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We consider radiative recombination and photoionization in an atomic system, which consists of two
subsystems A and B. These subsystems are well separated in space and it is supposed that A has a lower
ionization potential. In such a case photoionization of A and recombination of an incident electron with A+

can be strongly influenced, via two-center electron-electron correlations, by resonant electron dipole transitions
induced in B. A theoretical description of these two-center resonant dielectronic processes is presented.
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I. INTRODUCTION

Photoionization of atoms and its inverse process of radiative
recombination, in which an incident electron recombines with
an ion by emitting a photon, are among the basic processes
studied by atomic physics.

When an atom is not isolated in space but is a neighbor
to another (distant) atom, the electronic structures of these
two centers can be coupled by a long-range electromagnetic
interaction that leads to a variety of interesting phenomena.
For example, the interaction between electrons belonging to
different atoms, separated by substantial distances, is respon-
sible for deexcitation processes in slow atomic collisions [1]
and the energy transfer in quantum optical ensembles [2]
and cold Rydberg gases [3]. They also play an important
role in biological systems as Förster resonances between
chromophores [4] and represent the origin of magnetism and
superconductivity [5].

Another interesting realization of two-center electron-
electron coupling is represented by a process in which the
electronic excitation energy of one of the atoms cannot be
quickly released through a forbidden (single-center) Auger
decay and is instead transferred to the partner atom, resulting
in its ionization. This interatomic decay process, predicted
in [6], has been observed in recent years in various systems
such as van der Waals clusters [7], rare gas dimers [8], and
water molecules [9].

In addition, a process was studied [10] in which a capture
of an incident electron by an ion (or atom) proceeds via the
Coulomb interaction of this electron with an electron of a
neighboring atom, leading to ionization of the latter. Since the
total charge of the two centers is unchanged, such a process
effectively results in an interatomic electron exchange.

Very recently, two more processes were considered, in
which the interaction between electrons belonging to different
neighboring centers may play a prominent role [11,12]. One
of them is a capture of an incident electron by a system
of two neighboring atomic centers [11]. In this process,
which may be termed two-center dielectronic recombination,
the electron can be captured by one of the centers due to
simultaneous (resonant) excitation of the other center, which
subsequently deexcites via spontaneous radiative decay (see
Fig. 1). In the other process, which was termed two-center
resonant photoionization [12], two centers are irradiated by
an electromagnetic field and one of the reaction pathways for
ionization of one of the centers is radiationless transfer of

excitation from a neighboring center, whose bound states are
resonantly coupled by the field (see Fig. 2). In both cases it was
found that the presence of a neighboring center can strongly
enhance the corresponding process.

The emphasis in [11] and [12] was on the demonstration
of the importance of these processes in various cases, whereas
their theoretical treatments were outlined just very briefly. It
is, therefore, the main intention of the present paper to discuss
in some detail a theoretical description of these processes.
Atomic units (a.u.) are used throughout unless otherwise
stated.

II. GENERAL CONSIDERATION

We shall consider photoionization and radiative recom-
bination in a simple atomic system, which consists of two
subsystems (centers) A and B, each having just a single (active)
electron. These subsystems are supposed to be separated by
a distance R which is large enough in so that one can still
speak about their individuality. In addition, this assumption
also enables one to treat the electrons as distinguishable
particles. Let, for definiteness, the ionization potential IA of
the subsystem A be smaller than the excitation energy �EB

of a dipole-allowed transition in the subsystem B. Under such
circumstances, if the subsystem A is involved in a process,
where it undergoes transitions with frequency close to �EB ,
this process can be substantially influenced by the presence of
the subsystem B.

For instance, if the system under consideration is irradiated
by an electromagnetic field with frequency ω0 ≈ �EB , the
presence of the subsystem B may have a strong influence on
ionization of the subsystem A. Indeed, in such a case A can be
ionized not only directly but also via resonance photoexcitation
of B with its consequent deexcitation through the transfer of
energy �EB via the electron-electron interaction to A, which
results in ionization of the latter.

Another example is represented by a system which ini-
tially consists of an incident electron, an ion A+, and the
subsystem B. In such a case, recombination of the incident
electron with A+ can also be strongly influenced by the
presence of B if the difference between the initial and final
energies of the (e− + A+) subsystem is close to �EB .

Let us now turn to the description of the photoionization
and recombination processes. Suppose, for simplicity, that the
centers A and B are atoms (ions) and that their nuclei, which
have charge numbers ZA and ZB , respectively, are at rest. We
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FIG. 1. (Color online) Scheme of two-center dielectronic recom-
bination.

take the position of the nucleus ZA as the origin and denote
the coordinates of the nucleus ZB , the electron of the atom A,
and that of the atom B by R, r1, and r2 = R + ξ , respectively,
where ξ is the position of the electron of the atom B with
respect to the nucleus ZB .

In order to treat the processes we adopt the so-called
noncovariant QED approach (see, e.g., [13]), which employs
the radiation gauge. Within this approach the interaction
between electric charges is regarded as occurring via both
Coulomb (instantaneous) potentials and the coupling of these
charges to the radiation field described by a vector potential.

For distances R much larger than the typical sizes of the
centers A and B, which are of relevance for the present
study, the two-center electron-electron coupling becomes
most efficient when these electrons undergo dipole-allowed
transitions. By restricting our attention only to such transitions,
the Coulomb part of the electron-electron interaction, V̂AB ,
reduces to the instantaneous interaction between two electric
dipoles,

VAB = riξj

R3

(
δij − 3

RiRj

R2

)
, (1)

FIG. 2. (Color online) Scheme of two-center resonant photoion-
ization.

where ri and ξj (i,j = 1,2,3) are the components of the
coordinates of the electrons, δij is 1 for i = j and 0 otherwise,
and a summation over the repeated indices is implied.

The vector potential, which describes the radiation field,
reads

Â(r,t) =
∑
k,λ

√
2πc2

Vphωk

ek,λ[ĉ†k,λ exp(−ik · r) + ĉk,λ exp(ik · r)].

(2)

Here ĉ
†
k,λ and ĉk,λ are the operators for creation and destruction,

respectively, of a photon with momentum k and polarization λ

(λ = 1,2), ek,λ is the photon polarization vector (ek,λ1 · ek,λ2 =
δλ1,λ2 , ek,λ · k = 0), ωk = c|k| = ck is the photon frequency, c
is the speed of light, and Vph is the normalization volume for
the field. The sum in Eq. (2) runs over all photon modes.

While the process of recombination involves just one
(real) photon, an arbitrary number of photons, depending on
the intensity of the electromagnetic field, can, in general,
participate in the process of photoionization. In this paper,
however, we shall restrict our attention to ionization in a weak
field, where only one real photon is initially present (and where
the enhancement of the photoionization due to the presence of
the center B is largest [12]). In such a case photoionization
and recombination are very closely interrelated and can
both be treated in a unified manner. In particular, for both
radiative recombination and photoionization, the coupling of
the electrons to the radiation field is given by

Ŵ = ŴA + ŴB

= 1

c
[Â(r1,t) · p̂1 + Â(r2,t) · p̂2], (3)

where p̂j (j = 1,2) is the momentum operator for the j th
electron.

By taking into account what has been discussed previously,
our consideration of the photoionization and recombination
processes shall be based on the equation

i
∂

∂t
|�〉 = (Ĥ0 + V̂AB + Ŵ )|�〉. (4)

Here, |�〉 is the state vector of the system consisting of the
centers A and B and the radiation field, and Ĥ0 is the sum of
the Hamiltonians for the noninteracting centers A and B and
the free radiation field. Further, V̂AB and Ŵ are defined by
Eqs. (1) and (3), respectively.

Both in the photoionization and in the recombination
processes we have essentially four different basic two-electron
configurations: (i) ψg = u0(r1)χ0(ξ ) in which both electrons
are in the corresponding ground states u0 and χ0 with energies
ε0 and ε0, respectively; (ii) ψa = u0(r1)χe(ξ ), in which the
electron of the center A is in the ground state, while the electron
of the center B is in the excited state χe with an energy εe;
(iii) ψp,g = up(r1)χ0(ξ ), in which the electron of the center A

is in a continuum state up with an energy εp and the electron of
the center B is in the ground state; and (iv) ψp,e = up(r1)χe(ξ ),
in which the electron of the center A is in a state up, while the
electron of the center B is in the state χe.

Taking also into account that the radiation field can be either
in its vacuum state |0〉 or in a state |k,λ〉, in which one photon
with momentum k and polarization λ is present, one can look
for the solution of Eq. (4) by expanding |�〉 into a “complete”
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set of quantum states according to

|�〉 =
(

gψg + aψa +
∫

d3p αpψp,g +
∫

d3pβpψp,e

)
|0〉

+
∑
k,λ

(
gk,λψg + ak,λψa +

∫
d3p αk,λ

p ψp,g

+
∫

d3pβk,λ
p ψp,e

)
|k,λ〉. (5)

By inserting Eq. (5) into Eq. (4) we obtain a system
of differential equations for the unknown time-dependent
coefficients g, a, {αp}, {βp}, {gk,λ}, {ak,λ}, {αk,λ

p }, and
{βk,λ

p }. Because of reasons that will soon become clear, it
is convenient to write down this system by splitting it into two
parts:

i
dg

dt
− Egg =

∫
d3p〈ψg|V̂AB |ψp,e〉βp +

∑
k,λ

(
〈χ0; 0|ŴB |k,λ; χe〉ak,λ +

∫
d3p〈u0; 0|ŴA|k,λ; up〉αk,λ

p

)
,

i
dβp

dt
− Ep,eβp = 〈ψp,e|V̂AB |ψg〉g +

∑
k,λ

(
〈χe; 0|ŴB |k,λ; χ0〉αk,λ

p + 〈up; 0|ŴA|k,λ; u0〉ak,λ

)
,

(6)

i
dak,λ

dt
− Ek

aak,λ = 〈χe; k,λ|ŴB |0; χ0〉g +
∫

d3p〈u0; k,λ|ŴA|0; up〉βp +
∫

d3p〈ψa|V̂AB |ψp,g〉αk,λ
p ,

i
dαk,λ

p

dt
− Ek

p,gα
k,λ
p = 〈up; k,λ|ŴA|0; χ0〉g + 〈χ0; k,λ|ŴB |0; χe〉βp + 〈ψp,g|V̂AB |ψa〉ak,λ

and

i
da

dt
− Eaa =

∫
d3p〈ψa|V̂AB |ψp,g〉αp +

∑
k,λ

(
〈χe; 0|ŴB |k,λ; χ0〉gk,λ +

∫
d3p〈u0; 0|ŴA|k,λ; up〉βk,λ

p

)
,

i
dαp

dt
− Ep,gαp = 〈ψp,g|V̂AB |ψa〉a +

∑
k,λ

(〈χ0; 0|ŴB |k,λ; χe〉βk,λ
p + 〈up; 0|ŴA|k,λ; u0〉gk,λ

)
,

(7)

i
dgk,λ

dt
− Ek

ggk,λ = 〈χ0; k,λ|ŴB |0; χe〉a +
∫

d3p〈u0; k,λ|ŴA|0; up〉αp +
∫

d3p〈ψg|V̂AB |ψp,e〉βk,λ
p ,

i
dβk,λ

p

dt
− Ek

p,eβ
k,λ
p = 〈up; k,λ|ŴA|0; χ0〉a + 〈χe; k,λ|ŴB |0; χ0〉αp + 〈ψp,e|V̂AB |ψg〉gk,λ.

Note that in Eqs. (6) and (7) the following notation
has been introduced: Eg = ε0 + ε0, Ea = ε0 + εe, Ep,g =
εp + ε0, Ep,e = εp + εe, Ek

g = ε0 + ε0 + ωk , Ek
a = ε0 +

εe + ωk , Ek
p,g = εp + ε0 + ωk , and Ek

p,e = εp + εe + ωk .
These differential equations have to be supplemented with

appropriately chosen initial conditions. Indeed, as was already
mentioned, in our consideration radiative recombination and
photoionization are described in a similar manner and the only
formal difference between them within this description lies in
these conditions.

In the case of photoionization they are given by gk,λ(t0) =
δkki

δλλi
and g(t0) = a(t0) = αp(t0) = βp(t0) = ak,λ(t0) =

αk,λ
p (t0) = βk,λ

p (t0) = 0, where t0 is the initial moment of time
and ki and λi are the momentum and polarization of the
incident photon. On the other hand, for recombination such
conditions are formulated as follows: g(t0) = a(t0) = βp(t0) =
gk,λ(t0) = ak,λ(t0) = αk,λ

p (t0) = βk,λ
p (t0) = 0 and αp(t0) =

δ3(p − p0), where p0 is the initial momentum of the incident
electron.

Inspection of Eqs. (6) and (7) easily shows that these two
subsystems do not contain the same coefficients and, thus, are
mutually independent. In particular, it is obvious that both for
photoionization and recombination the coefficients a(t), αp(t),
gk,λ(t), and βk,λ

p (t) remain zero for any time t and all the
necessary information is contained solely in the subsystem (7)
and the initial conditions. For definiteness, in the following
we shall give in some detail the derivation for recombination
only.

A. Radiative recombination

In the case of recombination it is natural to set t0 =
−∞. Then, by assuming that the interactions resulting
in recombination are switched on and off adiabatically
at t = −∞ and t = +∞, respectively, it is convenient
to use the Fourier transformation in order to obtain
the unknown coefficients a(t), αp(t), βk,λ

p (t), and
gk,λ(t).
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Applying the Fourier transformation to both sides of Eqs. (7) we obtain

(ω − Ea )̃a =
∫

d3p〈ψa|V̂AB |ψp,g 〉̃αp +
∑
k,λ

(
〈χe; 0|ŴB |k,λ; χ0〉g̃k,λ +

∫
d3p〈u0; 0|ŴA|k,λ; up〉β̃ k,λ

p

)
,

(ω − Ep,g )̃αp = 〈ψp,g|V̂AB |ψa 〉̃a +
∑
k,λ

(
〈χ0; 0|ŴB |k,λ; χe〉β̃ k,λ

p + 〈up; 0|ŴA|k,λ; u0〉g̃k,λ

)
,

(8)(
ω − Ek

g

)
g̃k,λ = 〈χ0; k,λ|ŴB |0; χe 〉̃a +

∫
d3p〈u0; k,λ|ŴA|0; up〉̃αp +

∫
d3p〈ψg|V̂AB |ψp,e〉β̃ k,λ

p ,(
ω − Ek

p,e

)
β̃ k,λ

p = 〈up; k,λ|ŴA|0; χ0〉̃a + 〈χe; k,λ|ŴB |0; χ0〉̃αp + 〈ψp,e|V̂AB |ψg〉g̃k,λ,

where the unknown coefficients ã, α̃p, g̃k,λ, and β̃ k,λ
p are related to those in Eqs. (7) according to

b̃(ω) = 1√
2π

∫ +∞

−∞
dt b(t) exp(iωt), b(t) = 1√

2π

∫ +∞

−∞
dω b̃(ω) exp(−iωt). (9)

Using the last two equations of the system (8) we now express the coefficients g̃k,λ and β̃ k,λ
p as follows:

g̃k,λ = 〈χ0; k,λ|ŴB |0; χe 〉̃a + ∫
d3p〈u0; k,λ|ŴA|0; up〉̃αp + ∫

d3p〈ψg|V̂AB |ψp,e〉β̃ k,λ
p

ω − Ek
g + i0

,

(10)

β̃ k,λ
p = 〈up; k,λ|ŴA|0; χ0〉̃a + 〈χe; k,λ|ŴB |0; χ0〉̃αp + 〈ψp,e|V̂AB |ψg〉g̃k,λ

ω − Ek
p,e + i0

,

where the choice +i0 for handling the singularities corre-
sponds to looking for a state which asymptotically is the
superposition of an incident wave and an outgoing scattered
wave. Neglecting the last term on the right-hand side of each of
these two formulas [14] we substitute the resulting expressions
for g̃k,λ and β̃ k,λ

p into the first two equations of (8). This yields(
ω − Ea −

∑
k,λ

|〈χe; 0|ŴB |k,λ; χ0〉|2

ω − Ek
g + i0

−
∑
k,λ

∫
d3p

|〈u0; 0|ŴA|k,λ; up〉|2

ω − Ek
p,e + i0

)
ã =

∫
d3p Ṽa,p α̃p,

(ω − Ep,g )̃αp = Ṽp,a ã

+
∑
k,λ

∫
d3p′ 〈up; k,λ|ŴA|0; u0〉〈u0; 0|ŴA|k,λ; up′ 〉

ω − Ek
g + i0

α̃p′ ,

(11)

where

Ṽa,p = 〈ψa|V̂AB |ψp,g〉

+
∑
k,λ

〈χe; 0|ŴB |k,λ; χ0〉〈u0; 0|ŴA|k,λ; up〉
ω − Ek

g + i0

+
∑
k,λ

〈χe; 0|ŴB |k,λ; χ0〉〈u0; 0|ŴA|k,λ; up〉
ω − Ek

p,e + i0
,

Ṽp,a = 〈ψp,g|V̂AB |ψa〉

+
∑
k,λ

〈χ0; k,λ|ŴB |0; χe〉〈up; k,λ|ŴA|0; u0〉
ω − Ek

g + i0

+
∑
k,λ

〈χ0; k,λ|ŴB |0; χe〉〈up; k,λ|ŴA|0; u0〉
ω − Ek

p,e + i0
(12)

are the matrix elements of the full electron-electron interaction
and

Ep,g = Ep,g +
∑
k,λ

|〈χe; 0|ŴB |k,λ; χ0〉|2

ω − Ek
p,e + i0

≡ Ep,g +
∑
k,λ

|〈χe; 0|ŴB |k,λ; χ0〉|2

ω − Ek
p,e

(13)

is a real quantity describing the shift of the electron con-
tinuum energy caused by the coupling to the radiation
field [15].

On the right-hand side of the second equation in Eqs. (11)
we shall neglect the second term, which corresponds to
virtual continuum-bound-continuum electron transitions via
the exchange of two photons. Then, by taking into account
that an equation of the type (x − x0)f (x) = g(x) has a general
solution of the form f (x) = µδ(x − x0) + g(x)/(x − x0 ±
i0), where in our case µ is determined using the initial
conditions, it is not difficult to show that the solution of
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Eq. (11) reads

ã(ω) =
√

2π δ(ω − Ep0,g)Ṽa,p0

ω − Ea − ∑
k,λ

|〈χe ;0|ŴB |k,λ;χ0〉|2

ω−Ek
g+i0 − ∑

k,λ

∫
d3p |〈u0;0|ŴA|k,λ;up〉|2

ω−Ek
p,e+i0 − ∫

d3p Ṽa,pṼp,a

ω−Ep,g+i0

,

α̃p(ω) =
√

2π δ(3)(p − p0)δ(ω − Ep0,g) +
√

2π δ(ω − Ep0,g) Ṽp,a

ω − Ẽp,g + i0
(14)

× Ṽa,p0

ω − Ea − ∑
k,λ

|〈χe ;0|ŴB |k,λ;χ0〉|2

ω−Ek
g+i0 − ∑

k,λ

∫
d3p |〈u0;0|ŴA|k,λ;up〉|2

ω−Ek
p,e+i0 − ∫

d3p Ṽa,pṼp,a

ω−Ep,g+i0

.

Using expressions (14) we now can determine from the third line of Eqs. (8) the coefficient g̃k,λ,

g̃k,λ =
√

2π δ(ω − Ep0,g)

ω − Eg − ωk + i0

[
〈u0; k,λ|ŴA|0; up〉

+ Ṽa,p0

ω − Ea − ∑
k′,λ′

|〈χe ;0|ŴB |k′,λ′;χ0〉|2

ω−Ek′
g +i0

− ∑
k′,λ′

∫
d3p |〈u0;0|ŴA|k′,λ′;up〉|2

ω−Ek′
p,e+i0

− ∫
d3p Ṽp,a Ṽa,p

ω−Ep,g+i0

×
(

〈χ0; k,λ|ŴB |0; χe〉 +
∫

d3p
〈u0; k,λ|ŴA|0; up〉Ṽp,a

ω − Ep,g + i0

)]
, (15)

and obtain its (inverse) Fourier transform

gk,λ(t) = exp(−iEp0,gt)

Ep0,g − Eg − ωk + i0

[
〈u0; k,λ|ŴA|0; up〉

+ Ṽa,p0

Ep0,g − Ea − ∑
k′,λ′

|〈χe ;0|ŴB |k′,λ′;χ0〉|2

Ep0 ,g−Ek′
g +i0

− ∑
k′,λ′

∫
d3p |〈u0;0|ŴA|k′,λ′;up〉|2

Ep0 ,g−Ek′
p,e+i0

− ∫
d3p Ṽa,pṼp,a

Ep0 ,g−Ep,g+i0

×
(

〈χ0; k,λ|ŴB |0; χe〉 +
∫

d3p
〈u0; k,λ|ŴA|0; up〉 Ṽp,a

Ep0,g − Ep,g + i0

)]
. (16)

1. Electron-electron interaction and the retardation effect

The solution of Eqs. (7) also yields the interaction between
the electrons [see Eqs. (12)]. With the help of Eqs. (12) we
find that for electrons undergoing electric dipole transitions,
this interaction can be cast into the following form:

ˆ̃V AB = r1iξj�ij , (17)

where r1i and ξj (i,j = x,y,z) are the components of the
coordinates of the electrons, a summation over the repeated
indices is implied, and the real and imaginary parts of the
complex tensor �ij are given by

Re(�ij ) = cos(k0R) + k0R sin(k0R)

R3

(
δij − 3RiRj

R2

)

−k2
0 cos(k0R)

R

(
δij − RiRj

R2

)
,

Im(�ij ) = sin(k0R) − k0R cos(k0R)

R3

(
δij − 3RiRj

R2

)
−k2

0 sin(k0R)

R

(
δij − RiRj

R2

)
. (18)

In contrast to the instantaneous form of the interaction between
two electric dipoles, given by Eq. (1), the interaction given by
Eqs. (17) and (18) takes into account the fact that in order to
propagate between the centers A and B, the electromagnetic
field needs a finite time (the retardation effect). This effect
becomes of great importance when the time τ ∼ R/c which
the light needs for traversing the distance between the electrons
compares with the effective time τe ∼ 1/ω0 of the electron
transitions: At k0R

>∼ 1 the use of the instantaneous and
retarded forms of the electron-electron interaction leads to
substantial differences in the calculated results. On the other
hand, if the distance R is relatively small (k0R 	 1), it follows
from Eq. (18) that, as expected, the interaction (17) practically
reduces to its instantaneous form (1).
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It worth noting that the form of the interaction given by
Eqs. (17) and (18) is gauge independent. In particular, it
also follows when one considers the coupling

∑3
µ=0 j (1)

µ A
µ

(2)

between the transition four-current j (1)
µ of one of the electrons

and the four-potential Aµ

(2) of the electromagnetic field, created
by the other electron, without using the second quantization
for the field.

2. The shift and width of the “autoionizing” state ψa

According to, e.g., Eq. (16), the interaction between the
electrons and the interaction of the electrons with the radiation
field cause the two-electron level ψa to acquire a new (and
complex) energy which is given by

Za = Ea +
∑
k,λ

|〈χe; 0|ŴB |k,λ; χ0〉|2

Ep0,g − Ek
g + i0

+
∫

d3p
Ṽa,pṼp,a

Ep0,g − Ep,g + i0

+
∑
k,λ

∫
d3p

|〈u0; 0|ŴA|k,λ; up〉|2

Ep0,g − Ek
p,e + i0

= Ea − i
�a

2
, (19)

where in the second line of Eq. (19) Ea and �a denote the new
position and the width of the level ψa [16]. The second, the
third, and the last term on the right-hand side of the first line of
Eq. (19) appear due to, respectively, the spontaneous radiative
decay of the excited state of B, the two-center autoionizing
decay, and the (nonresonant) coupling of the ground and
continuum states of A embedded in the radiation field. The
first two of these terms are complex, which results in both the
shifting and broadening of the level ψa , while the latter one
is real and, thus, contributes to the level shift only. Therefore,
the total width �a of the level ψa can be written as the sum
of the width �r , which is due to the spontaneous radiative
decay, and the autoionizing width �a , which appears because
of the coupling of the level ψa to the electron continuum states
caused by the two-center electron-electron interaction.

It follows from Eq. (19) that the radiative width is simply
given by

�r = 2π
∑
k,λ

|〈χe; 0|ŴB |k,λ; χ0〉|2 δ(ωk + ε0 − εe).

Obtaining the autoionizing width �a from Eq. (19) is slightly
more complicated and is worthy of a few comments. Indeed,
one has to note that because the tensor (18) is not a real quan-
tity, the matrix elements of the electron-electron interaction
Ṽa,p and Ṽp,a are not complex conjugate. However, when
calculating �a one may, in fact, approximate the electron-
electron interaction by its instantaneous form, which makes
the product Ṽa,pṼp,a real. This approximation is quite sufficient
since at large distances R, where the difference between the
retarded and instantaneous forms of this interaction becomes
of importance, the autoionizing width is already so small that
the total width of the state ψa is determined practically solely
by the radiative width �r .

3. The phase shift between the radiative transitions on the
centers A and B

The explicit form of the transition matrix elements
〈χ0; k,λ|ŴB |0; χe〉 and 〈u0; k,λ|ŴA|0; up〉 is given by

〈χ0; k,λ|ŴB |0; χe〉

=
√

2π

V ωk

∫
d3r2 χ∗

0 (ξ ) exp(−ik · r2)ek,λ · p̂2χe(ξ )

≈
√

2π

V ωk

exp(−ik · R)
∫

d3ξ χ∗
0 (ξ )ek,λ · p̂ξχe(ξ ) (20)

and

〈u0; k,λ|ŴA|0; up〉

=
√

2π

V ωk

∫
d3r1 u∗

0(r1) exp(−ik · r1)ek,λ · p̂1up(r1)

≈
√

2π

V ωk

∫
d3r1 u∗

0(r1)ek,λ · p̂1up(r1). (21)

Note that in obtaining Eqs. (20) and (21) we used the dipole
approximation within each of the centers. Comparing these
equations we see that there arises a phase shift k · R between
the radiative transitions on the centers A and B caused by
their different positions in space. In particular, in the case of
recombination this shift can lead to an interference effect in
the emitted light when, depending on the direction of the light
propagation, the coherent emission of the photon by the centers
A and B either increases or decreases, or it leaves unchanged
the light intensity compared to the case of light emission by
the noninteracting centers A and B.

III. CROSS SECTIONS

In what follows we shall assume that the energy shifts are
already included in the definition of the corresponding initial
energies of the levels; i.e., we set Ep,g = Ep,g , Ea = Ea , and
so on.

A. Cross sections for recombination

Using Eq. (16) one can calculate cross sections for two-
center dielectronic recombination. In particular, one can show
that the differential cross section for recombination in the solid
angle �k of the emitted photon reads

dσ 2CDR

d�k
= (2π )4VphVelω

2
0

c3vi

2∑
λ=1

∣
∣
∣
∣
〈u0; k,λ|ŴA|0; up〉

+ Ṽa,p0

εp0 + ε0 − ε0 − εe + i�a/2

×
(

〈χ0; k,λ|ŴB |0; χe〉

+
∫

d3p
〈u0; k,λ|ŴA|0; up〉 Ṽp,a

ε p0

− εp + i0

)∣
∣
∣
∣

2

,

(22)
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where ω0 = εpi
− ε0 is the energy of the emitted photon, and vi

and Vel are, respectively, the velocity of and the normalization
volume for the incident electron. The total cross section for
recombination can be obtained by integrating Eq. (22) over the
emission angles of the photon.

According to Eqs. (16) and (22) there are three different
pathways for recombination of the incident electron and the
subsystem A+: (i) They can recombine directly via the emis-
sion of a photon without any participation of the subsystem
B. (ii) The incident electron undergoes a transition up0 → u0

by inducing the transition χ0 → χe in the subsystem B;
the latter afterward deexcites by photon emission. (iii) The
incident electron undergoes transitions φp0 → φb → φp →
φb in which the first two steps are accompanied by the
(radiationless) transitions χ0 → χe → χ0 in the subsystem B

and the last one proceeds via photon emission. Pathways (ii)
and (iii) are resonant and become efficient only if the energy εp0

of the incident electron lies in the interval ε0 + εe − ε0 − �a

<∼
εp0

<∼ ε0 + εe − ε0 + �a .

B. Total cross section for photoionization

The cross sections for photoionization can be obtained
using either a consideration similar to that discussed earlier for
radiative recombination or the principle of detailed balance. In
particular, for the total photoionization cross section one can
obtain

σ 2CPI = 2πpf Vph

c

2∑
λ=1

∫
d�p

∣
∣
∣
∣
〈up; 0|ŴA|ki ,λi ; u0〉

+ Ṽp,a

ε0 + ω0 − εe + i�a/2

(
〈χe; 0|ŴB |ki ,λi ; χ0〉

+
∫

d3p
Ṽa,p 〈up; 0|ŴA|ki ,λi ; u0〉

ε0 + ω0 − εp + i0

)∣
∣
∣
∣

2

, (23)

where pf = √
2(ε0 + ω0) is the absolute value of the momen-

tum of the ejected photoelectron and �p is the solid angle of
the ejection.

Similarly to the case of recombination, Eq. (23) shows
that there are also three qualitatively different pathways for
ionization of the atom: (i) The atom A is directly ionized by the
electromagnetic field without any participation of the atom B.
(ii) The field excites the atom B into the state χe; the latter
subsequently deexcites by transferring the excess of energy
to the electron of atom A, which leads to its ionization.
(iii) The electromagnetic field drives the electron of atom A

into the continuum but the electron returns to the ground state
u0 due to the two-center electron-electron interaction and, only
afterward, the same interaction transfers the electron into the
final continuum state up0 . As in the case with recombination,
pathways (ii) and (iii) are resonant and become effective only
if the energy εp0 of the field frequency lies in the interval

εe − ε0 − �a

<∼ ω0
<∼ εe − ε0 + �a .

IV. SOME NUMERICAL RESULTS AND DISCUSSION

In Fig. 3 we show the ratio between the cross section σ 2CPI

for photoionization of Li in a Li-He system and the cross
section for photoionization of an isolated Li atom. This ratio

FIG. 3. The ratio between the cross sections for ionization of
Li in a Li-He system and for ionization of a separated Li atom.
The electromagnetic field is assumed to be linearly polarized along
the internuclear vector R. The ratio was calculated for four different
internuclear distances R [(a) R = 20 Å, (b) R = 50 Å, (c) R = 100 Å,
and (d) R = 200 Å] and is given as a function of the normalized
detuning X = (ω0 − ωres)/�a from the resonant frequency ωres =
εe − ε0 ≈ 21 eV corresponding to the 1s2 1S–1s2p 1P transition
in He. Solid and dashed curves display results obtained with the
electron-electron interaction in the form (17) and (1), respectively.

is given for four internuclear distances (R = 20 Å, R = 50 Å,
R = 100 Å, and R = 200 Å) as a function of the normalized
detuning X = (ω0 − ωres)/�a from the resonant frequency
ωres = εe − ε0 ≈ 21 eV corresponding to the 1s2 1S–1s2p 1P

transition in He. The electromagnetic field is assumed to be
linearly polarized along the internuclear vector R.

There are a few points in Fig. 3 that are worth mentioning.
First, the figure demonstrates that the presence of a neighboring
He atom can lead to a huge increase in the ionization cross
section of Li in the vicinity of the resonant frequency ωres

provided the interatomic distance R is not very large. The
range of the vicinity of the resonance is itself very small.
However, the enhancement of ionization in this range may be
so large that a substantial increase in the number of ionization
events can be quite visible even if the system is irradiated by
the electromagnetic field, which is not monochromatic.

Indeed, assuming that k0R 	 1 and, simultaneously, �a 	
�r , one can show [12] that the ratio of the partial contributions
to the cross section yielded by the resonance and direct
channels, respectively, integrated over the spectral width �ω0

(�ω0 	 ω0) of the electromagnetic field, is given by

η ≈
(

c/ω0

R

)3 (a0

R

)3 1/a0

Z2
B�ω0

, (24)

where a0 is the Bohr radius [17]. Although the resonance
channel is effective only in the vicinity of the resonance,
whereas the direct channel may act for the whole width
�ω0 � �a , using Eq. (24) one can convince oneself that the
ratio η can reach quite large values. For example, for a Li-He
system if R ≈ 10 Å [18], ω0 ≈ 21 eV, and �ω0 ∼ 0.1 eV,
the photoionization of Li is enhanced by η ∼ 10.

052708-7



A. B. VOITKIV AND B. NAJJARI PHYSICAL REVIEW A 82, 052708 (2010)

FIG. 4. The ratio between the cross sections for ionization of
Li in a Li-He system and for ionization of a separated Li atom.
The electromagnetic field is assumed to be linearly polarized and
propagate parallel to the internuclear vector R. The ratio was
calculated for three different internuclear distances R [(a) R = 50 Å,
(b) R = 100 Å, and (c) R = 200 Å] and is given as a function
of the normalized detuning X = (ω0 − ωres)/�a from the resonant
frequency ωres = εe − ε0 ≈ 21 eV corresponding to the 1s2 1S–
1s2p 1P transition in He. Solid and dashed curves display results
obtained with and without taking into account the phase difference
exp(−ik · R) between the electromagnetic transitions on the two
centers.

Second, the shape of the plots, presented in Fig. 3, clearly
display the so-called Fano profile [19] caused by the inter-
ference between the direct and resonant ionization pathways.
Thus, the figure shows how the interference manifests itself in
the photoionization process. At relatively small values of R,
the interference becomes important only at very large values
of the detuning X because at small X the resonance channel
turns out to be much stronger than the direct one. With the
increase of the internuclear distance, the resonance channel
rapidly weakens and the interference becomes important at
small values of X.

Third, at large R the retardation effect becomes of impor-
tance, influencing both the magnitude and the shape of the
calculated results.

In Fig. 4 we display the ratio between the ionization cross
sections obtained for the same atomic system Li-He, but now
with the assumption that the photon momentum k is parallel
to the vector R. The ratio was calculated with and without
taking into account the term exp(−ik · R) [see Eqs. (20) and
(21)], which contains the phase shift accumulated between the
electromagnetic transitions occurring on the two centers due to
their different positions in space. It follows from this figure that
the phase shift may have a substantial effect on the shape and
absolute value of the ionization cross section.

V. CONCLUSIONS

We have discussed in some detail a theoretical descrip-
tion of two-center radiative recombination and two-center
resonant photoionization by a weak electromagnetic field.
Such processes are possible in an atomic system composed
of two well separated in space subsystems A and B, if the
ionization potential of one of them (A) is smaller than the
excitation energy �EB of a dipole-allowed transition in
the other subsystem (B).

Under such conditions if a free electron is incident on an
ion A+ in the presence of the subsystem B, then recombination
of the electron with A+ can be strongly influenced by B

provided the difference between the initial and final energies
of the (e− + A+) subsystem is close to �EB . One encounters
a similar situation if the system A + B is irradiated by an
electromagnetic field with frequency close to the excitation
energy of B. Then, ionization of A can be very substantially
modified compared to the case of ionization of A in the absence
of B.

Our treatment of these processes was based on the use
of the noncovariant QED approach. Within it the interaction
between charged particles is regarded as occurring both via
instantaneous Coulomb potentials and the coupling of these
particles to the radiation field, which is described by a vector
potential. By expanding the state vector for the total quantum
system, which consists of A, B, and the radiation field, into a
complete set of states, differential equations for the unknown
time-dependent coefficients of this expansion were obtained.
They were solved using the Fourier transformation. Besides
obtaining the coefficients necessary to compute cross sections,
this solution also yielded the full form of the two-center
electron-electron interaction, which takes into account the
finiteness of the speed of light, thus describing the retardation
effect.
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