectron distributions
from the time dependence of the wave function in the
asymptotic region, the wave function being calculated by
the numerical integration of the Schrödinger equation, on a
space-time grid in our case. Our method avoids completely the
calculation of the continuum incoming states. We consider the
method attractive by its simplicity; it may be used efficiently
together with a good propagation scheme of the wave function.
The proposed procedure can be taken as a viable alternative
if the incoming energy eigenfunctions are not known or too
difficult to compute.

With our method, described in Sec. III, we have presented
results for the photoionization of hydrogenlike atoms from the
ground and several excited states, induced by the interaction
with xuv laser pulses with a central wavelength of 13.3 nm,
several intensities around the value I0, and a few values of
the atomic number, covering cases which, to our knowledge,
are not present in the literature. These results demonstrate that
for intensities of the order I0 (or lower) the excess photon
ionization is negligible in comparison with the ionization by

the absorption of the minimum number of photons, a conclu-
sion which is expected to be valid also for the photoionization
of complex atomic targets. The results obtained for several
values of the atomic number, consolidated by independent
Floquet calculations, support the idea that the ionization of
complex atoms by xuv pulses may have features (like the shift
of the spectra to lower energies) which characterize the same
phenomenon in the case of optical or infrared laser pulses.
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