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Classical trajectory Monte Carlo model calculations for ionization of atomic
hydrogen by 75-keV proton impact
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Cross sections differential with respect to the energy loss and scattering angle of the projectile have been
calculated for ionization of atomic hydrogen by 75-keV proton impact using the classical trajectory Monte Carlo
method. The results are compared with the experimental data measured by Laforge et al. [Phys. Rev. Lett.
103, 053201 (2009)] and Schulz et al. [Phys. Rev. A 81, 052705 (2010)], as well as with the predictions of
several quantum-mechanical theoretical models. The analysis of the deviations between the classical and the
quantum-mechanical results shows that the three-body fragmentation dynamics cannot be understood purely
classically; for the description of the process the quantum-mechanical treatment of the interplay between the
electron-projectile and the projectile–target-nucleus interaction is unavoidable.
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I. INTRODUCTION

The theoretical understanding of the collisional breakup
of a three-body atomic system is one of the problems of
fundamental importance in the physics of atomic collisions.
Due to the difficulties arising from the long-range nature of
the Coulomb force acting between the particles, no analytical
solution of the Schrödinger equation exists for the process.
The theoretical models worked out for the collisional breakup
apply various approximations. In the absence of an exact
solution to the problem, the only way to check the accuracy
and the range of the validity of the models is the comparison
of their predictions with experimental data. Consequently,
experiments exploring the detailed dynamics of the three-body
breakup are crucially important.

For ion-atom collisions the simplest collision process
leading to three free particles in the final state is the ionization
of the hydrogen atom by proton impact. In spite of the
fundamental significance of the hydrogen atom as a target,
due to the well-known difficulties of the cross section mea-
surements for atomic hydrogen, the overwhelming majority of
the ionization experiments were carried out for the hydrogen
molecule, helium, and other heavier atoms and molecules. The
experimental data obtained for nonhydrogenic targets greatly
contribute to the understanding of the three-body dynamics,
since the many-body problem of the single ionization of a
few- (many-) electron target by impact of a bare nucleus can
efficiently be reduced to a three-body problem by applying
the “active electron” concept in the independent-electron ap-
proximation (see, e.g., [1]), particularly for small values of the
perturbation parameter η (projectile-charge-to-collision-speed
ratio) and for cases when total ionization cross sections or cross
sections differential with respect of the energy and emission
angle of the ejected electron are determined. However, from
the ionization studies involving nonhydrogenic targets one can
hardly draw firm and reliable conclusions for the three-body
collision dynamics because of the uncertainty arising from the
neglect of the correlation between the active and the passive
electron(s). For molecular targets interference effects caused
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by the coherent electron emission from the atomic centers of
the target [2] may also mask the details of the three-body
collision dynamics.

Recently, Laforge et al. [3] and Schulz et al. [4] measured
doubly differential cross sections for ionization of atomic
hydrogen by 75-keV proton impact as a function of the
projectile scattering angle and energy loss. In the experiment
the projectile scattering angle θp covered a range from 0.05
to 0.95 mrad, the cross sections (denoted by DDCSp) were
determined for energy losses �E = 30, 40, 50, and 53 eV.
These experimental data are of particular importance, since
according to the preceding general consideration they offer
an accurate test of the three-body ionization theories. The
authors compared their data with the predictions of various
ionization models: The continuum-distorted-wave eikonal-
initial-state (CDW-EIS) approximation [5,6], the three-body
double-continuum Coulomb wave-functions (3C) description
[7–9], and the so-called second-order Born approximation and
Coulomb wave-function (SBA-C) model [10]. Two versions
of the CDW-EIS model applying different corrections for the
inclusion of the projectile–target-nucleus (PT) interaction were
used in the comparison: CDW-EIS-SC and CDW-EIS-CL.
The CDW-EIS-SC model accounts for the PT interaction
semiclassically in terms of the eikonal approximation [11]. In
the CDW-EIS-CL model, the PT interaction is accounted for
by convoluting the CDW-EIS cross sections with the classical
elastic scattering between the heavy particles using a Monte
Carlo simulation [12–14]. (To avoid any confusion, we note
that the Monte Carlo simulation made in the CDW-EIS-CL
model has nothing to do with the CTMC method applied in
the present work. The so-called Monte Carlo event generator
proposed in works [12–14] is a tool for producing event files
based on quantum-mechanical theories.) All the preceding
models are perturbative approaches. The use of perturbation
theory is justified, considering that for 75-keV proton impact
the perturbation parameter is smaller than unity (η = 0.58).

In the CDW-EIS model higher-order contributions from the
projectile-electron (PE) interaction are taken into account in
the initial- and final-state wave function: The effect of the
PE interaction in the final state is included by applying a
distorted wave function for the ionized electron; in the initial
state it is expressed by means of an eikonal phase factor. The
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3C model is a kind of first Born approximation (FBA): The
initial state and the transition operator agree with those of
FBA, but the final state is a product of three Coulomb waves
which, in addition to the description of the electron-target
subsystem, describes also the PE and PT subsystems. The
SBA-C model is an extension of the 3C model by including
the PT interaction also in the transition operator. This model
is, therefore, such a second Born approximation (SBA) in
which the PT interaction is accounted for in both the transition
operator and the final-state wave function. At higher collision
velocities SBA-C converges to SBA.

The main conclusions drawn from the comparison of
the predictions of the preceding models with the mea-
sured data of Laforge et al. [3] and Schulz et al. [4]
can be summarized as follows. Surprisingly, for this rather
simple collision system one can speak about only order-of-
magnitude agreement between theory and experiment. Unex-
pectedly, the CDW-EIS-CL model, in which the correction
for the PT interaction is treated classically, agreed better
with the experiment than the CDW-EIS-SC model, where the
same correction is treated semiclassically. The best overall
agreement with the measurements (at least for the shape
of the dependence of DDCSp on θp) was observed for the
SBA-C model. At the same time, for �E = 53 eV the latter
model resulted in a worse description than the 3C model.
The energy-loss value, 53 eV, is special in that it corresponds
to electron emission under the condition ve = vp (ve and vp

are the velocity of the ejected electron and the projectile,
respectively). At ve = vp strong postcollision interaction (PCI)
takes place between the electron and the outgoing projectile,
which leads to the appearance of the well-known cusp peak in
the energy spectrum of the forward-ejected electrons. We note
that here and in the following we assume that the energy loss
of the projectile is directly related to the energy of the ejected
electron because of the negligible recoil energy.

Keeping in mind that the cusp is a result of a mutual
focusing effect between the outgoing projectile and the ejected
electron, it is expected to be reflected in the energy and
angular distribution of the scattered projectiles, too. Indeed,
Schulz et al. [4] did find the sign of the focusing effect in the
spectra of the scattered protons. DDCSp exponentially falls
with increasing θp. The rate of fall of the measured DDCSp

shows only a slight dependence on �E up to about 50 eV, but at
53 eV it suddenly increases; that is, the angular distribution of
the scattered protons becomes narrower. Schulz et al. assumed
that the sudden narrowing of DDCSp at 53 eV is caused
by the same PCI effect that produces the cusp in the spectrum
of the forward-ejected electrons. Among the theories it is
only the 3C model that shows a strong “narrowing effect” at
�E = 53 eV. We note that the narrowing was also observed in
the angular distribution of the scattered projectiles in collisions
of protons with helium atoms at the value of the energy loss
corresponding to ve = vp [15,16]. What is surprising is that the
effect is much less pronounced for helium than for hydrogen.

In the theoretical interpretation of the experimental results
several questions remained unanswered [3,4]: (i) Why does the
CDW-EIS-CL model agree better with the experiment than
the CDW-EIS-SC model? (ii) Why is the 3C model more
successful than the other models in describing the narrowing
effect at �E = 53 eV? Considering that the SBA-C model

is an extension of the 3C model, it is particularly surprising
that the 3C model yields better result than the SBA-C model.
(iii) Why is the narrowing effect much more stronger for
hydrogen target than for helium target?

In this work we compare the experimental data of Laforge
et al. [3] and Schulz et al. [4] with the results of calculations
carried out in the framework of the classical trajectory Monte
Carlo (CTMC) method. From the calculations we hoped
to get at least partial answers to some of the preceding
questions. The CTMC method is complementary to the
existing quantum-mechanical descriptions for the following
reason. Although the fulfillment of the condition η < 1 for
the present collision system allows the use of perturbation
theories, η is not so small, and doubt may arise about the
convergence of the applied models. Unfortunately, at present
nonperturbative quantum-mechanical three-body ionization
theories that account for all the interactions between the
particles (even up to asymptotically large separation distances)
do not exist. The great advantage of the CTMC method in this
respect is that it is a nonperturbative theory; that is, it describes
the full three-body dynamics exactly in the framework of the
classical mechanics. The comparison of the CTMC results with
those obtained by the quantum-mechanical calculations gives
a possibility to separate off those features of the three-body
dynamics which cannot be understood on the basis of a
classical picture.

In the present work we mainly focus on the narrowing
effect. Our CTMC results for DDCSp show an enhancement
of the cross section at the energy loss corresponding to
ve = vp rather than narrowing of the angular distribution of
the scattered protons. Since one expects a narrowing effect
in the classical view of the Coulomb focusing, at first glance
this finding is surprising. We present a detailed analysis of the
three-body dynamics in which we resolve the apparent dis-
crepancy. In the examples of individual projectile trajectories
we discuss the effect of the PT interaction in the ionization
process and suggest some quantum-mechanical effects that
may explain the experimentally observed behavior of DDCSp.

II. THEORETICAL METHOD

The CTMC method is based on the numerical solution
of the classical equations of motion for a large number of
trajectories of the interacting particles under randomly chosen
initial conditions [17,18]. Our computer code solves Newton’s
nonrelativistic equations of motion for the three particles (in
atomic units):

mi

d2ri

dt2
=

3∑
j (�=i)=1

ZiZj

ri − rj

|ri − rj |3 , (i = 1,2,3). (1)

Here mi , Zi , and ri are the masses, charges, and position
vectors of the particles, respectively. The randomly selected
initial conditions were the impact parameter and five further
parameters defining the position and velocity vector of the
target electron moving in Kepler orbits. The ranges of the
latter parameters were constrained to give the binding energy
of the hydrogen atom, 0.5 a.u. For the generation of the initial
values of the position and velocity coordinates of the electron
from a set of uniformly distributed variables we applied the

052710-2



CLASSICAL TRAJECTORY MONTE CARLO MODEL . . . PHYSICAL REVIEW A 82, 052710 (2010)

general procedure suggested by Reinhold and Falcón [19] for
non-Coulombic systems, which is equivalent to the original
Abrines and Percival’s method [17] in the case of the Coulomb
interaction.

The integration of the equations of motion was started
at a large distance (200 a.u.) between the incoming proton
and the hydrogen atom. This was necessary for the accurate
determination of the energy loss of the projectile. After the
collision the calculations were made in two steps. In the
first step the integration was continued until the internuclear
distance R = 200 a.u., where the main reaction channels
(excitation, ionization, charge transfer) could be identified
safely. In the second step only collision events leading to
ionization were regarded. Considering the slow convergence
of the cross section for the formation of the electron cusp as a
function of the internuclear distance [20,21], in the second
step the trajectories of the particles were calculated up to
R = 108 a.u.

The doubly differential cross section describing the energy
and angular distribution of the ith particle following the frag-
mentation (in short notation DDCSi) is classically expressed
as

d2σ

dεid�i

= 2π

∫ ∞

0
b

d2P

dεid�i

(b)db, (2)

where d2P/dεid�i is doubly differential ionization probabil-
ity of the process and b is the impact parameter. One can easily
show that for a large number of collision events characterized
by uniformly distributed b values in the range (0,bmax) the
integral in (2) can be approximated by the following sum:

∫ ∞

0
b

d2P

dεid�i

(b)db ≈ bmax
∑

j b
(i)
j

N�εi��i

. (3)

Here b
(i)
j is the actual impact parameter at which the fragment

is scattered to the energy window �εi and solid angle window
��i . Due to the azimuthal symmetry, ��i is determined by
the polar angular window ranging from θ min

i to θ max
i :

��i =
∫ 2π

0

∫ θmax
i

θmin
i

sin θdθdφ = 2π
(

cos θmin
i − cos θmax

i

)
.

(4)

From Eqs. (2)–(4) we obtain

d2σ

dεid�i

≈ bmax
∑

j b
(i)
j

N
(

cos θmin
i − cos θmax

i

)
�εi

. (5)

For DDCSp the energy loss of the protons is expressed as
�E = E − εp, where E is the impact energy, and εp is the
energy of the scattered proton. Therefore, DDCSp denotes the
cross section

DDCSp ≡ d2σ

d�pd(�E)
(θp,�E). (6)

In our calculations we followed the history of altogether
1.3 × 108 collision events in the impact parameter range
between 0 and 4 a.u. For the total cross section of the
ionization of the hydrogen atom by impact of 75-keV protons
we obtained a slightly higher value (1.45 × 10−16 cm2) than

the recommended value (1.27 × 10−16 cm2) based on a large
collection of experimental data [22].

III. RESULTS AND DISCUSSION

Figure 1 presents our CTMC results for DDCSp as a
function of the scattering angle θp at fixed values of the
energy loss, �E = 30, 40, 50, and 53 eV. In the figure are
also plotted the experimental data and the predictions of
the ionization models discussed in Sec. I. In calculation of
the cross sections, in Eq. (5) we used a value of 3 eV for
the energy window. The bin size of the scattering angle was
0.05 mrad for θp < 0.5 mrad, and it was 0.1 mrad for larger
values of θp. These values were chosen in accordance with the
energy and angular resolution of the experiment.

CTMC describes well the main tendencies of the experi-
mental data. However, one can speak about good agreement
only at large scattering angles (θp > 0.6 mrad), except for the
case of �E = 53 eV, where, at the same time, the observed
rapid fall of DDCSp is quite uncertain due the large errors of
the data and the lack of measuring points at θp � 0.8 mrad.
At low and medium values of θp the CTMC model cannot
reproduce the observed shape of DDCSp as a function of
θp. Particularly, our calculations do not account for the bump
seen in the experimental data at θp ≈ 0.4 mrad. Comparing
with the other theoretical models, the CTMC description
shows a great similarity with the CDW-EIS-SC model, at
medium values of θp the agreement between the two theories
is almost perfect. This is surprising because one would expect
better agreement with the CDW-EIS-CL model that includes
a classical correction for the PT interaction.

As far as the narrowing effect is concerned, the CTMC
method fails to reproduce the enhancement of DDCSp at small
values of θp and the sudden change in the rate of fall of
the data for the spectrum measured at �E = 53 eV. Schulz
et al. [4] investigated the narrowing effect by plotting the
average proton scattering angle θavg as a function of ve/vp. In
Fig. 2 we reproduced the θavg data obtained by the authors,
and in addition we plotted also the predictions of the various
theoretical models. As is seen from the figure, the CTMC
method predicts only a small change in the slope of the θavg

curve at ve/vp ≈ 1. Among the theories it is only the 3C
model that shows a drastic drop of θavg in accordance with the
experiment. We note that similar narrowing effect was also
observed for ionization of molecular hydrogen at the same
collision energy [23] (see the corresponding data points in
Fig. 2).

Our finding that the CTMC method does not show the
narrowing effect at �E = 53 eV is unexpected because of the
reason discussed in Sec. I. To analyze the properties of DDCSp

in more detail, in Fig. 3(a) we displayed our CTMC results in a
three-dimensional plot. The effect of PCI between the outgoing
protons and the ejected electrons is reflected in the distribution
of DDCSp in the form of a small, broad peak centered at
�E ≈ 53 eV. The peak appears within a small range of the
scattering angle (θp < 0.2 mrad), and therefore, practically,
it does not change the width of the angular distribution. The
fact that the effect of PCI on DDCSp is so small is surprising
considering that the same effect leads to a very pronounced
cusp in the doubly differential spectrum of the ejected electrons
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FIG. 1. (Color online) Doubly differential cross sections for a 75-keV proton on hydrogen collisions as functions of the proton scattering
angle at fixed values of the energy loss. The experimental data are from measurements by Laforge et al. [3] and Schulz et al. [4]. The notations
of the theories: thick solid (red) curves, CTMC; dotted curves, CDW-EIS-SC; dashed curves, CDW-EIS-CL; dash-dotted curves, 3C; thin solid
curves, SBA-C.

(see Fig. 4). The different manifestation of the PCI effect in
DDCSp and DDCSe can be explained as follows. The ve = vp

peak in DDCSp is superimposed on a large “background”
of ionization events in which the proton scatters at a small
angle (θp < 1 mrad), but the electron is ejected with an angle
that lies outside the range in which the cusp is observable.
For such events PCI is small, and thereby the corresponding
DDCSp values have a smooth distribution. To verify this
assumption, we calculated DDCSp with the condition that
only those events were considered in which the electrons were
ejected into forward direction (θe < 5◦). The result is shown
in Fig. 3(b). Now the PCI effect is much more pronounced,
but it appears as a long ridge rather than a peak. Analyzing
the ridge structure in Fig. 3(b), one can establish that any
sections of the distribution at a given value of θp are of similar
shape; that is, the effect of PCI on the energy (loss) spectrum
of the scattered protons is practically independent from the
scattering angle. This suggests the picture that PCI and the
scattering of the projectile (either on the electron or the target

nucleus, or on both particles) are separable processes. The
separability is in accordance with the widely accepted view of
the cusp formation: While the scattering is characterized by
the time by which the projectile passes through the atom, the
cusp is formed as a result of a long-time final-state interaction.
We note that in one of our previous experiments carried out
for 75-keV proton on argon collisions [24] we observed the
electron cusp even for large scattering angles of the protons (up
to θp = 8.1◦). The cusp was observed at θe = θp, supporting
the picture that it is a result of final-state interaction.

A question arises: How can one determine the part of
DDCSp that can be attributed purely to PCI? This can be
done considering that the cusp is dominantly formed by
mutual interaction between the electron and the projectile
at asymptotically large internuclear distances in the outgoing
phase of the collision. Although the cusp formation is affected
by the receding target ion, to a good approximation it is
a two-body mechanism. This holds also at large scattering
angles: The scattered projectile focuses the ejected electron
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FIG. 2. (Color online) Average scattering angle of the proton as a
function of the ratio of the ejected electron velocity ve to the projectile
velocity vp . Experimental data: solid circles, atomic hydrogen target
[4]; open circles, molecular hydrogen target [23]. For the notations of
the theoretical curves, see Fig. 1. (All the calculations refer to atomic
hydrogen target.)

in the direction of the scattering. Since the mutual interaction
between the two particles does not affect the motion of their
center-of-mass (c.m.), the scattering process can be separated
off by measuring the scattering angle of the projectile relative
to the direction of the c.m. velocity vector of the electron-
projectile subsystem, vc.m.. It is expected that the distribution
of the relative scattering angle, denoted by θ ′

p, reflects the cusp
formation better than that of the laboratory angle, θp.

Figure 5 displays our CTMC results for the cross section

DDCS′
p = d2σ

d�′
pd(�E)

(θ ′
p,�E), (7)

calculated in the same way as DDCSp with use of Eq. (5) but
with the relative scattering angle θ ′

p. The distribution shows
a pronounced peak at �E = 53 eV, as is expected. Since the
peak has a sharp, cusplike shape, the distribution of θ ′

p is

FIG. 4. (Color online) d2σ/dεed�e for electron ejection in a
75-keV proton on hydrogen collisions obtained from the present
CTMC calculations. ve|| and ve⊥ are the parallel and perpendicular
components, respectively, of the velocity vector of the electron with
respect of the initial velocity vector of the projectile.

narrower at �E = 53 eV than at other values of the energy
loss. It is important to note that the peak is restricted in a small
range of θ ′

p; it practically disappears at θ ′
p = 0.1 mrad. From

the momentum exchange between the proton and the electron
one can estimate that θ ′

p = 0.1 mrad corresponds to an electron
ejection angle θe ≈ θ ′

e ≈ (M/m)θ ′
p ≈ 10◦ (here m and M are

the masses of the electron and the proton, respectively). This is
in accordance with the fact that the electron cusp is restricted
to the angular range θe < 10◦.

A detailed mathematical analysis of DDCSp with consid-
eration to the separability of the primary proton scattering and
PCI between the outgoing electron and proton is given in the
Appendix.

FIG. 3. (Color online) Three-dimensional representation of DDCSp obtained from the present CTMC calculations. (a) Inclusive DDCSp

with respect to the emission angle of the ejected electron. (b) DDCSp calculated with the condition θe < 5◦.
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FIG. 5. (Color online) Result of the calculations for the
d2σ (θ ′

p,�E)/d�′
pd(�E) distribution. The scattering angle θ ′

p is
measured relative to the direction of the center-of-mass velocity
vector of the electron-projectile subsystem.

From the CTMC results we may conclude that in a classical
description of the ionization process the narrowing effect is
not expected to appear in DDCSp (if it is an inclusive cross
section with respect to the emission of the electron). However,
then the question is why is it reflected in the experimental
data as well as in the predictions of the 3C theoretical
model?

The discrepancy between the CTMC method and the
experiment indicates that the observed properties of DDCSp

can only partly be understood classically. Searching for
possible quantum-mechanical effects, we investigated the role
of the nucleus-nucleus (PT) interaction in the dynamics of the
ionization process. We run our CTMC code without including
the PT interaction. The results are shown in Fig. 6. Dramatic
differences as compared with the corresponding distributions

FIG. 6. (Color online) DDCSp calculated with neglect of the
nucleus-nucleus interaction.
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FIG. 7. Energy spectrum of the forward-ejected electrons
(θe < 2◦) calculated with (open circles) and without (solid circles)
the inclusion of the PT interaction.

in Fig. 3(a) can be observed, particularly at small θp values.
At the same time, the electron cusp is hardly affected by
the inclusion of the PT interaction (see Fig. 7). This can be
understood simply by considering that the change of the proton
scattering angle due to the PT interaction is typically in the
mrad region; therefore, θp remains in a range that is still ≈0◦
from the point of view of the electron emission.

For a further, more detailed analysis of the role of the
nucleus-nucleus scattering, in Fig. 8(a) we plotted our CTMC
results obtained for DDCSp with and without the inclusion of
the PT interaction (the latter one is denoted by CTMC-noPT)
as a function of θp at a specific value of �E (50 eV). The steep
decrease of the CTMC-noPT results above θp ≈ 0.5 mrad can
be understood by considering the scattering of the proton on
a free, stationary electron. For a binary collision there is a
one-to-one relationship between the scattering angle and the
energy loss of the projectile. From the momentum and energy
conservation one obtains, to a good approximation,

sin θp ≈
[
�E

E

(
m

M
− 1

4

�E

E

)]1/2

. (8)

In the range of the energy loss considered for this collision
system this formula yields values between 0.42 and 0.51 mrad.
The occurrence of scattering angles smaller or larger than the
binary encounter (BE) angle given by Eq. (8) at a fixed value
of �E is due to the initial velocity distribution of the bound
electron. As is expected, the inclusion of the PT interaction
increases the probability of the large-angle scatterings in the
ionization. However, it is not so obvious why it enhances
the cross section at small θp values, too. To investigate this
effect, we plotted large number of calculated individual particle
trajectories for collision events that terminated with small-
angle scattering. One of the plots showing the projectile’s
trajectory for a collision leading to θp = 0.1 mrad is seen in
Fig. 9(a). The trajectory has a zig-zag shape: The large-angle
PE scattering is compensated by a subsequent PT scattering,
resulting in a small final θp value. Without the PT interaction
the projectile would scatter at a much larger angle, θp = 0.4
mrad. The occurrence of such trajectories shifts a part of the
collision events from the range 0.2 < θp < 0.6 mrad to the
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FIG. 8. Theoretical results for DDCSp as a function of the proton scattering angle at a fixed energy-loss value (50 eV). The solid and dashed
curves denote calculations carried out with and without inclusion of the nucleus-nucleus scattering, respectively. (a) CTMC and CTMC-noPT;
(b) CDW-EIS-SC and CDW-EIS-noPT [4]; (c) CDW-EIS-CL and CDW-EIS-noPT; (d) SBA and FBA [4].

range θp < 0.2 mrad, thereby increasing (reducing) the cross
section at small (medium) scattering angles.

As a result of the inclusion of the PT interaction, the
curvature of the CTMC-noPT line in Fig. 8(a) changes from
convex to concave shape. Similarly, the CDW-EIS model
predicts a convex shape for the dependence of DDCSp on θp,
and the inclusion of the PT interaction in the CDW-EIS-SC
model results in also a concave shape [see Fig. 8(b)]. This
similarity indicates that the treatment of the PT interaction
in the CDW-EIS-SC model by the eikonal approximation
is a correct procedure in that it is able to account for the
previously discussed effect of the zig-zag-shaped projectile
trajectories on DDCSp. In contrast to this, the latter effect
is poorly reflected by CDW-EIS-CL: The classical correction
for the inclusion the nucleus-nucleus scattering modifies the
cross section significantly only at large scattering angles;
therefore, the shape of the CDW-EIS-CL remains convex [see
Fig. 8(c)].

According to Fig. 8(a), CTMC predicts a considerable effect
of the PT interaction on DDCSp at medium θp values (a
decrease by a factor of about two at θp ≈ 0.4 mrad). The
CDW-EIS-SC model supports this finding. Surprisingly, the
comparison between the FBA and SBA results in Fig. 8(d)
shows that the inclusion of the nucleus-nucleus scattering
results in only the increase of DDCSp. It is an interesting
question whether perturbation theories are able to predict the
decrease of DDCSp found in the classical and semiclassical
descriptions and explained by the occurrence of zig-zag-
shaped projectile trajectories. To investigate this question, let
us consider the form of the scattering amplitude in SBA (see,
e.g., [25]). In atomic units,

f Born2 = f B1 + f B2, (9)

where f B1 is the first Born term,

f B1 = − 1

2π
〈kf ψf |V |k0ψ0〉, (10)

and f B2 is the second Born term,

f B2 = − µ

8π4
lim

λ→0+

∑
n

∫
dk〈kf ψf |V |kψn〉

× 〈kψn|V |k0ψ0〉
k2
n − k2 + iλ

. (11)

In the preceding expressions 〈kpψp|V |kqψq〉 denotes the
following matrix element:

〈kpψp|V |kqψq〉

≡ Zp〈eikpRψp(r)|
(

1

R
− 1

|R − r|
)

|eikqRψq(r)〉. (12)

In Eqs. (10)–(12) Zp is the charge of the projectile and µ is the
reduced mass of the projectile-atom system. R and r are the
position vector of the projectile and the electron, respectively.
ψ0 is the initial ground state and ψf is the final ionized state
of the hydrogen atom. In Eq. (11) the summation is over all
eigenstates ψn of the target, including the continuum states.
The vectors k0, kf and the quantity kn are defined by

k0 = µv0,

kf = µvf , (13)

k2
n = k2

0 + 2µ(ε0 − εn).

Here v0 (vf ) is the initial (final) velocity of the projectile
relative to the target, and εn is the eigenenergy of the state ψn.

DDCSp is obtained by integration of |f Born2|2 over the
electron emission angle,

d2σ Born2

d�pd(�E)
∝

∫
4π

|f Born2|2d�e =
∫

4π

|f B1 + f B2|2d�e.

(14)

Using the orthogonality property of the eigenstates ψn, f B1

and f B2 can be expressed in the forms:

f B1 = − 1

2π
〈kf ψf |VPE|k0ψ0〉, (15)
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FIG. 9. Samples of projectile trajectories obtained by the present
CTMC calculations. The z axis is defined by the initial velocity
vector of the projectile. (a) Trajectory affected strongly by both the
PE and the PT interaction. (b) Trajectory characterized by dominant
PE interaction. The two trajectories belong to collisions of the same
final state (θp = 0.1 mrad, θe = 0◦, and �E = 50 eV). In panel (a)
the trajectory shown by the dashed curve was obtained neglecting the
PT interaction.

and

f B2 = − µ

8π4
lim

λ→0+

( ∫
dk〈kf ψf |VPE|kψ0〉 〈kψ0|VPT|k0ψ0〉

k2
0 − k2 + iλ

+
∫

dk〈kf ψf |VPT|kψf 〉 〈kψf |VPE|k0ψ0〉
k2
f − k2 + iλ

+
∑

n

∫
dk〈kf ψf |VPE|kψn〉 〈kψn|VPE|k0ψ0〉

k2
n − k2 + iλ

)
, (16)

with the notations VPE = −Zp/|R − r| and VPT = Zp/R.
The only nonvanishing matrix elements of the PT inter-

action occur in the f B2 amplitude, in the first and second
term of Eq. (16). The first term describes a process in which
the proton elastically scatters on the target nucleus while the
atom is in the ground state, and then it ejects the electron
(PT-PE sequence). The interpretation of the second term: First
the proton ionizes the atom and then elastically scatters on
the nucleus of the ionized target atom (PE-PT sequence).
For example, the trajectory shown in Fig. 9(a) is a result of

PE-PT sequence. Since such zig-zag-shaped trajectories lead
to small scattering angles, SBA is able to account for the
increase of DDCSp at low θp values. Scatterings (in either
PT-PE or PE-PT sequence) into directions of the same sign
may lead to large scattering angles; that is, the SBA model
describes the increase of DDCSp also at large θp values.
As far as the medium θp values are concerned, the SBA
model cannot account for the decrease of DDCSp for the
following reason. As discussed earlier, the drop of DDCSp

in the medium range of θp classically can be interpreted by
the fact that due to the increasing role of the nucleus-nucleus
interactions for θp > 0.4 mrad, part of the collision events
“scatters out” from the range 0.2 < θp < 0.6 mrad. The Born
approximation cannot describe consistently the decrease of the
scattered particle flux, because it is not a unitary theory (the
flux is not conserved). Particularly considering the relatively
large value of the perturbation parameter (η = 0.58), the SBA
results have to be accepted with caution. The PT interaction
can consistently be treated by a nonperturbative unitary theory
that takes into account the channel interactions between the
scatterings of the projectile into different angles.

In the SBA-C model the effect of PCI between the outgoing
proton and electron is included by taking the final-state wave
function in the form of the product of three Coulomb waves.
The inclusion of PCI enhances DDCSp at small θp values.
As a result, an inflection point and a bump appear on the
SBA-C curves in Fig. 1 at θp ≈ 0.2 mrad and θp ≈ 0.4 mrad,
respectively. We note that the position of the bump reflects
the previously discussed BE angle, θp ≈ 0.4–0.5 mrad (the
scattering angle for the collision of a proton with a free,
stationary electron). At the BE angle the FBA curve has a
shoulder that remains practically unchanged after the second-
order correction, and this shoulder together with the enhanced
DDCSp at small θp values lead to the bump for the SBA-C
curve.

The bump predicted by the SBA-C model is more pro-
nounced than the observed one; for �E = 30, 40 and 50 eV
the measured data lie halfway between the CTMC and SBA-C
curves in the range 0.3 < θp < 0.6 mrad. Focusing on this
θp range, we may assume that the difference between the
measured DDCSp data and the CTMC results is a quantum-
mechanical effect, which in turn is overestimated by the SBA-
C model. The reasons why the latter model predicts too large
cross sections were mentioned earlier: the nonunitarity of the
perturbation theory and the neglect of the channel interactions.
There is a further effect that explains the convex curvature
reflected in the tendencies of the measured data in contrast to
the concave curvature of the CTMC curves. As we discussed
earlier, the concave shape of the CTMC curves can be traced
back to the decrease of the collision events in the medium
θp range due to the increasing role of the nucleus-nucleus
interaction for θp > 0.4 mrad. At the same time, besides
the “scattering-out” events, there is some contribution from
the “scattering-in” events that increases the cross section
in the range 0.3 < θp < 0.6 mrad. The final concave curvature
of the CTMC curves is a result of a dynamical equilibrium
between the scattering-in and scattering-out processes.

The quantum-mechanical treatment of the equilibrium
may lead to a different result for the following reason. In
the considered range of θp part of the ionization collisions
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θp

δ

FIG. 10. Geometry of the path interference. The two trajectories
are of the types plotted in Fig. 9.

proceed practically without nucleus-nucleus scattering, and
part of them are strongly affected by the PT interaction. The
scattering-in events belong to the latter category. In SBA the
ionization without (with) PT is described by the first (second)
Born amplitude. A constructive interference between the two
amplitudes in Eq. (14) may lead to a larger cross section than
the classical result. In other ranges of θp the interference
may be destructive, leading to a smaller cross section than
the classical one. Figure 9(b) shows a projectile trajectory
characterized by the same scattering angle as that in Fig. 9(a)
(θp = 0.1 mrad), but in contrast to the latter, it belongs to
a collision that proceeds with a negligible nucleus-nucleus
scattering. In both collisions the electron is ejected in the
same direction (θe = 0◦) and with the same energy (�E =
50 eV), that is, the final states of the two collisions are
indistinguishable; therefore, their amplitudes may interfere.
The interference may be destructive, which would explain
why the CTMC method overestimates the measured cross
sections for θp < 0.2 mrad and �E = 30, 40, and 50 eV. In the
followings we show that the kinematics of the collision allows
such a “path interference.” Figure 10 depicts the geometry of
two trajectories of the same types as those in Fig. 9. For the sake
of simplicity we assume coplanar scatterings. In this case the
path difference between the trajectories is δ = (b1 + b2) sin θp.
For example, let us consider the condition of the constructive
interference: δ = nλ (n = 1,2, . . .), where λ is the de Broglie
wavelength of the scattered proton. For 75-keV protons, λ =
h/Mvp ≈ h/Mv0 = 1.97 × 10−3 a.u. With the choice n = 1
from the preceding condition we obtain b1 + b2 = 1.97 ×
10−3/ sin θp a.u. ≈ 1.97 × 10−3/θp a.u. Considering that the
range of θp is between 0.1 and 1 mrad, the corresponding
range of the b1 + b2 is between 2 and 20 a.u. This range is of
the same order of magnitude as the impact parameter range
of the ionization. For example, for the trajectories in Fig. 9,
b1 + b2 = 4.05 a.u. Consequently, path interference effects
may influence the angular distribution of the scattered protons
significantly.

The preceding analysis shows that the path interference is
very sensitive to the kinematics of the collision. Since PCI
between the ejected electron and the scattered proton modifies
the kinematics to the largest extent at �E = 53 eV, strong
interference effects are expected to occur at this energy loss

value. A constructive interference may significantly enhance
the small PCI effect obtained in our CTMC calculations
at small θp values; a destructive interference may decrease
DDCSp at medium and large values of θp. This would
explain the experimentally observed narrowing of the angular
distribution of the scattered protons. However, we stress that
the narrowing is a result of a quantum-mechanical interplay
between the ionization induced by the PE interaction and the
nucleus-nucleus scattering and cannot be interpreted as a direct
manifestation of the mutual Coulomb focusing between the
equivelocity outgoing electron and proton.

The possible interference effects in the projectile scattering
increase the complexity of the problem further and make
it difficult to answer the questions mentioned in Sec. I.
It is hard to follow how and to what extent the different
approximations applied in the higher-order theories (SBA-C,
3C) change the relative weight and phase of the f B1 and f B2

amplitudes in Eq. (9) and thereby lead to a weaker or stronger
interference effect in a specific range of θp and at a given
value of �E. Furthermore, due to the uncertainty concerning
the convergence of the Born series, question (ii) in Sec. I
has not much meaning: One cannot exclude that the observed
good performance of the 3C model in describing the narrowing
effect at �E = 53 eV is only accidental. As far as question
(iii) is concerned, the smaller narrowing effect observed for
helium target can be understood partly classically: For a
heavier target, the increased probability of the nucleus-nucleus
scattering washes out the PCI effect in a larger extent. Quantum
mechanically, the stronger PT interaction increases the relative
weight of the f B2 amplitude, leading to an altered interference
between f B1 and f B2.

IV. CONCLUSIONS

In the present work we investigated theoretically the
narrowing effect occurring in the angular distribution of
the scattered projectiles in ionizing collisions as a result
of the mutual focusing effect between the forward-ejected
electron and the outgoing projectile at the velocity-matching
condition, ve = vp. For the study of the problem we carried
out CTMC calculations for 75-keV protons on hydrogen
collisions. The obtained results show the narrowing effect, but
only in that case when the scattering angle of the projectile
is measured relative to the direction of the c.m. velocity
vector of the ejected electron and the outgoing proton. We
explained the experimentally observed narrowing effect (for
laboratory scattering angle) by interference effects occurring
between the scattering processes corresponding to the first-
and second-order term of the Born series.

Considering the relatively large value of the perturbation
parameter η, the applicability of the perturbation method
for this collision is questionable. The convergence of the
Born series could be checked by comparing the results of
SBA calculations with those obtained by a nonperturbative
quantum-mechanical theory, for example, by applying the
recently developed impact parameter coupled pseudostate
(CP) approximation of McGovern et al. [26]. Although CP
is only a one-center theory, that is, it cannot account for PCI
between the outgoing projectile and the ionized electron, such
a check would be very informative. Furthermore, the analysis
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of the separate contributions of f B1 and f B2 to DDCSp

would give insight into the role of the assumed interference
effects.

Also from the experimental side, more accurate measure-
ments are needed to confirm the narrowing of DDCSp at
�E = 53 eV observed by Schulz et al. [4]. Kinematically
complete experiments providing cross sections differential
also with respect to the emission angle of the ejected electron
would greatly help the general understanding of the collisional
breakup of the atomic three-body systems. To the knowledge
of the author, no measurements exist for the electron cusp in
the case of hydrogen target. The shape of the cusp peak is
sensitive to the three-body dynamics; therefore, its detailed
measurement would offer a further test of the theoretical
models.
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APPENDIX: MATHEMATICAL ANALYSIS OF DDCS p

Assuming the separability of the primary proton scattering
and PCI between the outgoing electron and proton, DDCSp

can be expressed as

d2σ

d�pd(�E)
=

∫
4π

d3σ promt

d�pd�ed(�E)
F (θ ′

p,�E)d�e. (A1)

Here d3σ promt/d�pd�ed(�E) is a triply differential cross
section for the primary ionization process in which the proton
is scattered with energy loss �E in direction v̂p, and the
electron is ejected in direction v̂e. The scattering may take
place on both the electron and the target nucleus. The effect of

PCI between the ejected electron and the scattered proton is
accounted for by the enhancement factor F (θ ′

p,�E). The latter
function implicitly depends on v̂e, because θ ′

p is measured
relative to the direction of vc.m., and the latter vector depends
on the direction of the electron emission. The enhancement
factor is singular at θ ′

p = 0 and at value of �E corresponding
to ve = vp. (The singularity causes the sharp cusp seen in
Fig. 5 for DDCS′

p.) The integration over the electron emission
angle in the whole 4π solid angle washes out the singularity,
and this is the reason why the the narrowing effect is absent in
DDCSp.

The ridge seen in Fig. 3(b) in DDCSp for the case
of forward-electron ejection (θe < 5◦) can be explained by
Eq. (A1) as follows. Now we have

d2σ (θe < 5◦)

d�pd(�E)
=

∫
θe<5◦

d3σ promt

d�pd�ed(�E)
F (θ ′

p,�E)d�e.

(A2)

Since the integration volume (denoted by ��e) is small,
the integral can be well approximated by the product of the
integrand taken at an average value of its argument and ��e:

d2σ (θe < 5◦)

d�pd(�E)
≈ d3σ promt

d�pd�ed(�E)
(θp,〈θe〉,�E)

×F (〈θ ′
p〉,�E)��e. (A3)

Here 〈θe〉 is the average value of θe in the range 0 < θe < 5◦.
〈θ ′

p〉 can be estimated as follows. Since the considered angular
range of the proton scattering in Fig. 3(b) (θp < 1 mrad) is
much smaller than the angular range of the electron ejec-
tion (θe < 5◦), therefore θ ′

e ≈ θe, and thus θ ′
p ≈ (m/M)θ ′

e <

0.05 mrad. Consequently, 〈θ ′
p〉 is the average value of θ ′

p in the
range 0 < θ ′

p < 0.05 mrad.
Because of the small value of 〈θ ′

p〉, the enhancement factor
in Eq. (A3) is strongly peaked around �E corresponding to
ve = vp (see Fig. 5). Since F (〈θ ′

p〉,�E) does not depend on θp,
the ve = vp peak appears in the same way in the energy-loss
spectrum of the scattered proton at each scattering angle, which
explains the ridge structure seen in Fig. 3(b).
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