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Complex scattering lengths for ultracold He collisions with rotationally excited linear
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The translational and internal level cooling of atoms and molecules in ultracold gases results from a combination
of elastic and inelastic collisional processes. While elastic collisions lead to rapid thermalization, exoergic inelastic
collisions may lead to heating and trap loss. To date, most collisional studies have targeted low-lying levels of
diatomic molecules. Here we investigate inelastic quenching and elastic scattering of rotationally excited linear
(H2, HD, CO, O2, and CO2) and nonlinear (H2O and NH3) molecules in ultracold collisions with He and report
the corresponding complex scattering lengths. It has been found that the ratio of the imaginary component β to
the real component α of the scattering length generally increases with decreasing rotational constant for linear
molecules. With the exception of CO, β becomes significantly smaller than α as the energy gap for rotational
transitions increases. In all cases, β decreases with rotational energy gap for relatively large rotational excitation,
allowing for convenient fits to an exponential energy gap formula. Excited rotational levels of H2 and HD appear
to be collisionally stable due to the very low values of β/α. Rotationally excited H2O also appears to be a viable
candidate for He buffer gas cooling due to relatively small values of β.
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I. INTRODUCTION

Recent advances in cooling and trapping of molecules [1–3]
have generated considerable interest in understanding atomic
and molecular collisions at temperatures close to absolute
zero. Theoretical studies of ultracold molecular collisions
have largely centered around the vibrational and rotational
relaxation of diatomic molecules induced by collisions with
rare-gas atoms [2–5]. In these studies, it is generally found
that the limiting values of the relaxation rate coefficients
are strongly sensitive to the initial rovibrational levels of
the molecules. The relaxation efficiency typically increases
with vibrational level v and decreases with rotational level j ,
although there are deviations from these trends. In the widely
used He buffer-gas cooling technique [6,7], thermalization
of the rotational levels of the molecules usually occurs very
rapidly so that nearly all of the cold molecules are in their
rotational ground state. Therefore, a detailed understanding
of rotational relaxation for these molecules is not required.
With continued rapid advancements in the field of ultracold
molecular physics, this situation may change. For example,
an optical centrifuge [8] could be applied to a cold or
ultracold gas to study cold collisions involving rotationally
hot molecules. Other experimental schemes to produce trans-
lationally cold but rotationally hot molecules have also been
proposed [9].

Theoretical studies have suggested that the collisional
dynamics of rotationally hot molecules would be particularly
interesting at low translational temperatures [10–17]. Rovi-
brational transitions that are quasiresonant (QR) at ordinary
temperatures may become energetically inaccessible at cold
or ultracold temperatures. When this happens, the dominant
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pathway for relaxation is through pure rotational deexci-
tation. However, this relaxation pathway usually becomes
increasingly less efficient as the rotational level is increased
due to the widening internal energy gap between the initial
and the final states of the molecule. Pure rotational de-
excitation rate coefficients in the limit of zero temperature
were shown to follow a smooth exponential energy gap
dependence for He and Ar colliders with H2 [13]. When
this smooth exponentially decreasing behavior is included
together with rovibrational transitions, sharp structures are
seen in the rotational distributions of the total quenching
rate coefficients at the boundaries where the quasiresonant
vibration-rotation (QRVR) transfer channels are closed. There-
fore, certain specific rotational levels may be considerably
more stable against collisional relaxation than their neigh-
boring rotational levels. The extent of this stability depends
primarily on the efficiency of pure rotational quenching
transitions.

In this work, we consider pure rotational relaxation at
ultracold temperatures for a variety of collision systems in
an effort to elucidate trends that may be explored in future ul-
tracold molecule experiments. Quantum close-coupling (CC)
and coupled-states (CS) scattering calculations are performed
and the results are presented in terms of the real and imaginary
parts of the complex scattering length. The survey includes
linear molecules (H2, HD, CO, O2, and CO2) and nonlinear
molecules (H2O and NH3). Due to the importance of He in
buffer-gas loading [6,7], sympathetic cooling [18], and helium
cluster isolation spectroscopy [19], we selected He as the
collision partner in each case. The diversity of molecules
included in the survey should be useful for determining
whether the exponential energy gap behavior seen in H2 is
a general feature of ultracold collisions. It also provides data
that should be helpful for gaining a better understanding of the
scale of the exponential energy gap behavior.
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II. THEORY

The s-wave scattering length plays an important role in
the description of collisions at ultracold temperatures [20].
For internally excited molecules, it is convenient to describe
the scattering properties in terms of a complex scattering
length, a = α − iβ, where α and β are the real and imaginary
components. The magnitude and sign of the real part α depend
on the position of the last bound or virtual state of the collision
complex relative to the dissociation limit. The imaginary part
β is related to the total inelastic quenching cross section σ in

in the limit of zero velocity,

β = pσ in/4π, (1)

where p is the incident-channel wave vector. As p → 0, the
elastic scattering cross section is given by

σ el = 4π (α2 + β2). (2)

While it is always possible to determine α from the limiting
s-wave phase shift, it is often convenient to use Eqs. (1) and
(2) to determine the magnitude of α:1

|α| =
√

σ el/4π − β2. (3)

The elastic and inelastic cross sections, and consequently
the components of the complex scattering length, are generally
very sensitive to the details of the potential energy surface
(PES). The ratio β/α is much less dependent on the properties
of the PES and it provides a single parameter that may be used
to characterize the collision process at ultracold temperatures.
The variation of β/α with j is generally controlled by β except
in special circumstances where the energy of the last bound
state of the system approaches zero for a particular molecular
excited state. Based on previous studies [13], β is expected to
follow the exponential energy gap form,

β = P exp(�Er/Q), (4)

when only pure rotational transitions are included in the
summation over inelastic channels. The energy gap �Er is the
difference in energy between the nearest allowable final rota-
tional level and the initial rotational level j , and P and Q are fit
parameters. For a linear rigid rotor, �Er = −(4j − 2)Be for
homonuclear molecules and �Er = −2jBe for heteronuclear
molecules, where Be is the rotational constant. We take CO2

as a symmetric linear rigid rotor, so that the former relation is
applicable. Generally, if Q is comparable to Be, then rotational
relaxation decreases sufficiently rapidly with increasing j

that rotationally excited molecules may be stable against
collisional deexcitation.

Nonlinear molecules are more complicated. The rotational
levels of an asymmetric top such as H2O are labeled jk−1,k+1 ,
where k−1 and k+1 are the projections of j on the body-fixed
z′ axis in the prolate and oblate limits. However, it is more
convenient to label the rotational levels (j,τ ), where τ is a
pseudo quantum number given by τ = k−1 − k+1. Even(odd)
values of τ correspond to para-H2O (ortho-H2O). The ortho
and para levels do not interconvert in nonreactive collisions

1For plotting convenience, all figures display the magnitude of α.

and can be treated separately. To fit β using Eq. (4), the energy
gap is defined as the difference in energy between the nearest
allowable final rotational level (j ′,τ ) and the initial rotational
level (j,τ ) for a constant τ :

�Er = E(j ′ = j − 1,τ ) − E(j,τ ). (5)

The rotational states of NH3, a symmetric top, can be
labeled (jkε), where k is the projection of the rotational
angular momentum on the body-fixed z′ axis and ε is the
parity index, which describes tunneling between the two
equivalent umbrella configurations. For a given k, j � k,
k � 0, and ε = ±1, except for k = 0, where only ε = +1
is allowed [21]. Rotational levels with k = 3m are designated
ortho-NH3, while levels with k = 3m ± 1 are para-NH3, where
m = 0,1,2, . . .. To fit β using Eq. (4), the energy gap is defined
as the difference in energy between the nearest allowable final
rotational level (j ′,k,ε) and the initial rotational level (j,k,ε)
with the same quantum number k and parity,

�Er = E(j ′ = j − 1,k,ε) − E(j,k,ε). (6)

The collisional stability of rotationally excited molecules
also depends critically on the efficiency of rovibrational
transitions. Generally, rovibrational transitions are less effi-
cient than pure rotational transitions except in regions where
vibration-rotation energy transfer is quasiresonant. In such
cases, the collision is characterized by very efficient transitions
that follow a specific propensity rule. For linear molecules,
the availability of a QRVR transition for a given initial
state may be determined by examining the energy gap for
the propensity rule. For example, the energy gap for the
�j = −n�v transition for a rotating harmonic oscillator is
given by

�E =�Ev + �Er = we�v + Ben�v(n�v − 2j − 1), (7)

where we is the vibrational frequency. Substitution of the nth-
order quasiresonant rotational level [13,16],

j
(n)
QR = we

2nBe

− 1

2
, (8)

into Eq. (7) gives a positive energy gap of Be(n�v)2 for
both the upward and the downward vibrational transitions.
Therefore, the relaxation efficiency for j = j

(n)
QR will be

dominated by pure rotational de-excitation for translational
energies lower than Ben

2. However, the �j = −n�v energy
gaps for j �= j

(n)
QR may be negative for nearby values of

j . In the j
(2)
QR case of homonuclear molecules, the nearest

rotational levels with the same nuclear spin are j = j
(2)
QR ± 2,

which each have exothermic �j = −2�v transitions that
release 4Be of energy. If the efficiency of pure rotational
relaxation is low, then the j = j

(2)
QR ± 2 levels will have

total quenching rate coefficients that are significantly larger
than those of the j = j

(2)
QR level, and there will be sharp

structures in the rotational distribution. Such structures are
a unique feature of cold collisions. The small energy barriers
that occur at j = j

(n)
QR are easily overcome by translational

energy at ordinary temperatures and rotational relaxation is
generally very efficient. To produce highly rotationally excited

052711-2



COMPLEX SCATTERING LENGTHS FOR ULTRACOLD He . . . PHYSICAL REVIEW A 82, 052711 (2010)

TABLE I. Rotational constants, energy gap fit parameters, and quasiresonant rotational levels of linear molecules investigated in the present
study. Spectroscopic constants are from Refs. [22] and [23]. All jD and jQR values are from harmonic approximation except jD = 31 and 36
for H2 and HD, respectively, which are exact.

Molecule ωe (cm−1) Be (cm−1) D0 (cm−1) jD j
(2)
QR j

(4)
QR P (Å) Q (cm−1) jmax

H2 4401.2 60.85 36 118 31 18 9 0.2 200 18
HD 3813.1 45.66 36 406 36 20 10 0.5 137 26
O2 1580.2 1.446 41 659 171 273 137 10.5 100 31
CO 2169.8 1.931 89 504 215 280 140 9.6 63 35
CO2

a ν1 = 1388.17 0.390 44 500 338 889 444 5 500 60
CO2

b ν3 = 2349.16 1505 752

aSymmetric stretch, dissociation: CO2 −→ O + C + O [23].
bAsymmetric stretch, dissociation: CO2 −→ O + CO [23].

molecules that are stable against collisional decay, it is usually
necessary that the quasiresonant rotational level be less than
the dissociation rotational level, which can be approximated
by

jD =
√

De

Be

, (9)

where De is the equilibrium dissociation energy. Tables I
and II give vibrational and rotational parameters for the linear
and nonlinear molecules, respectively, included in the present
study. The quasiresonant rotational quantum numbers listed in
Tables I and II are obtained from the harmonic approximation
using Eq. (8). For H2O, (B + C)/2 was used to replace Be,
and for NH3, Be was replaced by B. The actual values depend
on v and may be defined as the intersection points of the
vibrationally upward and downward �j = −n�v energy gaps
using the exact molecular potential [13]. Tables I and II show
that the second-order quasiresonant rotational levels for O2,
CO, CO2, and NH3 have values that are greater than the
levels for dissociation. Therefore, the molecules do not possess
bound levels that are collisionally stable and there would likely
be efficient vibrational and rotational energy exchange for
all excited states of these molecules. Although we do not
consider vibrational motion in the present work, it is in the
regions near j

(n)
QR that interesting behavior will occur for linear

molecules if the efficiency of pure rotational quenching is low.
A similar situation may occur for nonlinear molecules (e.g.,

H2O). Quasiresonant energy transfer is a general feature of
molecular collisions [24] and it is expected that vibrational
modes play an important role in the energy transfer process
for ultracold collisions involving rotationally excited nonlinear
molecules.

III. SCATTERING CALCULATIONS

Cross-section calculations were performed by applying the
CC and CS methods. The interaction potentials adopted for all
the scattering systems are listed in Ref. [25]. These potentials
are considered to be superior to other potentials that are
available for each system. All cross-section calculations were
carried out using the nonreactive scattering code MOLSCAT

[26]. Calculations were performed at a collision energy of
10−5 cm−1, which was found to be sufficient for describing
the collisions for each system in terms of the scattering
length.2 The calculations for CO2, H2O, and NH3 assumed
rigid molecular rotation. For H2, HD, O2, and CO molecules,

2At collision energies corresponding to buffer-gas cooling tempera-
tures (∼300-mK) estimations of cross sections based on the scattering
lengths, defined in the zero-temperature limit, may introduce some
error, depending on the system. At energies corresponding to a few
millikelvins, the estimated error is expected to be less than 10%, but
it may be larger at higher energies.

TABLE II. Same as Table I but for nonlinear molecules H2O and NH3. Spectroscopic constants are from Ref. [23].

Molecule ν2 (cm−1) A (cm−1) B (cm−1) C (cm−1) D0 (cm−1) jD j
(2)
QR P (Å) Q (cm−1) jmax

H2O
τ = 0 1595 27.88 14.52 9.278 41 146 60 35 0.75 335 13
τ = 2 0.64 350 13
τ = −2 1.1 245 13
τ = 1 0.66 365 13
τ = −1 1.0 260 13

NH3

0+ 3337 9.9402 9.9402 6.3044 37 560 60 80 0.165 10 000 20
3+ 0.1 1440 20
1+ 0.3 390 15
2+ 0.346 265 15
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the calculations allowed vibrational motion, however, ro-
vibrational transitions have been excluded from the summation
over inelastic channels in Eq. (1).

IV. RESULTS

In this work we calculated the real part, α, and imaginary
part, β, of the scattering length of seven different systems
with different potential energy surface properties in an effort
to elucidate trends that can be explored in future cooling and
trapping experiments. For each system, we also fitted β using
the exponential energy gap form in Eq. (4). The fit parameters
P and Q and the maximum values of rotational quantum
number, jmax, considered in this work are reported in Tables I
and II.

The ratio β/α is a parameter that is not sensitive to fine
details of the potential for a given system. It behaves like
pασ in

j /σ el
j , where σ el

j is the elastic scattering cross section
from rotational state j , and σ in

j is the total inelastic cross
section including contributions from all possible de-excitation
levels from state j . Figure 1 shows the ratio β/α for linear
molecules (H2, HD, CO, O2, and CO2) as a function of
the initial rotational level for the first 10 excited levels of
each system. Also shown in the figure is the same ratio for
ortho-H2O assuming a constant value for τ . The ratio for
the nonlinear water molecule is shown to be comparable to
that of the heavier linear systems. Generally, β/α decreases
or remains constant with rotational excitation and increases
with the reduced mass of the scattering system, except for
CO. For H2 and HD, β/α becomes small with increasing
initial rotational excitation. This indicates that the inelastic
cross section σ in

j decreases rapidly with increasing initial
rotational level j . The excited rotational states of H2 and HD
are therefore stable against collisional quenching when QRVR
energy transfer is not allowed. This suggests that it would
be possible to cool H2 and HD without significant loss due
to relaxation in a He bath. However, for CO, O2, and CO2,
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FIG. 1. Ratio of imaginary-to-real part of the complex scattering
length as a function of the initial rotational level for CO (open
circles), CO2 (open squares), H2 (filled diamonds), HD (filled tri-
angles), O2 (open triangles), and ortho-H2O (filled circles) scattering
with He.
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FIG. 2. Complex scattering lengths for He + H2 (top) and He-HD
(bottom) versus the energy gap.

the ratios are high, indicating that excited rotational levels of
these molecules are susceptible to collisional quenching, in
agreement with previous findings of Forrey [13] for He-O2.
As the initial excitation level increases, the ratios approach
constant values. The trend in Fig. 1 suggests that collisional
quenching will be too efficient for the low rotational levels
of CO, O2, and CO2 to be viable candidates for cooling and
trapping in the presence of He bath gas.

In Fig. 2 we present α, β, and energy gap fits for β using
Eq. (4) for H2 (top) and HD (bottom). Similar results are
presented in Fig. 3 for O2 and CO and in Fig. 4 for CO2.
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FIG. 3. Complex scattering lengths for He + O2 (top) and He-CO
(bottom) versus the energy gap.

052711-4



COMPLEX SCATTERING LENGTHS FOR ULTRACOLD He . . . PHYSICAL REVIEW A 82, 052711 (2010)

0 10 20 30 40 50 60 70 80 90 100

∆Er (cm
-1

)

10
-10

10
-9

sc
at

te
rin

g 
le

ng
th

 (
m

)

α
β
energy gap fit

FIG. 4. Complex scattering lengths for He + CO2 versus the
energy gap.

Generally, the imaginary part of the scattering length for
each scattering system decreases with increasing �Er . For
H2, HD, and O2, β is found to be much smaller than α, in
agreement with previous calculations [13,27]. For He-CO,
β shows a similar trend but α and β are comparable in
magnitude for j > 1, in agreement with previous calculations
of Balakrishnan et al. [28]. Although CO and O2 have similar
rotational constants, the rather pronounced difference in the
variation of α with energy gap for these systems highlights
the sensitivity of low-energy collisional data to details of the
interaction potential. In addition, the finite dipole moment and
additional de-excitation channels of CO (being heteronuclear)
as well as the presence (or absence) of near-threshold atom-
diatom bound or quasibound levels may also contribute to the
differences.
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FIG. 5. Complex scattering lengths for He + H2O versus the
energy gap. Top: para-H2O, τ = 0. Bottom: ortho-H2O, τ = 1.

TABLE III. Cross sections for dominant transitions in para-H2O
in collisions with He at 10−5 cm−1 for initial rotational levels j =
1–13 and τ = 0. Numbers in parentheses indicate powers of 10.

j k−1 k+1 τ−→j ′ k′
−1 k′

+1 τ ′ Cross section (Å2)

1 1 1 0 0 0 0 0 4.2395(3)
2 1 1 0 2 0 2 −2 2.6152(3)
3 2 2 0 2 1 1 0 2.1796(3)
4 2 2 0 4 1 3 −2 3.4905(3)
5 3 3 0 5 2 4 −2 2.2297(3)
6 3 3 0 6 2 4 −2 3.2839(3)
7 4 4 0 7 3 5 −2 1.9509(3)
8 4 4 0 8 3 5 −2 2.5975(3)
9 5 5 0 9 4 6 −2 1.6221(3)
10 5 5 0 10 4 6 −2 1.8701(3)
11 6 6 0 11 5 7 −2 1.2159(3)
12 6 6 0 12 5 7 −2 1.3424(3)
13 7 7 0 13 6 8 −2 9.4980(2)

Scattering lengths for He-CO2, which include rotational
levels j = 2–60 are shown in Fig. 4. In this case, for low �Er ,
both α and β show an oscillatory structure. For high �Er , β

is smaller than α.
We also performed scattering length calculations for the

nonlinear molecules H2O and NH3. The magnitudes of α,
as well as β, are similar for the two nonlinear molecules.
Figure 5 shows the scattering lengths of para-H2O with τ = 0
and ortho-H2O with τ = 1 as functions of �Er , along with
the energy gap fits for β. For both cases, β generally decreases
with increasing �Er and is significantly smaller than α.
The dominant quenching transitions and corresponding cross
sections at a collision energy of 10−5 cm−1 from initial H2O
states with τ = 0 (para-H2O) and τ = 1 (ortho-H2O), for
rotational quantum number j up to 13 are shown in Tables III
and IV, respectively. In cold collisions, the quenching cross
sections are dominated by transitions with �j = j ′ − j = 0
and �τ = τ ′ − τ = −2 for both para- and ortho-H2O, except
for the initial states (j, τ ) = (1,0) and (3, 0), for which
quenching transitions are dominated by �j = −1 and �τ = 0.

TABLE IV. Same as Table III but for ortho-H2O with initial states
corresponding to τ = 1.

j k−1 k+1 τ−→j ′ k′
−1 k′

+1 τ ′ Cross section (Å2)

1 1 0 1 1 0 1 −1 3.6019(3)
2 2 1 1 2 1 2 −1 2.6590(3)
3 2 1 1 3 1 2 −1 3.4186(3)
4 3 2 1 4 2 3 −1 2.5995(3)
5 3 2 1 5 2 3 −1 2.8992(3)
6 4 3 1 6 3 4 −1 2.1682(3)
7 4 3 1 7 3 4 −1 2.2720(3)
8 5 4 1 8 4 5 −1 1.6884(3)
9 5 4 1 9 4 5 −1 1.6962(3)
10 6 5 1 10 5 6 −1 1.2767(3)
11 6 5 1 11 5 6 −1 1.2648(3)
12 7 6 1 12 6 7 −1 9.8519(2)
13 7 6 1 13 6 7 −1 9.5595(2)
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FIG. 6. Complex scattering lengths for He + NH3 versus the
energy gap. Top: ortho-NH3, k = 0, ε = +. Bottom: para-NH3,
k = 1, ε = +.

The same trend (�j = 0 and �τ = −2) persists for j beyond
13 and for initial states with τ = 2, −2, and −1. It should
be emphasized that in Fig. 5, α and β are shown versus �Er

corresponding to �j = −1 and �τ = 0, which are not the
dominant transitions. However, β is obtained from the total
quenching cross section, which includes contributions from
all possible de-excitation channels. This demonstrates that the
exponential energy gap fit for β is reasonable when using �Er

defined by Eq. (5).
Figure 6 shows the variation of scattering lengths with

energy gap for He-NH3. The energy gap �Er corresponds
to transitions with �j = −1, �k = 0, and the same parity.
Results are presented for ortho-NH3 with k = 0, ε = + and
para-NH3 with k = 1, ε = +. It is shown that for both ortho-
and para-NH3, β is significantly smaller than α. However,
for ortho-NH3, β approaches a constant value with increasing
�Er , while for para-NH3, it decreases with increasing �Er .
The dominant quenching transitions and corresponding cross
sections from selected initial states with k = 0 and ε = +

TABLE V. Cross sections for dominant transitions in ortho-NH3

in collisions with He at 10−5 cm−1 for rotational levels j = 2–10,
k = 0, and ε = +. Numbers in parentheses indicate powers of 10.

j k ε −→j ′ k′ ε ′ Cross section (Å2)

2 0 + 0 0 + 2.0771(3)
3 0 + 3 3 + 9.4377(3)
4 0 + 4 3 + 1.7048(3)
5 0 + 5 3 + 3.7984(3)
6 0 + 6 3 + 3.6956(3)
7 0 + 7 3 + 1.4182(3)
8 0 + 8 3 + 1.1314(3)
9 0 + 9 3 + 1.1128(3)
10 0 + 10 3 + 1.1369(3)

TABLE VI. Same as Table V but for para-NH3 with k = 1 and
ε = + initial states.

j k ε −→j ′ k′ ε ′ Cross section (Å2)

2 1 + 1 1 − 5.5916(3)
3 1 + 2 1 − 1.3929(3)
4 1 + 4 2 + 6.6462(2)
5 1 + 5 2 + 1.1549(3)
6 1 + 6 4 + 2.2504(3)
7 1 + 7 4 + 1.2292(3)
8 1 + 7 1 + 8.9600(2)
9 1 + 9 4 + 5.7079(2)
10 1 + 10 4 + 5.7818(2)

(ortho-NH3) and k = 1 and ε = + (para-NH3) for j up to 10
are presented in Tables V and VI, respectively. Generally, the
quenching cross sections are dominated by parity-preserving
�j = 0 and �k = 3 transitions. The same trend persists for
j beyond 10 and also for initial states with k = 3, ε = ±;
k = 1, ε = −; and k = 2, ε = ±. Meyer [29] investigated the
rotational excitation of NH3 in collisions with He at a collision
energy of 140 meV in a counterpropagating beam experiment
and found a propensity for collisions with �k = ±3 for para-
NH3 and with �k = 3 for ortho-NH3. Our results are generally
in agreement with this finding, though the experiment was
performed at a much higher energy.

Tables V and VI indicate that these trends are not sat-
isfied for the lowest j since the final states for �k = 3
transitions are absent for initial states 20+, 21+, and 31+.
Some additional anomalies occur in the case of para-NH3,
where the dominant transitions 41+ → 42+ and 51+ → 52+
correspond to minimization in energy transfer, as opposed
to the �k = 3 propensity. Further, we note that typically
the transitions with the next-largest cross sections have
magnitudes comparable to those of the dominant transitions
listed in Tables V and VI. This fact and the anomalies already
discussed, are primarily responsible for the unusual behavior
of β at �Er <∼ 120 cm−1 shown in Fig. 6. For higher j (higher
�Er ), the exponential energy gap form of Eq. (4) gives a
reasonable fit for β when defined by Eq. (6) for both ortho- and
para-NH3.

V. CONCLUSION

We have investigated ultracold collisions of linear
molecules (H2, HD, CO, O2, and CO2) and nonlinear
molecules (H2O and NH3) with helium atoms. It has been
found that the ratio of the imaginary to real components of the
scattering length, β/α, generally increases with decreasing
rotational constant. As the energy gap �Er for rotational
transitions increases, β becomes significantly smaller than
α, except for CO. The imaginary part β can be fitted to the
exponential energy gap form for both linear and nonlinear
molecules. Rotational quenching of H2O is dominated by
�j = 0 and �τ = −2 transitions, while that of NH3 is
dominated by �j = 0 and �k = 3 transitions. In both cases,
the dominant transitions preserve parity. Emission spectra
would provide signatures [14] of the predicted structure in the
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rotational distribution of β. Among the systems investigated
here, the best candidate for producing rotationally excited
states that are collisionally stable in the presence of a cold He
bath gas appears to be H2 and, to a lesser extent, HD, for which
β/α is very small. However, an interesting QRVR structure in
the rotational distribution of β was predicted for highly excited
CO [15], and it appears that highly rotationally excited water
molecules may show a similar QRVR effect if an extrapolation
of the exponential energy gap fits to high j is valid. We believe
that the illustrative results presented here will benefit future

experimental studies of these or similar systems as methods
to cool and trap neutral molecules become more robust and
widespread.
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