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Low-energy charge transfer in collisions of He2+ with H in a Debye plasma
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Charge transfer in collisions of α particles with ground-state H embedded in a Debye plasma is studied in
the low-energy region from 10−4 eV to 5 keV. The screened Coulomb interaction is described by the Debye-
Hückel potential. The relevant molecular potentials and coupling matrix elements are obtained using a modified
multireference single-and double-excitation configuration interaction package. Total and state-selective cross
sections in the nonradiative charge-transfer collisions from 60 eV to 5 keV are calculated using the quantum-
mechanical molecular-orbital close-coupling method. Both optical-potential and semiclassical methods have
been used in the investigation of the radiative charge transfer from 10−4 to 1 eV and 1 to 102 eV, respectively.
The total cross sections for the no-screening case are in good agreement with the existing data. The effects of the
screened Coulomb potential on the electron-capture cross sections are discussed.
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I. INTRODUCTION

Heavy-particle collision processes (including charge
transfer, excitation, ionization, etc.) in hot, dense plasmas
have attracted much attention for many years [1–6] due
to their crucial role in determining radiation and transport
properties. Charge transfer in collisions of highly charged
ions with neutral atoms and molecules is of particular interest
because of the importance of electron-capture processes
not only in basic atomic physics, astrophysics, and plasma
physics, but also in various practical applications. Among the
most prototypical, few-body atomic collision processes is the
one-electron (HeH)2+ collision system, in which an electron
is captured from atomic hydrogen by an impacting α particle.
In addition to the fundamental importance of understanding
the process quantitatively, detailed investigation of He2+ +
H (D, T) is highly desired in fusion energy research. In a
fusion reactor, fast helium ions 4He2+ are produced in fusion
plasmas by the reaction between deuterium (D) and tritium
(T). As α particles are slowed down by elastic collision and
reach the cool, dense edge region of the fusion device, they
can recombine into an excited He+ state in part by collision
with hydrogen and contribute to radiative cooling [7].

Numerous theoretical [8–18], as well as experimental [19–
22] studies of the process over a wide range of impact energies
and final state quantum levels have been made during the last
several decades. However, to the best of our knowledge, few
investigations have considered the effects of plasma screening
of the Coulomb interaction between the charged particles.
These effects are related to the modified structure of composite
particles and may profoundly change the dynamics of collision
and radiative processes in the system. Recent studies exploring
the collision dynamics of the He2+ + H(1s) system embedded
in a Debye plasma by Liu et al. [23] using the Debye-Hückel
potential and the two-center atomic orbital close-coupling
approach in the high-energy range from 5 to 300 keV/u have
demonstrated that the screening of Coulomb interactions in
the system not only progressively reduces the number of
available excitation and electron-capture channels when the
strength of the plasma screening increases, but also introduces
changes in the values of direct and exchange couplings, thus

affecting the magnitude and energy behavior of the cross
sections.

In the present work, we explore the effects of Coulomb
interaction screening on the electron-capture processes in low-
energy collisions

He2+ + H(1s) → He+(2l) + H+ (1)

→ He+(1s) + H+ + hv (2)

for center-of-mass collision energy Ec.m. below 5 keV where
the quasimolecular collision is kept in its simplest form. In
our calculation, the interactions between charged particles are
described by the Debye-Hückel potential V (r) = ±Z1Z2

r
e−r/D ,

where D = (kBTe/4πne)1/2 is the Debye screening length, Te

and ne are the plasma electron temperature and density, and kB

is the Boltzmann constant. The Debye-Hückel potential is valid
only when the Coulomb coupling parameter � = 1/(akBTe)
and plasma nonideality parameter γ = 1/(DkBTe) satisfy the
conditions � � 1, γ � 1, where a = [3/(4πne)]1/3 is the
average interparticle distance [3,6]. There is a wide class of lab-
oratory and astrophysical plasmas (Debye plasmas) in which
these conditions hold. For example, inertial confinement fusion
plasmas with Te ∼ 1–10 keV and ne ∼ (1–10)×1024 cm−3

belong to this type of plasma.
The total and state-selective charge-transfer cross sections

in process (1) are calculated by using the quantum-mechanical
molecular orbital close-coupling (QMOCC) method. Two ap-
proaches, the adiabatic optical-potential method and the semi-
classical JWKB method, are applied to calculate the capture
cross section of the radiative charge-transfer in process (2). The
outline of the paper is as follows. In Sec. II, a brief description
of the theoretical methods is given; in Sec. III, we present the
results and discussion as well as comparisons of the available
theoretical and experimental data. Section IV briefly gives a
summary of the work and the most important conclusions.

II. THEORETICAL METHOD

A. Electronic structure calculation and QMOCC method

In the present work, the adiabatic potential curves of the
electronic states of the (HeH)2+ system are calculated by
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using the ab initio multireference single- and double-excitation
configuration interaction method (MRD-CI package) [24]. Since
a Gaussian basis is used in the code and one handy property of
Gaussian functions is that the product of two Gaussians is still
a Gaussian, we found it numerically convenient to represent
the Debye-Hückel interaction between nuclei and electron as
a superposition of Gaussians, e−αr

r
= 1

r

∑
i cie

−αir
2
, where ci

and αi are fitting parameters, and to appropriately modify the
one-electron integral in the MRD-CI code. In our calculation,
ten Gaussians were used in the above superposition, and
the adequacy of the approximation of the exponent in the
Debye-Hückel potential has been checked in Ref. [25]. A
(21s,17p,5d) contracted to [19s,17p,5d] basis set is used to
describe helium, and an (18s,14p) contracted to [14s,14p] basis
set is employed for hydrogen. The basis is large enough to
ensure adequate solutions for various screening lengths D in
the Debye-Hückel potential.

The QMOCC method has been described thoroughly in the
literature (e.g., Kimura and Lane [26], Zygelman et al. [27],
and Wang et al. [28]) and is only briefly discussed here. It
involves solution of a coupled set of second-order differential
equations using the log-derivative method of Johnson [29]. In
the adiabatic representation, transitions between channels are
driven by radial and rotational (Arad and Arot) couplings of the

vector potential A(
→
R), where

→
R is the internuclear distance

vector. Since the adiabatic description contains first- and
second-order derivatives, it is numerically convenient to make
a unitary transformation [27,30,31] to a diabatic representation

U (R) = W (R) [V (R) − P (R)] W−1(R) (3)

and

dW (R)/dR + W (R)Arad(R) = 0, (4)

where U(R) is the diabatic potential matrix, V(R) is the diagonal
adiabatic potential, W(R) is a unitary transformation matrix,

and P(R) is the rotational matrix of the vector potential A(
→
R)

[28,32,33]. With the diabatic potentials and couplings, the
coupled set of second-order differential equations is solved
to obtain the K matrix from the scattering amplitude after a
partial-wave decomposition (see, e.g., Zygelman et al. [27]).
The electron-capture cross section is then given by

σα→β = πgα

k2
α

∑
J

(2J + 1)|(SJ )αβ |2, (5)

where the S matrix is defined as

Sj = [I + iKj ]−1[I − iKj ], (6)

I is the identity matrix, kα denotes the wave number for
center-of-mass motion of the initial ion-atom channel, and
gα is an approach probability factor of the initial channel α.
Electron translation factors (ETF’s) [26] have been included
in the current calculations since we found it is quite important
for collision energies around and above 1 keV in the (HeH)2+
collision system. By applying the common ETF’s [34], the
radial and rotational coupling matrix elements between states
ψK and ψL are transformed respectively into [35]

〈ψK |∂/∂R − (εK − εL)z2/2R|ψL〉,
(7)

〈ψK |iLy + (εK − εL)zx|ψL〉,

where εK and εL are the electronic energies of states ψK

and ψL, and z2 and zx are the components of the quadrupole
moment tensor. The method described above is carried out for
each partial wave J until the cross section converges.

B. Optical-potential method and semiclassical method

The optical-potential method for treating radiative charge
transfer is described in detail by Zygelman and Dalgarno [36].
During the ion-atom collisions, the transition probability per
unit time for the radiative spontaneous-emission process, i.e.,
the Einstein coefficient, is represented by the imaginary part
of a complex optical potential. The scattering wave FI ( �R),
where R is the internuclear distance and the subscript I denotes
the initial upper molecular state, is obtained by solving the
Schrödinger equation[

− 1

2µ
∇2

�R + VI (R) − E

]
FI ( �R) = i

2
A(R)FI ( �R). (8)

Here E is the collision energy in the entrance channel, µ is
the reduced mass, and A(R) is the transition probability for the
radiative transition given by

A(R) = 4

3c3
| �D(R)|2|VI (R) − VF (R)|3, (9)

where c is the speed of light, and VI (R) and VF (R) are the
adiabatic potential energies of the upper and the lower states,
respectively. �D(R) is the transition dipole defined by

�D(R) = 〈ψI |�r|ψF 〉 (10)

in terms of the initial and final electronic wave functions.
The cross section for collision-induced radiative decay can

be written as

σ (E) = π

k2
I

∞∑
J

(2J + 1) [1 − exp(−4ηJ )], (11)

where ηJ is the imaginary part of the phase shift for the Jth
partial wave of the radial Schrödinger equation, which is given
in the distorted-wave approximation by

ηJ = π

2

∫ ∞

0
dR

∣∣f I
J (kIR)

∣∣2
A(R), (12)

where kI = √
2µ [E − VI (∞)], and f I

J (kIR) is the regular
solution of the homogeneous radial equation{

d2

dR2
− J (J + 1)

R2
− 2µ[VI (R) − VI (∞)] + k2

I

}
× f I

J (kIR) = 0 (13)

and is normalized asymptotically according to

f I
J (kIR) =

√
2µ

πkI

sin

(
kIR − Jπ

2
+ δI

J

)
. (14)

In order to extend the calculation to higher energy, by
replacing the summation in Eq. (11) and applying the JWKB
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approximation, one obtains the expression for the semiclassi-
cal cross section,

σ (E) = 2π

√
2µ

E

∫
pdp

∫ ∞

RCTP
I

dR
A(R)√

1 − VI (R)/E − p2/R2

(15)

where p is the impact parameter and RCTP
I is the classical

turning point in the incoming channel [36,37]. For large
energies (E 
 VI ), the double integral is nearly energy
independent, and therefore σ (E) varies as 1/E

1
2 [38,39].

III. RESULTS AND DISCUSSION

A. He2+ + H(1s) → He+(2l) + H+ collisions

In the low-impact-energy region, it is commonly accepted
that charge transfer in He2+ + H(1s) collisions is dominated
by couplings between the initial state 2pσ and the final states
2sσ , 3dσ , and 2pπ . The electronic energies εn(R) versus the
internuclear distance R of the most important molecular states
in the (HeH)2+ collision system are shown in Figs. 1(a)–1(d)
for the unscreened case and Debye length D = 10.0, 5.0, 2.0,

respectively. In the large-R limit the 2pσ molecular orbital
becomes the H(1s) atomic orbital, and the 2sσ ,3dσ ,2pπ

states correlate with the He+(2s,2p0,2p±1) states. In the
no-screening case, 2pσ , the 2sσ , 3dσ , and 2pπ states are
degenerate as R → ∞. The degeneracy is removed in the
case with a screened Coulombic potential and the splitting
between the initial state 2pσ and the final states 2sσ ,3dσ ,2pπ

increases when the Debye length D decreases, as shown in
Figs. 1(b)–1(d). Another significant screening effect is that
all the binding energies shift up as the screening becomes
stronger. In the extreme case, when D = 2.0 [Fig. 1(d)], 3dσ

and 2pπ are no longer bound states (not shown in the figure);
thus the 2sσ state becomes the only possible final channel
for the charge-transfer process. Further decreasing D will
eventually remove all the possible channels and the collision
process (1) is completely forbidden. We also note there is
a strong avoided crossing between 2pσ and 2sσ at about
R = 0.35 when D = 2.0, as shown in Fig. 1(d). The avoided
crossing that appears is also due to the Coulombic screening
effect since in the united-atom limit the 2sσ and 2pσ orbitals
become the 2s and 2p atomic orbitals of Li2+, and the orbital
energy of Li2+(2s) is lower than that of Li2+(2p) when

FIG. 1. Electronic energy εn(R) as a function of internuclear distance R of the most important molecular orbitals in (HeH)2+ collision
system. (a) no-screening; (b) D = 10.0; (c) D = 5.0; (d) D = 2.0.
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FIG. 2. Potential energies, ETF-corrected radial and rotational couplings (adiabatic and diabatic) as a function of internuclear distance for
no-screening case.

the Coulombic potential is screened [40]. A similar avoided
crossing is not shown in Figs. 1(b) and 1(c) where D = 10.0 and
5.0 because the screening is still weak and the avoided crossing
is too close to R = 0. Nonetheless, the avoided crossing has
very little contribution to the electron-capture cross section in
the low-collision-energy region (<5 keV).

In Fig. 2, the adiabatic and diabatic potential energies and
the ETF-corrected radial and rotational couplings are presented
for the no-screening case. It should be noted that in the
adiabatic radial couplings [Fig. 2(c)], in addition to the major
peak around R = 3.6, which is consistent with the position
of the avoided crossing between the 2sσ and 3dσ molecular
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FIG. 3. Total charge-transfer cross sections in He2+ + H(1s) →
He+(2l) + H+ collisions for no-screening case. Lines in the figure
are for guide of eyes.

orbitals, there is another weak peak around R = 1.7, which
correlates with the avoided crossing between 3dσ and 3pσ , as
shown in Fig. 1(a).

Using the obtained diabatic potentials and coupling matrix
elements with the MRD-CI approach, the QMOCC method,
described in Sec. II A, is applied to calculate the charge-
transfer cross sections for He2+ + H(1s) → He+(2l) + H+
collisions in the center-of-mass collision-energy region from
60 eV to 5 keV, and the total cross sections for the no-screening
case in comparison with existing data, both theoretical and
experimental, are presented in Fig. 3. In the calculated energy
region, our results are in very good agreement with other
theoretical works except with those from Hemert [10] below
200 eV. This discrepancy in the lower-energy region might
be attributed to both the difference in the treatment of the
electron translation (Vaaben and Taulbjerg type ETF used
in Hemert’s approach [10]) and the computational accuracy
in the calculation of the potential energy surfaces in early
years. In comparison, as pointed out by Krstic [16], the
hyperspherical coupled-channel method applied by Liu et al.
[15] is not only a numerically intensive approach to the

FIG. 4. Total and state-selective charge-transfer cross sections in He2+ + H(1s) → He+(2l) + H+ collisions for no-screening case and
screened Coulomb potentials with D = 10.0, 5.0, 2.0.
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FIG. 5. Total charge-transfer cross sections in He2+ + H(1s) →
He+(2l) + H+ collisions for no-screening case and Debye length
D = 10.0, 5.0, 2.0.

dynamics of three-body systems, but also can, similarly to
the hidden-crossings coupled-channel approach, establish the

correct boundary conditions as R → ∞ without using ETF’s;
therefore, higher accuracy over standard MOCC methods
should be achieved.

The total and state-selective cross sections for the screened
cases with Debye length D = 10.0,5.0,2.0 are calculated
similarly and presented in Figs. 4(a)–4(d). In Fig. 5, we
compare the total cross sections for both unscreened and
screened cases. For the unscreened case, as shown in Fig. 4(a),
we found that the radial coupling between 2pσ and 3dσ is
of the most importance at collision energies 600 eV and
above. Although in this energy region the contribution of
rotational coupling between 2pσ and 2pπ is also comparable,
an extended calculation to 10 keV (not presented in this work)
has shown that the coupling 2pσ to 3dσ is dominant at higher
energy. However, the contribution of the coupling 2pσ to 3dσ

decreases exponentially as the impact energy decreases, while
that of 2pσ to 2pπ gains importance gradually and becomes
dominant from 60 to 200 eV. Similar behavior has also been
observed in the screened cases with D = 10.0 and 5.0, except
that the upper limit of the dominant region of 2pσ to 2pπ

extends to 500 and 800 eV, respectively.
In Fig. 5, we notice that at collision energies around

1 keV the total cross section decreases as the Debye length D

FIG. 6. Diabatic potential energy separations and coupling matrix elements between 2pσ and 3dσ , 2pσ and 2pπ with different screening
parameters.
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decreases, especially for D = 2.0, where the total cross
section is much smaller than the others since 2pσ -2sσ is the
only channel permitted with such strong screening. Similar
behavior has also been observed in a much higher-energy
region (10–300 keV) in Liu et al.’s work [23]. However, the
total cross sections have no such obvious order at collision
energies around 100 eV and below. For example, at 80 eV
the total cross section with D = 5.0 is larger than that for
the no-screening case and for D = 10.0. The behavior of
the total cross sections with various screening parameters
can be qualitatively understood by comparing the diabatic
potential energy separations and the coupling matrix elements,
as presented in Fig. 6. Two major contributions to the total
cross section at collision energies around 1 keV, the radial
coupling 2pσ -3dσ and the rotational coupling 2pσ -2pπ ,
both have decreasing matrix elements in the most important
internuclear region when D decreases, as shown in Figs. 6(b)
and 6(d). Therefore, the behavior of the total cross sections
at higher collision energies could be expected because in
this energy region the coupling matrix elements are the
determinant factors and the potential energy separations are
much less important. At lower collision energies around
100 eV and below, things are complicated because both the
coupling matrix elements and the potential energy separations
become important. Although the rotational coupling 2pσ -2pπ ,
which dominates in this energy region, has decreasing matrix
elements when D decreases, the corresponding potential
energy separation increases at large internuclear distance
and decreases at small internuclear distance, as shown in
Fig. 6(c). The competition between the coupling matrix
elements and potential energy separations makes the order of
the total cross sections difficult to predict at the lower collision
energies.

B. He2+ + H(1s) → He+(1s) + H+ + hv collisions

As the cross sections continue to drop rapidly at lower
energies (roughly below 40 eV, i.e., Krstic [16] and Liu et al.’s
work [15] in Fig. 3), the radiative charge transfer He2+ +
H(1s) → He+(1s) + H+ + hv will become dominant. The two
molecular orbitals involved in this process are the 2pσ and 1sσ
states. The electronic energy separations and dipole matrix
elements are illustrated in Figs. 7 and 8, respectively. In Fig. 9,
the calculated transition probability A(R) is presented. Using
the optical-potential method and the semiclassical method
described in Sec. II B, we obtained the charge-transfer cross
sections in the energy range from 10−4 to 1 eV and 1 to 102 eV,
respectively, as shown in Fig. 10. The cross sections for the
no-screening case (solid line in Fig. 10) are in good agreement
with the results of West et al. [9]. Rich resonance structures
evident at energies below about 0.4 eV are observed for all the
unscreened and screened cases; they are due to the transient
vibrational and rotational states in the entrance channel 2pσ .
The calculated cross sections demonstrate a decreasing trend
in the studied energy region from 10−4 to 102 eV as the Debye
length D decreases. This is mainly because the electronic
energy separation between the 2pσ and 1sσ states is reduced
(Fig. 7), thus causing a reduction of the transition probability
A(R) [Eq. (8)], as shown in Fig. 9. The decrements of the
dipole matrix elements (Fig. 8) at R > 3.0 when D decreases
also enhance this trend.

FIG. 7. Electronic energy separation between the 2pσ and 1sσ
states of (HeH)2+.

FIG. 8. Dipole matrix elements between the 2pσ and 1sσ states
of (HeH)2+.

FIG. 9. Transition probability A(R) between the 2pσ and 1sσ
states of (HeH)2+.
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FIG. 10. Radiative charge-transfer cross sections in He2+ +
H(1s) → He+(1s) + H+ + hv collisions for D = 10.0, 5.0, 2.0
and no-screening case. The cross sections are obtained by employing
the optical-potential method (10−4 to 1 eV) and the semiclassical
method (1 to 102 eV).

IV. SUMMARY

The goal of the present work has been to provide accurate
knowledge of the effects of Coulomb interaction screening on

the total and state-selective cross sections for charge transfer in
He2+ + H(1s) collisions in the low-energy region. Toward this
end we assume that the (HeH)2+ collision system is embedded
in a Debye plasma and the screened Coulomb interaction
is described by the Debye-Hückel potential. The ab initio
adiabatic potential and coupling matrix elements are obtained
by using the MRD-CI package. The QMOCC approach has been
applied to calculate the total and state-selective cross sections
in the nonradiative charge-transfer process (1) from 60 eV
to 5 keV. For the radiative charge-transfer process (2), the
optical-potential method and the semiclassical method have
been applied in the collision energy range from 10−4 to 1 eV
and 1 to 102 eV, respectively. In both processes, the total
cross sections generally demonstrate a decreasing trend as the
Debye length D decreases, except that there is no such clear
trend at energies about 100 eV and below in the nonradiative
charge transfer process (1). The behavior of the cross sections
can be attributed to the introduced changes of the potential
energy separations and coupling matrix elements with different
screening parameters.
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