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Strong-field ionization of polar molecules: Stark-shift-corrected strong-field approximation
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We extend the molecular strong-field approximation for ionization, in the tunneling limit, to include
systematically the linear and quadratic static Stark shifts of the ionizing molecular orbital. This approach,
simple to implement, is capable of describing the essential physics of the process of strong-field ionization of
oriented polar molecules by circularly polarized laser pulses. The modification of the molecular orbitals in strong
fields is also discussed and in cases of extreme polarization of inner electrons a simple model is devised. We
find very good agreement between the results from our model and those obtained in the recent experiment on
ionizaton of oriented carbonyl sulphide and benzonitrile molecules [L. Holmegaard et al., Nature Phys. 6, 428
(2010)].
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I. INTRODUCTION

Obtaining molecular-frame ionization cross sections from
aligned and oriented molecules [1] not only advances the
knowledge on strong-field processes, but also carries informa-
tion on the orbital structure [2,3]. The detailed knowledge of
the ionization dynamics in strong fields can then, for example,
be used to obtain insight into the time-dependent electronic
dynamics for larger systems in experiments employing the
femtosecond-attosecond pump probe techniques [4].

The experiments on ionization from aligned or oriented
molecules can be broadly divided into two types. The first
type of experiments are relying on the cold target recoil
ion momentum spectrometer (COLTRIMS) [5] technique that
enables kinematically complete experiments where the orien-
tation of the molecule in space prior to the interaction with the
laser field is inferred from the recorded dissociated molecular
fragments after the end of the interaction [2,6–13]. Mapping of
the initial orientation of the molecule before the interaction is
possible only by isolating a particular dissociation channel of
the molecule. Since dissociation channels of larger molecules
are not well known, these experiments are usually restricted to
smaller molecules.

The second type of experiments confine the molecules in
space prior to the interaction with the laser field. The first
experiments of that type were conducted on aligned linear
molecules [14–16]. Making use of the large polarizabilities
and dipole moments of the target molecules, it is possible
to adiabatically orient them with a fixed head-to-tail ratio [17]
before the interaction with the strong-field laser pulse [3]. This
opens up possibilities for investigating photoelectron angular
distribution in the molecular fixed frame. These distributions
carry much more information than the corresponding signal
from a nonoriented sample. For example, the effect of the
molecular dipole moments and polarizabilities on the ioniza-
tion dynamics of the probed molecules can be investigated in
detail. In this paper we restrict ourselves to the description
of these experiments, investigating the influence of the Stark
shifts due to large permanent dipole moments and polarizabil-
ities of the target molecules on the initial ionization step.

Theoretically, in order to fully account for the ionization
of molecules in strong laser fields, one has to solve the

time-dependent Schrödinger equation in its full dimension-
ality. This is, however, an extremely complicated task, only
possible for the most simple molecules. Luckily semianalytical
models, providing the basic physical insight, are available. A
very popular tool, in this respect, is the molecular strong-field
approximation (MO SFA) [18–20], which is a generalization
of the atomic strong-field approximation (SFA) pioneered
by Keldysh [21] (see also [22,23]). In SFA and MO SFA,
single ionization is modeled as a transition from an initial
field-free state to a Volkov state, which is the wave function
for an electron in an electromagnetic field. Hence, intermediate
bound states and the Coulomb interaction in the final state
are completely neglected. Another widely used model for
description of ionization of molecules in strong fields is the
molecular tunneling theory [the molecular Ammosov-Delone-
Krainov (MO-ADK) theory] [24], which is an extension of
the atomic tunneling theory (ADK) [25,26]. The molecular
extensions of both ADK and the SFA take into account the
shape (the geometry) of the initial molecular orbital.

Ionizing oriented molecules that possess large dipole
moments and polarizabilities with strong laser pulses induces,
however, large Stark shifts of the energy levels and hence
leads to large modulations of the ionization potential. Due
to the Stark shift, ionization of such molecules gives rise to
phenomena (e.g., strong suppression of the ionization signal in
specific regions of momentum space) not seen in the nonpolar
case [3]. The standard formulation of the MO SFA does not
account for the Stark shift of polar molecules. This motivates
the development of Stark-shift corrections to the MO SFA that
preserves the simplicity of the approach and, at the same time,
captures the essential physics.

In this paper, we present a simplified, but yet systematic,
way to approximatively Stark-shift correct the length gauge
MO SFA in the tunneling limit. We restrict ourselves to the
case of ionization of oriented molecules by circularly polarized
laser pulses where the rescattering-induced postionization
interaction with the molecular core is limited. In addition,
we discuss the modification of the molecular orbitals by
slowly varying strong fields. The performance of the corrected
MO SFA is illustrated by calculating the photoelectron
momentum distributions (PADs) for strong-field ionization of
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oriented carbonyl sulphide (OCS) and benzonitrile (C7H5N)
molecules by a circularly polarized laser field. The distri-
butions show, when compared with results obtained using
the standard MO SFA, striking effects of the field-dependent
modulation of the ionization potential due to the Stark shift.
Furthermore, our results are shown to be in very good agree-
ment with results from a previous experiment and tunneling
calculations [3], thus, validating the proposed method for
calculating the ionization of polar molecules to strong external
fields in the tunneling limit.

This paper is organized as follows. In Sec. II we discuss
the Stark shifts in the static-field limit. In Sec. III a way to
approximatively Stark-shift correct the length gauge MO SFA
in the adiabatic limit is presented. In Sec. IV we discuss the
modification of the molecular orbitals due to the polarizability,
and illustrate the proposed method by strong-field calculations
on OCS and C7H5N. In Sec. V we present the conclusion.
Atomic units (h̄ = a0 = me = 1) are used throughout, unless
stated otherwise.

II. STATIC STARK SHIFTS

In general, the ionization potential Ip of a molecular system
is defined as the difference between the total energy of the
molecular ion and the corresponding neutral. In weak static
fields the total energy of the ion and the neutral do not change
substantially; however, for polar molecules and in strong fields
the change of the total energy of the neutral and its unrelaxed
cation can be very substantial. Note that we refer to the total
energy of the unrelaxed ion, ignoring a possible difference of
the dipole moments and polarizabilities of the ionic species
obtained through different ionization channels. The unrelaxed
cation is considered because the electron dynamics occurs on
a time scale where the nuclei have not had time to move. The
total energy of a molecule (M) and its unrelaxed cation (I)
EM-I is a function of the static field F. To second order in field
strength, the total energy of the molecule and cation EM-I(F)
is given by (see, e.g., [27])

EM-I(F) = EM-I(0) − µM-I · F − 1
2 FTαM-IF, (1)

where µM-I is the dipole moment, αM-I is the polarizability
tensor, and EM-I(0) is the field-free total energy of the
system. The superscripts M and I refer to the molecule and
the molecular cation, respectively. Since the molecule and
the cation do not have identical permanent dipole moments
and polarizabilities, the ionization potential Ip = EI − EM

becomes

Ip(F) = Ip(0) + �µ · F + 1
2 FT�αF, (2)

where

�µ = µM − µI, �α = αM − αI. (3)

Equations (2) and (3) show very explicitly that the ionization
potential depends not only on the magnitude of the electric
field vector F but also on the angles of the field orientation
with respect to the main polarizability axes and the permanent
dipole of the molecule. An alternative but equivalent way of
formulating the shift of the ionization potential is to introduce
the dipole moment and polarizability associated with the
orbital that participates actively in the ionization process.

The previous considerations were recently incorporated
into a Stark-shift-corrected tunneling model that explained
the experimental results on strong-field ionization of one-
dimensionally oriented OCS molecules [3]. While this model
gave satisfactory results, it did not account for two important
points. The first point is that in a tunneling model the coherence
of the wave packet is lost, and obviously any interference effect
of the ionized electron wave packet is absent. The second point
concerns the situations in which a molecule is oriented so that
the electric field vector lies in the nodal plane of the ionizing
molecular orbital. In this case the emission along the field
direction is forbidden due to symmetry reasons. However, the
standard ADK tunneling theory, as well as MO-ADK theory,
assumes that the tunneling occurs exactly opposite to the field
direction [24,25], which breaks down for fields lying in the
nodal plane of the ionizing orbital. In the tunneling theory the
momentum distribution, at emission, transverse to the electric
field direction is proportional to exp[−p2

⊥
√

2Ip/F (t)] [28],
where p⊥ is the momentum of the electron transverse to
the instantaneous field direction. This is obviously not true
when the electric field vector lies in the nodal plane of the
molecule. Therefore, to obtain fair agreement with recent
experimental data on three-dimensionally oriented C7H5N, an
ad hoc dressing of the preexponential factor of the tunneling
amplitude was performed in Ref. [3], taking the transverse
momentum distribution at the birth of the electron coinciding
with the simplest orbital that has a nodal plane in the same
direction. The MO SFA, on the other hand, even without
accounting for the Stark shifts, automatically accounts for
the existence of the nodal plane structures in the molecular
orbitals [29,30]. Therefore, by correcting the usual MO SFA
for the Stark-shift one would obtain a model that accounts
both for the static Stark shifts and the nodal planes of the
molecular orbitals.

The standard length gauge SFA for atoms has a common
limit with tunneling result for static fields [31] as was explicitly
shown for the case of the zero-range potential [32]. Therefore,
as we will see, the Stark shift of the ionization potential (2)
enters the SFA formalism by employing the adiabatic ansatz.
Below we give the derivation of the corrected MO SFA to
account for the Stark shifts. We stress that the applicability of
our Stark-shifted MO SFA is restricted to the tunneling limit,
that is, Keldysh parameter [21] γ = ω

√
2Ip/F < 1. Beyond

the tunneling limit, the correction based on static Stark shifts
would fail since then the field cannot be regarded as quasistatic.
All the examples of strong-field ionization of oriented polar
molecules considered here are in or very close to the tunneling
regime.

III. STARK-CORRECTED LENGTH GAUGE MO SFA

We start the derivation from the time-dependent
Schrödinger equation (TDSE) governing the dynamics of the
molecular system interacting with the laser field,

i∂t�(t) = [H0 + V (t)]�(t), (4)

where H0 is the field-free Hamiltonian and V (t) = ∑n
j=1 rj ·

F(t) denotes the interaction of the n-electron system with the
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electric field of the laser pulse. This partial differential equation
is equivalent to the following integral equation:

�(t) = −i

∫ t

0
U (t,t ′)V (t ′)U0(t ′,0)�0 dt ′ + U0(t,0)�0, (5)

given the initial condition �(0) = �0(0), where �0 is an
eigenstate of the field-free Hamiltonian, U , i∂tU (t,t0) =
[H0 + V (t)]U (t,t0), is the time-evolution operator for the total
system and U0, i∂tU0(t,t0) = H0U0(t,t0), is the time-evolution
operator for the field-free system. The transition amplitude to
a final state |�f (t)〉 is

Tf i = −i

∫ τ

0
〈�f (t)|V (t)|�0(t)〉 dt, (6)

with τ the pulse duration and �f the wave function for the
liberated electron and the residual ion. Here, we restrict to the
case of single ionization and to the independent particle model
of the system, so we approximate the initial n-electron wave
function by a Slater determinant,

�0(t) = 1√
n!

det|φ1(r1) · · · φn(rn)| exp[−iEM (0)t], (7)

where φi and ri refer to the ith electron orbital and coordinate,
respectively. Next, we concentrate on the channel leading to
ionization of the, say, nth electron. In the SFA [21–23,33] we
neglect the interaction between the liberated electron and the
cation in the final state. Hence, the final state is given by

�f (t) = 1√
n!

det
∣∣φ1(r1) · · · ψq

n (rn,t)
∣∣ exp[−iEI (0)t], (8)

where ψ
q
n (rn,t) denotes a Volkov wave function with asymp-

totic momentum q. Combining these expressions with Eq. (6),
and ignoring the nonorthogonality of the continuum final state
orbital with the bound state orbitals, we obtain [19,20]

Tf i = −i

∫ τ

0

〈
ψ

q
V (rn,t)

∣∣rn · F(t)|φn(rn,t)〉 exp[iIp(0)t] dt,

(9)

which is the key result in the length gauge MO SFA.
In the static field limit, it is possible to modify the above

simple derivation to include the adiabatic ansatz in the initial
and the final state. Hence, if we assume that both the cation
and the neutral, before ionization, are affected adiabatically by
the electric field Eqs. (7) and (8) are changed as

�0(t) = 1√
n!

det|φ1(r1,F(t)) · · ·φn(rn,F(t))|

× exp

(
−i

∫ t

0
EM(F(t ′)) dt ′

)
, (10)

�f (t) = 1√
n!

det
∣∣φ1(r1,F(t))...ψq

n (rn,t)
∣∣

× exp

(
−i

∫ t

0
EI (F(t ′)) dt ′

)
. (11)

The adiabatic approximation is valid provided that ω �
Ip(F(t)). The cation in question is even more tightly bound
than the neutral and, hence, if ω � Ip(F(t)) then ω � I I

p ,
where I I

p is the ionization potential of the cation. In the
previous equations, in addition to the modification of the total

energy of the molecule and the ion due to the instantaneous
amplitude of the field according to (1), we have indicated the
distortion of the bound orbitals by the static field, which we
will discuss later.

Combining Eqs. (10) and (11) with Eq. (6), the transition
amplitude becomes

Tf i = −i

∫ τ

0
〈ψq

V (rn,t)|rn · F(t)|φn(rn,F(t))〉

× exp

(
i

∫ t

0
Ip(F(t ′)) dt ′

)
dt, (12)

with the exponent given by Eq. (2). Since we would be
concerned with examples where the amplitude of the laser
pulse is large and the pulse durations are not too short, the
saddle-point integration of Eq. (12) yields an identical result
as performing the exact time integration [34]. The standard
technique of saddle-point integration is used; see the appendix.

In the saddle-point formulation of the SFA, the initial-state
symmetry appears in the pre-exponential factor, while the
binding energy appears as an argument in the exponential;
see Eq. (31) in the Appendix. Any modification of the orbital
caused by the field would have an effect on the preexponential
factor; this is also the case in the MO-ADK theory [24],
where initial orbital symmetry appears in the preexponential
factor. In Eq. (12) the initial orbital is a function of the field
strength (i.e., it changes adiabatically depending on the field
orientation). It is, in general, very hard to account dynamically
for such changes of the orbitals, but it is also clear that
in the case of very large polarizabilities it is not accurate to
use the field-free ones. We discuss the dynamic modification
of the orbitals in strong laser fields in the next section.

IV. APPLICATION OF STARK-SHIFT-CORRECTED
MO SFA

A. Definitions and considered geometry

We consider strong-field ionization of polar molecules by
a circularly polarized laser field. Specifically, we consider a
left circularly polarized (LCP) laser pulse, defined in terms of
the vector potential A(t) having a sine squared envelope and
polarization in the (y,z) plane,

A(t) = A0f (t)

⎛⎜⎝ 0

sin(ω0t + φ) sin
(

ε
2

)
cos(ω0t + φ) cos

(
ε
2

)
⎞⎟⎠ . (13)

In the previous equation, A0 is the amplitude, ω0 the central
frequency, φ the carrier-envelope phase (CEP), ε = π/2 the
ellipticity, and f (t) = sin2(ω0t

2N
) the envelope, with N the

number of optical cycles. In all calculations presented here,
we use long pulses so that the results do not depend on the
CEP. The electric field of the laser pulse is obtained from
the vector potential as F(t) = −∂tA(t), so that for LCP A(t)
precedes F(t) in space (see Fig. 1).

In the following, we give examples of strong-field ioniza-
tion of oriented polar molecules that are compatible with the
experimental setup described in Ref. [3] and sketched in Fig. 1.
The target molecules are oriented so that the permanent dipole
moment of the molecule µM is antiparallel to the positive
z axis, the momentum distributions are recorded on a screen
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µM
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z

A(t) F(t)

LCP

FIG. 1. (Color online) Sketch of the experimental geometry that
is considered in the present calculations. See text for details.

perpendicular to the z axis [i.e., the screen is in the (x,y)
plane (see Fig. 1)], and the origin of the space-fixed axes
(x,y,z) is the center of mass of the molecule. In this setup,
disregarding the influence of the molecular potential after the
electron emission, that is, using the simple-man model [35],
the electron emitted at time t0 will gain final momentum,

q = −
∫ ∞

t0

F(t) dt = −A(t0). (14)

We assume that the laser pulse is relatively long and that
it is switched off adiabatically, so that the CEP φ does not
have influence on the result and the phase difference (and
also the spatial angle) between A(t) and F(t) amounts to π/2.
According to Eq. (14), to obtain a final momentum q that has
a maximal y component qy , the electron should tunnel out at
time t0 when the vector potential A(t0) is perpendicular to the
permanent dipole moment of the molecule µM [i.e., at times
when F(t0) is parallel or antiparallel to µM]. Specifically, when
A(t0) points in the positive y axis, F(t0) points in the positive
z axis, emission occurs opposite from the field direction (in the
direction of the negative z axis), and the final momentum will
have a negative y component (qy < 0). In case A(t0) points in
the direction of the negative y axis, the emission occurs in the
direction of the positive z axis and the final momentum has a
positive y component (qy > 0).

The permanent dipole moments and polarizabilities of the
molecule and its cation for OCS and C7H5N used here are
given in the supplementary information to Ref. [3].

B. Standard MO SFA result

First, we turn to the case of strong-field ionization of
the OCS molecule by LCP light. To perform calculations
within the standard MO SFA, the asymptotic properties of
the HOMO, which is degenerate for OCS (see supplementary
information to Ref. [3]), are needed. We assume that one
of the HOMOs is in the laser polarization (y,z) plane
and the other is perpendicular to it [i.e., is in the (x,z)
plane]. The two degenerate and orthogonal HOMOs, obtained
using the standard GAMESS code [36], are fitted to the asy-
mptotic form of the field-free wave function at large distances,

φn(r) ≈ r
Z
κ
−1 exp(−κr)

∑
lm

ClmYlm(r̂), (15)

where κ = √
2Ip(0) and Z is the ionic charge, thereby

calculating the coefficients Clm for both orbitals [37].
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FIG. 2. (Color online) Photoelectron momentum distributions,
∂2P/∂qx∂qy = ∫

(∂3P/∂qx∂qy∂qz)dqz, for the ionization of OCS,
one-dimensionally oriented such that the O-end points in the positive
z direction. The laser parameters are as follows: frequency ω = 0.057
(800 nm), peak intensity I = 2.44 × 1014W/cm2, number of optical
cycles N = 10, and CEP φ = 0. The distribution (a) is obtained using
the standard length MO SFA, while the distribution (b) is obtained by
including the Stark shift in the exponent [i.e., using Eq. (12)]. Linear
color scale is used.

Figure 2 shows the standard length gauge MO SFA
momentum distribution [Fig. 2(a)], ∂2P/∂qx∂qy , as well as
the Stark-shift-corrected [Eq. (12)] momentum distribution
[Fig. 2(b)] for the ionization of a one-dimensional (1D) aligned
and oriented OCS with the following parameters: 800 nm,
peak intensity I = 2.44 × 1014 W/cm2, N = 10, and CEP
φ = 0. The OCS is aligned along the z axis and oriented in
such a way that the O end points in the positive z direction.
The momentum distributions in Fig. 2 include the combined
response of both HOMOs of OCS, obtained by incoherently
adding the momentum distributions originating from each of
the degenerate HOMOs. The contribution from the (x,z) plane
HOMO in the momentum distributions in Fig. 2 is dwarfed
by the contribution from the (y,z) plane HOMO because the
nodal plane of the former orbital coincides with the laser
polarization plane and therefore the ionization from that orbital
is suppressed. Below we restrict the discussion to the (y,z)
plane orbital and simply refer to it as “HOMO.”

The standard MO SFA produces a distribution with a larger
probability for ionization with qy < 0 compared to qy > 0.
This can be understood from the previous discussion within
the simple-man model and by looking at the HOMO [see
Fig. 3(a)]. Namely, the majority of the charge is situated near
the S end, which, in turn, favors ionization when the electric
field has a component in the positive z direction (ionization
from the S end) compared to the case where the electric has a
negative z component (ionization from the O end). Therefore,
the structure of the orbital is such that ionization from the
S end is favored. For the LCP of Eq. (13), the final momentum
[Eq. (14)] corresponding to ionization from the O end would
have a positive y component, and conversely, negative y

component when the ionization has occurred from the S end of
the molecule. This explains why the momentum distribution
is larger for qy < 0 compared to qy > 0 in Fig. 2(a).

C. Dynamic modification of molecular orbitals in strong fields

The asymmetry in the momentum distributions in Fig. 2(a)
contradicts the asymmetry in the momentum distributions,
observed in the experiments [3], where the qy < 0 part of the
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(a)

(b)

FIG. 3. (Color online) The OCS molecule with the S pointing to
the left and the O to the right. The nuclei are at the equilibrium nuclear
positions (in a.u.): −2 (sulfur), 0.99 (carbon), and 3.2 (oxygen).
(a) Iso-contour of the (y,z) plane HOMO of OCS at spatial points
where the norm of the wave function is 0.1. (b) The same as (a), but
now including a static field of magnitude 0.0586 pointing toward
the S end. The comparison between (a) and (b) illustrates how
the external field pulls the electron charge density in the direction
opposite to the field. In both cases the calculations were performed
using GAMESS [36] with a triple-zeta valence basis set and added
diffuse orbitals.

distribution is suppressed. Including the Stark shift in the expo-
nent, that is using Eq. (12), together with the field-free HOMO
(15) clearly increases ∂2P/∂qx∂qy for qy > 0 compared to the
standard MO SFA results, but not nearly enough to reproduce
the experimental findings [see Fig. 2(b)]. The argument of the
exponential in Eq. (12) favors ionization when the electric field
has a negative z component, since the Stark-shift-corrected
ionization potential is smaller in that case. However, this effect
is not enough to overcome the geometrical effect caused by
the non-Stark-shifted pre-exponent, containing the field-free
HOMO. Hence, we cannot neglect the modification of the
initial orbital by the external field. At the peak electric field of
the experiment, the contribution of the polarizability term in
Eq. (2) is much larger than the contribution of the permanent
dipole terms and it is the polarizability response that modifies
the initial orbital. Accordingly, the HOMO charge distribution
follows the (quasi)static field during the interaction with the
circularly polarized field [see Fig. 3(b)]. An approach where
one calculates the asymptotic coefficients of the HOMO for
each field orientation, to be used in an SFA calculation,
becomes impractical since in the saddle-point formulation of

the SFA one would need the coefficients Clm at complex fields
(complex times).

Another way to consider the modification of the HOMO in
the static picture could be performed by following the approach
presented in Ref. [38], suitably modified to describe polar
systems. We start from the time-independent Schrödinger
equation for an n-electron system, satisfied by the (quasi-
stationary) wave function �n,

EM (F)�n =
⎛⎝ n∑

j=1

(Hj + rj · F) + V n
ee

⎞⎠ �n, (16)

where Hj = −(1/2)∇2
j − ∑k

i=1 Zi/|Ri − rj | (Zi are charges
and Ri are the coordinates of the k nuclei, and rj are the
electron coordinates), and V n

ee = ∑n
l<j 1/|rl − rj | contains

the electron-electron interaction. We have already included
the Stark shift of the total energy of the molecule in EM (F)
in Eq. (16). As in Ref. [38], a Born-Oppenheimer-like ansatz
is employed, to decouple the motions of the residual, fast
electrons of the ion (coordinates r1, . . . ,rn−1) and the slow
electron that tunnels out (coordinate rn). The total wave
function is decoupled as

�n(r1, . . . ,rn−1,rn) = �n−1(r1, . . . ,rn−1; rn) ⊗ �t (rn), (17)

where the coordinate rn is the adiabatic parameter in
�n−1(r1, . . . ,rn−1; rn). This ansatz is valid for general com-
plex systems so it can be applied to polar molecules as well.
Since it is assumed that rn = |rn| is large, the overlap integrals
between the bound electrons and the tunneled electron become
negligible so that the antisymmetrization between the n − 1
core electrons and tunneled electron can be neglected. In the
region of large rn, the electron-electron interaction V n

ee can
be approximated retaining only monopole and dipole terms,
that is,

V n
ee ≈ V n−1

ee + (n − 1)

rn

+
n−1∑
j=1

rj · d, (18)

where d = rn/r3
n can be thought of as an effective field felt by

the residual n − 1 electrons from the action of the outgoing
tunneled electron. The interaction between the nuclei and the
slow electron can also be approximated as

k∑
i=1

Zi

|Ri − rn| ≈
∑k

i=1 Zi

rn

+
(∑k

i=1 ZiRi

) · rn

r3
n

. (19)

The decoupling of (16) leads to the following equation for
the bound electron part:

EI (F + d)�n−1 =
[

n−1∑
j=1

[Hj + rj · (F + d)] + V n−1
ee

]
�n−1,

(20)

and the tunneled electron part,

(EM (F) − EI (F + d))�t

=
(

−1

2
∇2 − Z

rn

−
(∑k

i=1 ZiRi

) · rn

r3
n

+ rn · F

)
�t, (21)
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where ∇ operates on the coordinate rn and Z = m − n + 1 is
the charge of the parent ion (m = ∑k

i=1 Zi is the total charge
of the nuclei). The left-hand side of Eq. (21) is explicitly
given by

EM (F) − EI (F + d) = −Ip(F) + (
µI + µI

ind

) · d + 1
2 dT αI d,

(22)

where Ip(F) is given by Eq. (2), µI
ind is the induced dipole

moment given by

µI
ind = αI F, (23)

and
1

2
dT αI d = 1

r6
n

(
αI

xxx
2
n + αI

yyy
2
n + αI

zzz
2
n

)
(24)

is proportional to 1/r4
n at large distances. In the previous

equation, αI
xx , αI

yy , and αI
zz are the polarizabilities of the

cation along its molecular axes. Equation (21) for the tunneled
electron part can be rewritten as

−Ip(F)�t = [− 1
2∇2 + Vef (rn; F) + rn · F

]
�t, (25)

where

Vef (rn; F) = −Z

rn

−
(
µI

T + µI
ind

) · rn

r3
n

− 1

2
dT αI d, (26)

is the effective single-active-electron potential viewed from the
side of the tunneled electron at large distances. In the previous
equation,

µI
T = µI +

( ∑k
i=1 ZiRi

) · rn

r3
n

(27)

is the total permanent dipole of the unrelaxed cation, contain-
ing contributions from the nuclear charge in addition to the
electronic part of the permanent dipole moment µI . The term
(1/2)dT αI d models the polarization of the residual electrons
in response to the slow electron.

With the help of the previous potential we can estimate
the modification of the HOMO at large distances, exactly as
required in a length gauge formulation of the SFA. We can
imagine that the quasibound field-modified HOMO φn(rn; F)
at large rn satisfies the following equation:

−Ip(F)φn(rn; F) = (− 1
2∇2 + Vef (rn; F)

)
φn(rn; F). (28)

At large distances, (1/2)dT αI d could be neglected, obtaining

Vef (rn; F) ≈ −Z

rn

−
(
µI

T + µI
ind

) · rn

r3
n

. (29)

The previous equation provides a clear and intuitive picture of
the modification of the effective potential felt by the tunneled
electron at large distances. The tunneled electron feels the
Coulomb field of the ion and the permanent and induced
dipoles of the ion. The field enters the effective potential
through the induced dipole part of the potential that appears
because of the polarizability of the electronic cloud of the
residual electrons [see Eq. (23)]. We note that this is, in fact,
a multielectron effect, modeling the polarization of the core
electrons due to the electric field. The form of the effective
potential, where the field explicitly enters suggests that the

asymptotic properties of the HOMO may be modified by the
field. Below we consider this possibility.

The permanent dipole moment and the induced dipole
moment appear on the same footing in the effective potential
(29). If the considered molecular system is such that the
permanent dipole moment of the ion is dominant with respect
to the induced dipole, the latter can be neglected. In this case
the Vef loses the explicit dependence on the field.

However, for the molecules considered here the polariz-
ability is so large that µI

ind can be larger than µI
T , resulting

in a substantial modification of the HOMO at tunneling. For
example, the induced dipole of the ion of OCS is about three
times larger than the permanent dipole of the ion, and this ratio
is even larger for the case of benzonitrile (see supplementary
information to Ref. [3]). When considering different field
directions with respect to the molecular axis, away from the
direction specified by the permanent dipole moment of the
molecule, µI

T · rn � µI
ind · rn. These considerations motivate

our scheme to account for the modification of the orbital by
the field and neglect µI

T with respect to µI
ind in the effective

potential (29), that is,

Vef (rn; F) ≈ −Z

rn

− µI
ind · rn

r3
n

. (30)

Since the induced dipole of the ion µI
ind is connected to the

electric field vector through the polarizability tensor αI [see
Eq. (23)], it is clear that the instantaneous field orientation
defines the orientation dependence of the effective potential.

To further assess the modification of the HOMO orbital
due to the action of the polarizability response of the inner
electrons, it is helpful to consider whether, in a single-active
electron picture, the electron emission occurs below or over
the barrier. This analysis should be carried out including the
static Stark shifts of the neutral and its corresponding cation.
Well below the barrier, the coordinate of the turning point of
the single-active electron molecular potential plus the field
interaction is large, so the Coulomb part of the potential,
Z/rn is much larger than the part of the potential involving
the permanent and induced dipole of the cation. Then, the
asymptotic properties of the HOMO are given by Eq. (15) and
depend exclusively on the field-free Clm coefficients.

If, on the other hand, the field strength is such that ionization
occurs over the barrier of the single-active-electron potential
such as the case of OCS at the considered experimental
intensities [3], the properties of the HOMO should be described
at these distances, and not at very large rn. This is so because
classically, the over-the-barrier ionization occurs at the saddle
point of the potential formed by the single-active-electron
potential and the electron field interaction. For the case of OCS,
the saddle point of the potential occurs for distances from 4
to 6 a.u.. At these intermediate distances, both the Coulomb
and the dipole part of the effective potentials (29) and (30)
are significant so they both have to be taken into account. We
note that the action of the induced dipole term is to increase
the tunneling barrier; however, at the intensities considered
here even with this correction the ionization would occur over
the barrier. In addition, at intermediate distances, the HOMO
cannot be written in the form (15). The Hamiltonian of (28)
is not valid in the inner region near the origin, where the
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correlation between all n electrons becomes significant. The
outer electron is quasibound even in the inner region (over-the-
barrier ionization) and the inner (fast) n − 1 electrons respond
instantaneously to the field direction. This suggests that the
static field would modify the potential in the inner region
in a similar manner as in the outer region. Taking the main
multielectron effect in the inner region to be the change in the
quasistatic Coulomb field experienced by each of the electrons
due to the polarization of the multielectron cloud [39], it can
be verified that the modifications of the wave function of the
tunneled electron, in the field frame, would be independent
on the orientation of the field with respect to the molecular
axis. Since both in the inner and outer region, the modification
of the orbital is similar, and independent of orientation of
the field in the molecular frame, one can reach the following
conclusions. In cases when the effective potential is of the form
(30), the field defines the dominant direction and the form of
the field-dressed HOMO at intermediate distances, in the field
frame, is independent of the orientation of the field with respect
to the molecular axis. On the other hand, when the permanent
dipole of the cation cannot be neglected with respect to the
induced dipole [i.e., when the form of the effective potential
is given by (29)], both the field direction and the direction
of the permanent dipole moment of the cation are present,
therefore, the form of the field-dressed HOMO at intermediate
distances would be different for different orientations of the
field with respect to the permanent dipole of the cation. In
other words, the orbital would again be modified, but, in
general, the modifications would be different for different
field orientations. The modifications of the initial orbital in the
over-the-barrier ionization regime comes as no surprise, since a
similar conclusion has been reached in the barrier-suppression
regime for atoms [40].

D. Simplified model and comparison with the experiment

OCS and benzonitrile considered here belong to the class
of systems with very large polarizability and their strong-
field ionization takes place in the over-the-barrier ionization
regime. From the previous discussion, the properties of the
field-distorted HOMO are approximately independent of the
orientation of the field with respect to the molecular axis. To
model the insensitivity of the modification of HOMO with
respect to the field orientation, it is possible to simplify the
situation by replacing the HOMO with a model orbital for
which the Clm coefficients are independent of the orientation
of the field with respect to the molecular axis. The s orbitals
have this property and can therefore be used to account for the
modification of the HOMO in the field when polarizabilities
are substantial in the sense discussed and established in the
previous paragraphs. Therefore, it seems reasonable to model
the initial HOMO by an s orbital, retaining the Stark-shift
correction of the ionization potential (2). The same approach
was applied when introducing Stark-shift corrections into the
tunneling model (see supplementary information to Ref. [3]).
Therefore, in the case of OCS the Stark-shift-corrected SFA
of Eq. (12) is used where φn is a simple atomic 1s orbital.
Figure 4 shows the result of such a calculation, the parameters
of the laser field being the same as in Fig. 2. Indeed, the
calculated momentum distributions show asymmetry in the
correct direction and compare very well to the momentum
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FIG. 4. (Color online) Stark-shift-corrected photoelectron mo-
mentum distributions, ∂2P/∂qx∂qy = ∫

(∂3P/∂qx∂qy∂qz)dqz, for
the ionization of an artificial OCS molecule, one-dimensionally
oriented such that the O end points in the positive z direction, where
the initial orbital entering Eq. (12) is modeled by a simple s orbital.
The laser parameters and the color scale are the same as in Fig. 2.

distributions obtained in the Stark-shift-corrected tunneling
model, depicted in Fig. 3(a) in Ref. [3]. This agreement stems
from the general agreement of tunneling with the SFA in the
adiabatic limit [31].

In the case of strong-field ionization of oriented C7H5N,
exploiting the polarization anisotropy of the molecule, an
experimental three-dimensional (3D) orientation of the
molecule was achieved [3]. The 3D orientation is such that
the CN end points in the positive z direction while the benzene
ring is fixed in the (y,z) plane. For such an orientation, the
polarization plane of the circularly polarized laser field lies
entirely in the nodal plane of the initial HOMO. Then an
ad hoc correction to the tunneling model is performed to
theoretically reproduce the experiment (see supplementary
information to Ref. [3]). For the SFA no such correction
is necessary, since nodal plane structures are automatically
taken into account [29,30]. Apart from the preservation of
the nodal plane, the structure of the HOMO of C7H5N
off the nodal plane is modified by the field (polarizabil-
ity terms are even more important than in the case of
OCS), hence, as in the case of OCS, it is inaccurate to
use the field-free HOMO as the initial state. In this case,
the same argument for the modification of molecular orbitals
as in the OCS case holds. The difference here is the existence of
the nodal plane (i.e., the model orbital must have a nodal plane
where the original orbital has one). Since the field here rotates
in the nodal plane of the orbital, because of symmetry reasons
no strong-field modification of the orbital due to polarizability
can wash out the nodal plane. Away from the nodal plane,
the extreme polarizability would again result in insensitivity
of the form of the laser-dressed HOMO, in the field frame,
to the field orientation with respect to the molecular axis.
This motivates modeling of the field-modified orbital by the
simplest orbital possessing a nodal (y,z) plane for which
asymptotic properties are insensitive to the field direction—the
px orbital. Using Eq. (12), with an initial px orbital, as in the
tunneling model [3], the photoelectron momentum distribution
of Fig. 5 is obtained. The nodal plane of C7H5N is clearly seen
in the distribution and we observe very good agreement with
the tunneling calculations on C7H5N presented in Fig. 3(c) in
Ref. [3].
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FIG. 5. (Color online) Stark-shift-corrected photoelectron mo-
mentum distributions, ∂2P/∂qx∂qy = ∫

(∂3P/∂qx∂qy∂qz)dqz, for
the ionization of an artificial C7H5N molecule, three-dimensionally
oriented such that the N end points in the positive z direction while
the benzene ring is fixed in the (y,z) plane, where the initial orbital
entering Eq. (12) is modeled by a simple px orbital. The laser intensity
is I = 1.2 × 1014 W/cm2. The other laser parameters and the color
scale are the same as in Fig. 2.

V. CONCLUSION

We have shown that in order to describe strong-field
ionization of molecules with large permanent dipole mo-
ments and polarizabilities, it is necessary to account for
the modification of the ionization potential due to the Stark
shifts. The systematic inclusion of the Stark shifts in the
MO SFA presented here enables correction of the model in
the tunneling limit. On top of that, we have shown that it is
necessary to consider dynamic modifications of the molecular
orbitals in intense laser fields, especially in the case of large
polarizabilities. In cases of extreme modification of the initial
orbital, simple, atomic-like orbitals could be used as a model
for the initial molecular orbital. The results obtained from
this simple modification of the MO SFA compare very well
with the experimental results, capture the essential physics,
and account for the existence of the nodal planes of the initial
molecular orbitals.

While our work shows the power of the simple models,
especially the simple models for the initial HOMO in the
presence of external fields, it also highlights the need for
more advanced theoretical modeling to include the dynamic
modifications of the molecular orbital caused by the strong
laser field. One possible extension of the present model for the

modification of molecular orbitals by slowly varying strong
fields might be numerical calculation of the field-modified
HOMO using the potential (29) in the outer region and a
field-modified single-active-electron potential for the inner
region, using the imaginary time propagation on a grid.

It is also clear that the accuracy of the present approach will
be system dependent for another reason. The present theory (as
any other that uses the Volkov state as a final state) neglects the
molecular potential in the final state. Hence, asymmetries in
the spectra induced by the leading asymmetric dipole term of
the molecular potential are not accounted for. If, as is the case
for OCS and benzonitrile considered here, the transition into
the continuum occurs at points in space that are well separated
from the center of mass, the neglect of this dipole is accurate.
In other systems this asymmetry would have to be accounted
for [e.g., by including the dipole potential into the quantum
trajectory approach discussed in Ref. [41].

APPENDIX

The transition amplitude of Eq. (12) is evaluated as follows.
Ionization primarily occurs at large distances from the core
and, hence, it is accurate to use the asymptotic form of the
initial state, given by Eq. (15), in the evaluation of the spatial
integral in Eq. (12). Furthermore, we use the saddle-point
approximation to evaluate the spatial integral, obtaining

Tf i =
∑

ts

f (ts)

√
2πi

S ′′(ts)
exp[iS(ts)], (31)

where S(t) = (1/2)
∫ t

0 (q + A)2dt ′ + ∫ t

0 Ip(F)dt is the Stark-
shift-corrected semiclassical action, and ts are the saddle
points, obtained from S ′(ts) = 0. Provided that we neglect the
Stark shift in the preexponent,

f (ts) ∝
∑
lm

ClmYlm(Q̂(ts))
(

Q(ts)

iκ

)l
(l + ν + 2)

2l(l + 3/2)

×2F1

(
l − ν

2
,
l − ν + 1

2
,l + 3

2
, − Q2(ts)

2Ip(0)

)
1

S
′
0(ts)

ν ,

(32)

where Q = q + A, ν = Z/
√

2Ip(0), Z is the ionic charge, and
S0(t) = (1/2)

∫ t

0 (q + A)2dt ′ + Ip(0)t .
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