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Transient energy excitation in shortcuts to adiabaticity for the time-dependent harmonic oscillator
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We study for the time-dependent harmonic oscillator the transient energy excitation in speed-up processes
(“shortcuts to adiabaticity”) designed to reproduce the initial populations at some predetermined final frequency
and time. We provide lower bounds and examples. Implications for the limits imposed to the process times and
for the principle of unattainability of the absolute zero, in a single expansion or in quantum refrigerator cycles,
are drawn.
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I. INTRODUCTION

Adiabatic processes in quantum systems are frequently
useful to drive or prepare states in a robust and controllable
manner, and have also been proposed to solve complicated
computational problems, but they are, by definition, slow.
(The definition of “adiabatic process” here is the usual one in
quantum mechanics, namely, a slow change of Hamiltonian
parameters keeping the populations of the instantaneous
eigenstates constant all along.) Thus a natural objective is to
cut down the time to arrive at the same final state, possibly up to
phase factors, in other words, to find “shortcuts to adiabaticity,”
by designing optimal adiabatic pathways, or by admitting
that the populations may not be preserved at intermediate
times. Several works have recently proposed different ways
to achieve this goal for general or specific cases [1–10]. One
of the early applications considered has been particle transport
without vibrational heating [1,2,5,9,10]. Another important
case is frictionless harmonic trap compressions or expansions
for state preparation [4–8,11], which were first addressed with
“bang-bang” (piecewise constant frequency) methods [11]. A
different route is to design by inverse engineering techniques
a time-dependent frequency for which the expanding modes
associated with Lewis-Riesenfeld invariants [12] take the state
from the initial to the final potential configuration without
transitions [6,7]. This has been implemented experimentally to
decompress 87Rb cold atoms in a harmonic magnetic trap [13].
The extension to Bose-Einstein condensates may be carried
out with a variational ansatz [4] and realized experimentally
as well [14]. Invariant-based inverse engineering has been also
proposed to cool mechanical resonators [15].

In the same vein, Berry has provided an algorithm to
construct a Hamiltonian H̃ (t) for which the adiabatic ap-
proximation for the state evolution under a time-dependent
reference Hamiltonian H (t) becomes the exact dynamics with
H̃ (t). This algorithm has been applied to spins in magnetic
fields [3], harmonic oscillators [6], or to speed up adiabatic
state-preparation methods such as rapid adiabatic passage
(RAP), stimulated rapid adiabatic passage (STIRAP), and its
variants [8]. Also, Masuda and Nakamura have adapted for
adiabatic processes [5] a (“fast-forward”) scaling technique to
speed up the state dynamics [16], with application examples
to particle transport or time-dependent harmonic potentials
[5] and spins or charged particles in electromagnetic fields

[10]. Finally, optimal control theory has been used for non-
adiabatic cooling under imposed costs [11,17]; and Lyapunov
control methods have been proposed to speed up quantum
adiabatic computing without information of the Hamiltonian
eigenstates [18].

In this paper we shall examine the energy “cost” of such
processes; more precisely, their transient excitation energies.
Our central study case is the expansion (or compression) of
a harmonic oscillator, a basic model for many operations
in any cold atoms laboratory [7]. Intuitively, one expects
the transient system energy and the time of the process
to be “conjugate,” that is, an increase of the former when
decreasing the later, but the details of this relation, and the
role played by other parameters defining the process (such
as initial and final frequencies) have to be clarified both for
fundamental reasons and for the applications. In particular, the
energy excitation will set limits to the possible speed-up. In
a trap which is harmonic near the ground state, but not for
higher energies, large transient energies will imply perturbing
effects of anharmonicities and thus undesired excitations of
the final state, or even atom loss. The transient excitation
energy also has implications for quantifying the principle of
unattainability of zero temperature, first enunciated by Nernst
[19]. Fowler and Guggenheim [20] formulated it as follows:
“It is impossible by any procedure no matter how idealized to
reduce the temperature of any system to the absolute zero in a
finite number of operations.” They identify it with the third law
of thermodynamics although this is sometimes disputed. More
recently, Kosloff and co-workers [11,21,22] have restated the
unattainability principle as the vanishing of the cooling rate in
quantum refrigerators when the temperature of the cold bath
approaches zero, and quantify it by the scaling law relating
the cooling rate and cold bath temperature. We shall examine
the consequences of the transient energy excitation on the
unattainability principle at two levels, namely, for a single,
isolated expansion, and considering the expansion as one of
the branches of a quantum refrigerator cycle.

When describing these cycles and indeed in many intersec-
tion areas between quantum mechanics and thermodynamics
one finds the need to use the word “adiabatic” in two different
ways: the thermodynamical one (meaning that there is no
heat transfer between the system and environment) and the
quantum one. Many authors have pointed out this duality
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as an unfortunate source of confusion. It may prove useful
to distinguish them and avoid ambiguities and the hassle of
detailed explanations with a shorthand notation. Following the
example of Dirac’s q number versus c number distinction,
we propose to refer to a process as “t adiabatic” if it is
thermodynamically adiabatic and as “q adiabatic” if it is a
quantum-mechanically adiabatic (i.e., slow) process.

II. BANG-BANG METHODS

The Hamiltonian for a particle with mass m in a time-
dependent harmonic oscillator is given by

H = p̂2/2m + mω2(t)q̂2/2. (1)

Let us assume an expansion (compressions are treated simi-
larly) with initial angular frequency ω0 ≡ ω(0) at time t = 0
and final frequency ωf ≡ ω(tf ) < ω(0) at time tf .

In the “bang-bang” approach the frequency is shaped as a
stepwise constant function of time, choosing the step values
and durations so as to preserve the initial-state populations in
the final configuration. For real trap intermediate frequencies
this requires a minimal total expansion time [11]

tf >

√
1 − ωf /ω0√

ωf ω0
. (2)

The limit can be realized by only three jumps, that is, two
real intermediate frequencies (it cannot be improved by using
more intermediate frequencies), but one of the intermediate
frequencies should be infinite.

Up to a constant factor the main dependence in the bound (2)
already appears in a simpler process that reproduces for
(ωf ,tf ) the initial populations with just one intermediate
frequency, the geometric average ω1 = (ω0ωf )1/2, and a
total time

tf = π

2
√

ω0ωf

, (3)

which is a quarter of the corresponding period [23]. For an
initial nth state of the oscillator the instantaneous mean energy
during the transient period becomes the arithmetic mean of the
initial and final energies

〈H 〉 = h̄

(
n + 1

2

)
ω0 + ωf

2
. (4)

Equation (3) and the bound (2) are relevant because the
t-adiabatic expansion is actually the speed bottleneck in
quantum Otto refrigerator cycles which use particles in a
harmonic oscillator as the “working medium” [11,22]. The
cooling rate R as the cold bath temperature Tc approaches
zero is dominated by the expansion time and scales as
R ∝ ωf /tf . Since ωf ∝ Tc as Tc → 0, the dependence of tf
on ωf quantifies the unattainability principle. In particular,
q-adiabatic expansions lead to R ∝ T 3

c scalings, in contrast
with the R ∝ T

3/2
c scaling achieved with the times in Eqs. (2)

or (3) [11,22].
In [7] it was demonstrated, however, that the minimal time

in Eq. (2) can be beaten with bang-bang methods and inverse
engineering methods (see also the next section) by allowing for
imaginary intermediate frequencies, i.e., transients in which
the harmonic oscillator becomes a parabolic repeller. It was

pointed out [7] that this new freedom leads to the absence, at
least in principle, of a lower bound for the expansion time,
which could obviously affect the optimal scaling of cooling
rates. We shall analyze the impact of these ultrafast expansions
on the third law in the following sections.

III. ENERGY BOUNDS FOR INVERSE-ENGINEERED
TIME-DEPENDENT HARMONIC OSCILLATORS

A. Bound for time-averaged energy

In this section, we will set a lower bound for the
time-averaged energy in the transitionless expansions and
compressions of the time-dependent harmonic oscillator. A
shortcut to adiabaticity taking the nth state of the initial trap
to the final nth state of the final trap up to phase factors is
achieved [7] by designing the frequency from the Ermakov
equation

b̈ + ω2(t)b = ω2
0

b3
, (5)

where b is an engineered scaling function which satisfies the
following boundary conditions at t = 0 and tf

b(0) = 1, ḃ(0) = 0, b̈(0) = 0,
(6)

b(tf ) = γ, ḃ(tf ) = 0, b̈(tf ) = 0.

Here γ = √
ω0/ωf and the single and double dots denote

first and second derivatives with respect to time. [The
simplest choice for interpolating b(t) between 0 and tf
is a polynomial form, b(t) = 6(γ − 1)s5 − 15(γ − 1)s4 +
10(γ − 1)s3 + 1, where s = t/tf .] In this manner the nth
stationary state of the initial oscillator will evolve according
to the “expanding mode”

�n(t,x) =
(mω0

πh̄

)1/4 e
−i(n+1/2)

∫ t

0 dt ′ ω0
b(t ′)2

(2nn!b)1/2

× e
i m

2h̄ ( ḃ
b(t) +

iω0
b2 )x2

Hn

[(mω0

h̄

)1/2 x

b

]
, (7)

where Hn is a Hermite polynomial, and will become even-
tually, up to a phase, the nth eigenstate of the final trap at
tf . At intermediate times |�n〉 does not coincide, in general,
with the instantaneous eigenvectors |n〉 of H (t), H (t)|n(t)〉 =
εn(t)|n(t)〉.

For the nth expanding mode, the instantaneous average
energy En(t) ≡ 〈�n|H (t)|�n〉 is

En(t) = (2n + 1)h̄

4ω0

[
ḃ2 + ω2(t)b2 + ω2

0

b2

]
, (8)

which is, in general, different, except at the initial and final
times, from εn. The time average of En is defined by

En ≡ 1

tf

∫ tf

0
En(t) dt. (9)

To find a lower bound for En we substitute Eq. (8) into
Eq. (9) and integrate by parts making use of the boundary
conditions (6)

En = (2n + 1)h̄

2ω0tf

∫ tf

0

(
ḃ2 + ω2

0

b2

)
dt. (10)
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The integrand has the form of the Lagrangian of a particle
in an attractive inverse square potential, but the minimization
problem [i.e., finding an optimal function b(t) subjected to
the boundary conditions (6)] cannot be solved with a Euler-
Lagrange equation (see, e.g., [24]) since there are too many
boundary conditions which affect not only b, but also ḃ and
b̈ at the edges of the time interval. We can nevertheless find
easily, using the Euler-Lagrange equation, the quasi-optimal
“trajectory” b(t) that minimizes the integral subjected only to
the boundary values of b, that is, b(0) = 1 and b(tf ) = γ . Since
these two conditions define a broader set of functions than the
ones satisfying (6), the quasi-optimal b provides at least a
lower bound for the time-averaged energy. For the function

f (t,b,ḃ) = ḃ2 + ω2
0

/
b2, (11)

the Euler-Lagrange differential equation fb − d
dt

fḃ = 0 is

b3b̈ = −ω2
0. (12)

The solution satisfying b(0) = 1 and b(tf ) = γ is

b(t) =
√(

B2 − ω2
0t

2
f

)
s2 + 2Bs + 1, (13)

where B = −1 +
√

γ 2 + ω2
0t

2
f and the positive root should be

taken. Substituting Eq. (13) into the integral (10), we finally
obtain a lower bound for the time-averaged energy

Bn = (2n + 1)h̄

2ω0t
2
f

{(
B2 − ω2

0t
2
f

) − 2ω0tf

×
[

arctanh

(
B2 + B − ω2

0t
2
f

ω0tf

)

− arctanh

(
B

ω0tf

) ]}
, (14)

such that En � Bn. When the final frequency ωf is small
enough to satisfy tf � 1/

√
ω0ωf and γ 	 1, the lower bound

has the following simple asymptotic form

Bn ≈ (2n + 1)h̄

2ωf t2
f

. (15)

Incidentally, Bn sets also a lower bound for the maximum of
the instantaneous energy En(t).

Figure 1 is a contour plot ofB0 as a function of tf and ωf for
ω0 = 2π × 250 Hz, which will also be the initial frequency
in the following examples. The important point is that the
transient energy increases not only with decreasing final time
tf , but also with decreasing final frequency ωf . Figure 2 shows
the exponents of the scaling for the bound (14), its asymptotic
form (15), and the time-averaged energy for a polynomial b. In
all cases E0, orB0 ∝ 1/(ωf t2

f ) asymptotically, which confirms
the relevance (tightness) of the bound.

A consequence of Eq. (15) is

tf �
√

(2n + 1)h̄

2ωf En

. (16)

The interest of Eq. (16) compared to Eq. (2) is that, in
principle, for fixed ω0, it is possible to beat the bang-bang
minimal time, but the price is an increase in the transient
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FIG. 1. Contour plot of the lower bound for time-averaged energy
[in units of E0(0) = h̄ω0/2] as a function of tf and ωf . ω0 = 2π ×
250 Hz.

energy. In practice, this energy cannot be arbitrarily large,
if only because there are no perfect harmonic oscillators. In
particular, if we consider in Eq. (16) that En is limited by
some maximal value because of anharmonicities or a finite
trap depth, the obtained scaling is fundamentally the same as

2
a

0.0 0.5 1.0 1.5 2.0 2.5 3.0
4

2

0

2

4

log10 ω0t f

lo
g 1

0
E

0
E

0
0

1 b

4 3 2 1 0
1

0

1

2

3

4

log10 ωf ω0

lo
g 1

0
E

0
E

0
0

FIG. 2. (Color online) Dependence of the time-averaged energy
for the ground state E0/E0(0) on the (a) short time tf (ωf = 2π ×
0.25 Hz) and (b) final frequency ωf (tf = 2 ms). In both cases ω0 =
2π × 250 Hz. Bound given by Eq. (14) (solid red line); asymptotic
expression Eq. (15) (dot-dashed magenta line), and time-averaged
energy for polynomial b (dotted blue line). The δ’s are the asymptotic
exponents of tf and ωf , respectively, as they go to zero.
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for bang-bang methods, and leads to a cooling rate R ∝ T
3/2
c

in an inverse quantum Otto cycle, although an opportunity is
offered to improve the proportionality factor by increasing the
allowed En.

Independently of the participation of the harmonic trap
expansion as a branch in a refrigerator cycle, we may see rather
directly the effect of the previous analysis on a single expansion
by assuming that the initial and final states are described
by canonical density operators characterized by temperatures
T0 and Tf , related by Tf = (ωf /ω0)T0 for a population-
preserving process. Within the idealized but specific context
of a pure parabolic potential expansion, the unattainability of
a zero temperature can be reformulated microscopically as
follows: The transient excitation energy becomes infinite for
any population-preserving and finite-time process if the final
temperature is zero (which requires ωf = 0). This excitation
energy has to be provided by an external device, so the absence
of a lower process time limit should not lead us astray since
there remains a fundamental obstruction to reach Tf = 0 in
a finite time, in the form of the need for a source of infinite
power.

B. Minimization of time-averaged energy

To minimize the time-averaged energy and approach the
lower bound, we can use the quasi-optimal b(t), Eq. (13), in
a central time segment [τ,1 − τ ] and match it at the extremes
with two “cap polynomials,” each of them satisfying three of
the boundary conditions at Eq. (6) (at t = 0 or tf ), plus three
boundary conditions for b, ḃ, and b̈ at the matching point. The
idea is illustrated in Fig. 3.

The resulting hybrid b takes the form

b =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
∑5

j=0 cj s
j (0 � s � τ )√(

B2 − ω2
0t

2
f

)
s2 + 2Bs + 1 (τ � s � 1 − τ )∑5

j=0 dj s
j (1 − τ � s � 1)

,

(17)

τ

1-τ

0.0 0.2 0.4 0.6 0.8 1.0

5
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30

t tf

b

FIG. 3. (Color online) Example of hybrid b combining the
quasi-optimal trajectory in the central segment [τ,1 − τ ] and “cap
polynomials” with the right boundary conditions, where ω0 = 2π ×
250 Hz, ωf = 2π × 0.25 Hz, tf = 2 ms, and τ = 0.4 (solid red
line); quasi-optimal square-root b of Eq. (13) (dotted black line);
and polynomial trajectory (blue dashed line).
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FIG. 4. (Color online) Time-averaged energy versus τ for poly-
nomial b (solid blue line), bound in Eq. (14) (red dashed line), and
hybrid b (dot-dashed magenta line). The contribution from the “cap
polynomials” (orange line with “∗”) and the central segment (black
line with “•”) are also depicted. Parameters are the same as in Fig. 3.

where the coefficients {cj } and {dj } have lengthy expressions,
but are easily obtained from the matching conditions so we
omit their explicit forms here.

Figure 4 demonstrates that this hybrid b can indeed
minimize the time-averaged energy by making τ smaller and
smaller, approaching the lower-energy bound as τ → 0. A
detailed calculation shows that the contribution from the caps
does not vanish as τ → 0 so the value of the time-averaged
bound is reached at the price of a singular instantaneous energy,
see Fig. 4.

IV. ENERGY VARIANCE AND ANANDAN-AHARONOV
RELATION

We shall now discuss the impact of the shortcuts to
adiabaticity on the standard deviation of the energy �H ≡
(〈H 2〉 − 〈H 〉2)1/2. This is important because a small averaged
energy could, in principle, be spoiled by a large standard
deviation. Anandan and Aharonov [25] found a relation
between the time average of the standard deviation of the
energy and the time of a process connecting two given states,
irrespective of the Hamiltonian used to connect them. The so
called “Anandan-Aharonov” (AA) relation provides a lower
bound for the average uncertainty of the energy, which is
extensively used to minimize the time tf required for the
evolution between the two orthogonal quantum states. Based
on the Fubini-Study metric, the following distance may be
defined

S = 2
∫ tf

0

�H (t)

h̄
dt � S0, (18)

where the minimal value S0 = 2 arccos(|〈�(t = 0)|�(t =
tf )〉|) corresponds to the “geodesic” [26]. For orthogonal states
S0 = π and

�H tf � h

4
, (19)

where

�H =
∫ tf

0 �H (t) dt

tf
, (20)
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but more generally, for arbitrary (possibly nonorthogonal)
initial and final states, the AA relation is

�H tf � hS0

4π
. (21)

This may be applied to the harmonic oscillator and, in
particular, to any process taking an nth initial eigenstate to an
nth final eigenstate, up to phase factors. Defining �Hn(t) ≡
[〈�n|H 2(t)|�n〉 − E2

n]1/2, we have, for the ground state, see
Eq. (7),

cos2

(
S0

2

)
≡ |〈�0(0)|�0(tf )〉|2 = 2

√
ω0ωf

ω0 + ωf

, (22)

and the relation

�H0 tf � h̄ arccos

[√
2(ω0ωf )1/4

(ω0 + ωf )1/2

]
. (23)

In the ωf → 0 limit one finds again the time-energy un-
certainty relation for two orthogonal states, that is, �H 0 �
h/(4tf ), independent of ωf . This bound, although certainly
correct, is not tight and does not capture the actual dependences
found for time-averaged standard deviations, which, in fact,
scale on ωf and tf in the same way as the corresponding
time-averaged energies of the previous section. Similarly to
Fig. 2, Fig. 5 makes the exponents explicit. We have used the
standard deviation for the nth expanding mode, which takes
the form

�Hn(t) =
√

2(n2 + n + 1)1/2h̄

4ω0

×
[(

ḃ2 + ω2(t)b2 + ω2
0

b2

)2

+ 4ω2
0ḃ

2

b2

]1/2

, (24)

and its time average

�Hn ≡ 1

tf

∫ tf

0
�Hn(t) dt. (25)

The dependence of �H0 on tf and ωf as they approach
zero independently is summarized by the scaling exponents.
In the limit of tf → 0, �H0 ∝ t δf . Figure 5 shows that
δ = −2 for the calculated standard deviation, whereas AA
provides δ = −1. Similarly, as ωf → 0, �H0 ∝ ωδ

f . We find
δ = −1 in the calculated standard deviation versus δ = 0
from the AA relation. The looseness of the AA relation in
this case is not necessarily a generalized feature of all time-
dependent Hamiltonians. We shall discuss this point elsewhere
in connection with the shortcut-to-diabaticity processes for
internal atomic state preparation [8].

V. ADDING TERMS TO THE HAMILTONIAN

Motivated by recent experimental realizations [13,14], we
have considered up to now simple processes in which the
only external manipulation consists in shaping ω(t). Other
possibilities exist in which the Hamiltonian is complemented
with additional terms [3,6]. We shall analyze now the energy
excitations for a Hamiltonian that results from the transition-
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FIG. 5. (Color online) Dependence of the time-averaged uncer-
tainty of energy �H0 on the (a) short time tf and (b) final frequency
ωf , where the parameters are the same as Fig. 2, polynomial trajectory
(dotted blue line), AA relation (solid red line).

less inverse engineering algorithm proposed by Berry [3] and
applied to the time-dependent harmonic oscillator in [6]

H̃ = H + H1, (26)

H = h̄ω(t)(a†
t at + 1/2), (27)

H1 = ih̄
ω̇

4ω

(
a2

t − a
†
t

2)
. (28)

We assume here that ω(t) remains positive. H̃ would drive
the system without transitions along the states of the instanta-
neous basis of the time-dependent harmonic oscillator H . In
particular for the nth state,

|φn(t)〉 = e− i
h̄

∫ t

0 εn(t ′)dt ′ |n(t)〉, (29)

is an exact solution of the time-dependent Schrödinger
equation with H̃ .

The subscript t in the Schrödinger-picture creation and
annihilation operators above denotes their fundamental time
dependence because of the changing frequency and eigen-
states, not to be confused with the time dependence of
Heisenberg picture operators. H1 is related to the squeezing
operator [6], and may also be written as H1 = − ω̇

4ω
(q̂p̂ + p̂q̂),

so that H̃ is still a generalized harmonic oscillator quadratic in
positions and momenta. The expectation values of H̃ and H̃ 2
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for the nth state are easily calculated

〈φn|H̃ |φn〉 = εn = (n + 1/2)h̄ω, (30)

〈φn|H̃ 2|φn〉 = h̄2ω̇2

8ω2
(n2 + n + 1) + ε2

n, (31)

from which we deduce

�H̃n ≡ (〈φn|H̃ 2|φn〉 − ε2
n

)1/2 = h̄

4

|ω̇|
ω

[2(n2 + n + 1)]1/2,

(32)
and the time averages

εn = h̄(n + 1/2)

tf

∫ tf

0
ω(t) dt, (33)

�H̃n = h̄

4tf
[2(n2 + n + 1)]1/2

∫ tf

0

|ω̇|
ω

dt. (34)

We shall first show with some specific examples that it is easy
to find scalings which are, in principle, more favorable for
implementing a fast transitionless process than the ones in the
previous sections. For example, for a linear frequency ramp
expansion ω = ω0 + (ωf − ω0)t/tf ,

εn = h̄(n + 1/2)
ω0 + ωf

2
, (35)

which is independent of tf , and

�H̃n = h̄

4tf
[2(n2 + n + 1)]1/2 ln

(
ω0

ωf

)
, (36)

(in fact, a general result for ω̇ < 0) so, for a fixed �H̃n, tf
grows only logarithmically as ωf → 0.

Note that some of the difficulties with high transient
energies in the approaches which only control the time-
dependent frequency, due to the particle exploration of regions
far away from the trap center, disappear here since the system
evolves at all times along the instantaneous eigenstates with-
out transitions. Clearly 〈φn|H |φn〉 = εn and 〈φn|H 2|φn〉 −
〈φn|H |φn〉2 = 0, so that the standard deviation (36) is entirely
due to the complementary Hamiltonian H1.

The main and so far important difficulty with this approach
is that it is not clear how to implement H̃ in practice [6]. H1

involves a nonlocal interaction and the attempts to provide a
quantum-optical realization have not yet succeeded.

VI. DISCUSSION AND CONCLUSION

We have studied the transient energy excitation in time-
dependent quantum harmonic oscillators engineered so that
the level populations at a final time are the same as the
initial populations. We have considered first simple processes
in which the only external manipulation consists in shaping
ω(t). The populations of the instantaneous levels at inter-
mediate times are, however, not preserved, so the transient
excitation should be understood and possibly controlled. We
have obtained bounds, shown examples, and determined the
dominant dependences, which are different from the ones in
the Anandan-Aharonov relation [25].

In a realistic application the oscillator will not be perfectly
harmonic and it is natural to set some maximum value to the
allowed excitation. Then the minimal time required for a fast
expansion scales with the final frequency as tf ∝ ω

−1/2
f . As the

velocity determining step in quantum refrigerator Otto cycles
this implies a dependence R ∝ T

3/2
c of the cooling rate, which

had been previously conjectured to be a universal dependence
characterizing the unattainability principle for any cooling
cycle [22]. The present results provide strong support for the
validity of this conjecture within the set of processes defined
exclusively by time-dependent frequencies (without the added
terms in the Hamiltonian), and call for further testing and
study.

In Sec. V we have seen that, at least at a formal level,
one could design even faster processes by adding terms
to the harmonic oscillator Hamiltonian, but their physical
implementation remains a challenge.
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Guéry-Odelin, and E. Torróntegui for discussions. Funding
by the Basque Government (Grant No. IT472-10), the Min-
isterio de Ciencia e Innovación (FIS2009-12773-C02-01),
the National Natural Science Foundation of China (Grant
No. 60806041), the Shanghai Rising-Star Program (Grant
No. 08QA14030), the Shanghai Leading Academic Discipline
(Grant No. S30105), and Juan de la Cierva Programme is
acknowledged.

[1] R. Reichle et al., Fortschr. Phys. 54, 666 (2006).
[2] A. Couvert, T. Kawalec, G. Reinaudi, and D. Guéry-Odelin,
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Muga, Phys. Rev. Lett. 105, 123003 (2010).

[9] M. Murphy, L. Jiang, N. Khaneja, and T. Calarco, Phys. Rev. A
79, 020301(R) (2009).

[10] S. Masuda and K. Nakamura, e-print arXiv:1004.4108.
[11] P. Salamon, K. H. Hoffmann, Y. Rezek, and R. Kosloff, Phys.

Chem. Chem. Phys. 11, 1027 (2009).
[12] H. R. Lewis and W. B. Riesenfeld, J. Math. Phys. 10, 1458

(1969).
[13] J. F. Schaff, X. L. Song, P. Vignolo, and G. Labeyrie, Phys. Rev.

A 82, 033430 (2010).
[14] J. F. Schaff, X. L. Song, P. Capuzzi, P. Vignolo, and G. Labeyrie,

e-print arXiv:1009.5868.
[15] Y. Li, L. Wu, and Z. D. Wang, e-print arXiv:1008.1630.
[16] S. Masuda and K. Nakamura, Phys. Rev. A 78, 062108 (2008).

053403-6

http://dx.doi.org/10.1002/prop.200610326
http://dx.doi.org/10.1209/0295-5075/83/13001
http://dx.doi.org/10.1088/1751-8113/42/36/365303
http://dx.doi.org/10.1088/0953-4075/42/24/241001
http://dx.doi.org/10.1098/rspa.2009.0446
http://dx.doi.org/10.1088/0953-4075/43/8/085509
http://dx.doi.org/10.1103/PhysRevLett.104.063002
http://dx.doi.org/10.1103/PhysRevLett.105.123003
http://dx.doi.org/10.1103/PhysRevA.79.020301
http://dx.doi.org/10.1103/PhysRevA.79.020301
http://arXiv.org/abs/arXiv:1004.4108
http://dx.doi.org/10.1039/b816102j
http://dx.doi.org/10.1039/b816102j
http://dx.doi.org/10.1063/1.1664991
http://dx.doi.org/10.1063/1.1664991
http://dx.doi.org/10.1103/PhysRevA.82.033430
http://dx.doi.org/10.1103/PhysRevA.82.033430
http://arXiv.org/abs/arXiv:1009.5868
http://arXiv.org/abs/arXiv:1008.1630
http://dx.doi.org/10.1103/PhysRevA.78.062108


TRANSIENT ENERGY EXCITATION IN SHORTCUTS TO . . . PHYSICAL REVIEW A 82, 053403 (2010)

[17] A. Bulatov, B. Vugmeister, A. Burin, and H. Rabitz, Phys. Rev.
A 58, 1346 (1998).

[18] W. Wang, S. C. Hou, and X. X. Yi, e-print arXiv:0910.5859.
[19] W. Nernst, Sitzungsber. Preuss. Akad. Wiss. 14, 134 (1912).
[20] R. H. Fowler and E. A. Guggenheim, Statistical Thermodynam-

ics (Cambridge University Press, Cambridge, 1940), p. 224.
[21] R. Kosloff, E. Geva, and J. M. Gordon, J. Appl. Phys. 87, 8093

(2000).

[22] Y. Rezek, P. Salamon, K. H. Hoffmann, and R. Kosloff,
Europhys. Lett. 85, 30008 (2009).

[23] J. M. Vogels, (private communication).
[24] I. M. Gelfad and S. V. Fomin, Calculus of Variations (Prentice

Hall, New Jersey, 1963).
[25] J. Anandan and Y. Aharonov, Phys. Rev. Lett. 65, 1697

(1990).
[26] A. K. Pati, Phys. Lett. A 262, 296 (1999).

053403-7

http://dx.doi.org/10.1103/PhysRevA.58.1346
http://dx.doi.org/10.1103/PhysRevA.58.1346
http://arXiv.org/abs/arXiv:0910.5859
http://dx.doi.org/10.1063/1.373503
http://dx.doi.org/10.1063/1.373503
http://dx.doi.org/10.1209/0295-5075/85/30008
http://dx.doi.org/10.1103/PhysRevLett.65.1697
http://dx.doi.org/10.1103/PhysRevLett.65.1697
http://dx.doi.org/10.1016/S0375-9601(99)00701-X

