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Convergent-close-coupling calculations for excitation and ionization processes of electron-hydrogen
collisions in Debye plasmas
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Electron-hydrogen scattering in weakly coupled hot-dense plasmas has been investigated using the convergent-
close-coupling method. The Yukawa-type Debye-Hückel potential has been used to describe the plasma screening
effects. The target structure, excitation dynamics, and ionization process change dramatically as the screening is
increased. Excitation cross sections for the 1s → 2s,2p,3s,3p,3d and 2s → 2p,3s,3p,3d transitions and total
and total ionization cross sections for the scattering from the 1s and 2s states are presented. Calculations cover the
energy range from thresholds to high energies (250 eV) for various Debye lengths. We find that as the screening
increases, the excitation and total cross sections decrease, while the total ionization cross sections increase.
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I. INTRODUCTION

With the advancement of experimental technologies, the
past decade has seen an increased interest in the study
of hot-dense plasmas [1–8]. These studies have mainly
concentrated on the research of inertial confinement fusion,
laser-produced plasmas, astrophysics, spectroscopy, plasma,
and atomic physics. For hot-dense plasmas that are not in
local thermodynamic equilibrium it is important to study
the ionization and excitation processes that are used in the
determination of ion stage abundance, radiative power losses,
and the identification of plasma temperature and pressure.
Such plasmas exhibit Coulomb screened interactions, which
is a collective, many-particle effect. In the approximation of
pairwise correlations, this interaction reduces to the Debye-
Hückel potential in weakly coupled plasmas [9]. The Debye-
Hückel potential of an ion of positive charge Z that interacts
with an electron is given by

V (r) = −Ze2

r
exp

(
− r

D

)
, (1)

where D is the Debye screening length D =
√

kBTe/4πe2ne,
kB is the Boltzmann constant, Te is the electron temperature,
and ne is the electron density. The interaction potential given
by (1) is accurate if the Coulomb coupling parameter � and
nonideality parameter γ are such that � � 1 and γ � 1,
where � = e2/akBTe, with a = (3/4πne)1/3 being the average
interparticle distance, and γ = e2/DkBTe.

Several theoretical investigations have been conducted on
electron scattering in the Debye plasma environment. It has
been shown that the Debye-Hückel potential (1) critically
affects the electron scattering processes by changing the target
spectrum and excitation dynamics [10–18]. Such studies have
mainly concentrated on hydrogenlike targets for low or high
incident-electron energies. Kar and Ho [19–21] have investi-
gated several resonance states of the H− ion interacting with a
screened Coulomb (Yukawa) potential using the stabilization
method. Recently, Zhang et al. [10,11] described low-energy
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electron-hydrogen scattering using the R-matrix method, con-
centrating on Feshbach resonances near the n = 2 excitation
threshold region. High-energy electron-hydrogen excitation
processes have been investigated by Qi et al. [16] and Hatton
et al. [17] using the first Born approximation (FBA). The
ionization process for electron-hydrogen scattering has been
studied by Jung and Joon [18] using a semiclassical approach.
However, to date, no study has been conducted on electron-
hydrogen excitation and ionization processes in hot-dense
weakly coupled (Debye) plasmas over a complete range of
energies and Debye lengths. The purpose of the present study
is to investigate the effects of a Debye plasma environment
on the electron-hydrogen excitation and ionization collision
processes across a broad range of incident-electron energies
and a wide range of Debye lengths using the convergent-close-
coupling (CCC) method [22–25].

This paper is structured as follows. Section II describes the
changes made to the CCC theory to include the Debye-Hückel
potential (1). Results of our calculations are presented in
Sec. III for the target structure and for the various cross
sections (CS): integrated, total ionization (TICS), and total
cross sections (TCS). The conclusion is given in Sec. IV.
Atomic units are used throughout, unless specified otherwise.

II. METHOD

The CCC method for electron scattering on hydrogen atoms
has been discussed in detail by Bray and Stelbovics [23].
Briefly, the Sturmian (Laguerre) basis is used to diagonalize
the hydrogen atom Hamiltonian under Debye screening:

HT = −1

2
∇2

1 − 1

r1
exp

(
− r1

D

)
. (2)

This results in a set of N positive- and negative-energy square-
integrable pseudostates φ(N)

n (r; D):
〈
φ

(N)
f (r; D)

∣∣HT

∣∣φ(N)
i (r; D)

〉 = ε
(N)
f δf i . (3)

With increasing N the negative-energy pseudostates converge
to true eigenstates, and the positive-energy states provide
an increasingly dense discretization of the continuum. For
the Coulomb potential diagonalization in a Sturmian basis
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allows us to represent the infinite number of discrete spectrum
states and the continuum via a finite number of pseudostates,
which makes subsequent scattering calculations feasible. In the
case of the screened Coulomb potential the discrete spectrum
contains a finite number of states, which substantially changes
the character of the problem from the pure Coulomb case.

The set of pseudostates is then used to perform an expansion
of the total wave function for the electron-hydrogen scattering
system and formulate a set of close-coupling equations for
the T matrix [23]. The CCC method solves the close-coupling
equations in momentum space and uses the calculated T matrix
to determine cross sections and other observables of interest.

Relatively minor modifications to the CCC method are
required in order to describe electron-hydrogen scattering in
Debye plasmas. The electron-hydrogen Hamiltonian under
Debye screening has the form

H = −1

2
∇2

1 − 1

r1
exp

(
− r1

D

)
− 1

2
∇2

2 − 1

r2
exp

(
− r2

D

)

+ 1

|r1 − r2| exp

(
−|r1 − r2|

D

)
, (4)

where r1 is the distance of the bound electron and r2 is the
distance of the projectile electron to the atom. The account
of the electron-nuclei potential (1) is straightforward. The
electron-electron potential V12 is represented in partial-wave
form:

V12 = 1

|r1 − r2| exp

(
−|r1 − r2|

D

)

= − 1

D

∞∑
l=0

(2l + 1)jl

(
ir<

D

)
h

(1)
l

(
ir>

D

)
Pl cos(θ ).

(5)

For the unscreened Coulomb case (D → ∞) it reduces to the
well-known expression

V12 = 1

|r1 − r2| =
∞∑
l=0

rl
<

rl+1
>

Pl cos(θ ). (6)

Here r< = min(r1,r2), r> = max(r1,r2), and Pl , jl , and h
(1)
l

are the Legendre polynomial, spherical Bessel, and Hankel
functions of the first kind, respectively. To accurately calculate
jl and h

(1)
l with complex arguments the subroutine COULCC of

Thompson and Barnett [26] was used. By making the simple
substitutions of (1) and (5) in place of the unscreened Coulomb
potential the CCC method formulation presented in Ref. [23]
remains valid for electron scattering in Debye plasmas.

The CCC method uses the analytical Born subtraction
technique to speed up the convergence of the partial-wave
expansion. We therefore need to modify for the FBA matrix
elements for inelastic scattering. For screened Coulomb
potential it is given by

〈
kf φ

(N)
f (r; D)

∣∣V12

∣∣kiφ
(N)
i (r; D)

〉

=
(

1

2π

)(3/2) 1

D−2 + (�kf − �ki)2

∫
φ

∗(N)
f (r; D)

× exp[i(�kf − �ki) · r1] φ
(N)
i (r; D) d3r1. (7)

TABLE I. Bound states and pseudostates for various Debye
lengths D.

D

(units of a0) Basis

∞ 29 bound states (1s–8s, 2p–9p, 3d–9d , and 4f –9f )
plus 69 pseudostates

20 9 bound states (1s–4s, 2p–4p, 3d , and 4d)
plus 89 pseudostates

10 5 bound states (1s–3s, 2p, and 3p)
plus 93 pseudostates

4 2 bound states (1s and 2s)
plus 96 pseudostates

III. RESULTS

A. Target structure

We performed diagonalization of the hydrogen atom Hamil-
tonian for s, p, d, and f states for a number of Debye lengths.
A Laguerre basis with an exponential cutoff parameter λl = 2
and basis Nl = 26 − l for l � lmax = 3 has been used. This
leads to a total of 98 states. For the Coulomb potential 29
of these states have negative energy (representing hydrogen
bound states, 1s–8s, 2p–9p, 3d–9d, and 4f –9f ), with the
rest providing square-integrable discretization of the target
continuum. For incident-electron energies E � 20 eV, only
open channels were included; for E > 20 eV, the highest-
energy s, p, d, and f states were excluded.

It is well known that the screened Coulomb potential
(1) supports only a finite number of bound states. This is
particularly beneficial for the target atom description in the
CCC method as we can obtain accurate representation of most
or (depending on the Debye length) all of the bound states. The
calculated energies of the bound states are in good agreement
with the results presented in Table I by Qi et al. [16] and Rogers
et al. [13], both obtained by a direct numerical solution.
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FIG. 1. (Color online) Hydrogen atom spectrum for l = 1 for
various Debye lengths obtained via diagonalization with E > 20 eV
scattering Laguerre basis.
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FIG. 2. (Color online) Normalized wave functions |	|2 for the
(a) 1s, (b) 2s, and 2p states.

With a decrease of Debye length the bound state energies
increase, which results in a transition of bound states into the
continuum. Table I presents results of the number of bound
states and pseudostates for the hydrogen atom diagonalized
with 98 Laguerre basis functions for several Debye lengths.
This is also illustrated in Fig. 1, where we present results of the
diagonalization for the hydrogen atom p states for a number
of Debye lengths. For example, the 2p state merges into the
continuum at the critical Debye length Dc = 4.5a0. It can be
seen from Fig. 1 that the density of the pseudostates with small
positive-energy increases with a decrease of Debye length.

Wave functions for the 1s, 2s, and 2p states are presented
in Figs. 2(a), 2(b), and 2(c), respectively, for various Debye
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FIG. 3. (Color online) Integrated CS for the 1s → 2p transition
for the D = 34a0 and D = 7a0 screened cases, compared with the
results of Zhang et al. [10,11].
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FIG. 4. (Color online) Integrated CS for the 1s → 2s transition
for the Coulomb and screened cases under various Debye lengths.
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FIG. 5. (Color online) Integrated CS for the 1s → 3s transition
for the Coulomb and screened cases under various Debye lengths.
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FIG. 6. (Color online) Integrated CS for the 1s → 2p transition
for the Coulomb and screened cases under various Debye lengths.

lengths. With decrease of Debye length the target wave
function peaks decrease, broaden, and become more diffuse.
The excited states are affected by the Debye screening much
more than the ground state. This is expected as the screening
modifies Coulomb potential more at larger distances, affecting
to a larger degree the more-wide-ranging wave functions.

B. Scattering results

We have performed CCC calculations over a wide range of
energies (1–250 eV) and Debye lengths (D � 4a0). Around
30 partial waves were required to obtain convergence at the
largest considered energy. Convergence was tested and verified
at selected energies with a basis size of Nl = 26 − l for
lmax = 2 and lmax = 4. Convergence for the Coulomb case was
demonstrated by Bray and Stelbovics [23,24], who preformed
smaller calculations than those used here.

We have compared our results with Zhang et al. [10,11] for
transitions at the low-energy resonance region. In Fig. 3 we
present the 1s → 2p transition for D = 34a0 and D = 7a0

near the n = 2 threshold region. A basis of Nl = 15 − l and
Nl = 20 − l for lmax = 3 was used to demonstrate convergence
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FIG. 7. (Color online) Integrated CS for the 1s → 3p transition
for the Coulomb and screened cases under various Debye lengths.
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FIG. 8. (Color online) Integrated CS for the 1s → 3d transition
for the Coulomb and screened cases under various Debye lengths.

of our calculations. Our results are in good agreement with the
relatively small-size R-matrix calculations for both the Debye-
Hückel potential and the Coulomb case [27]. This suggests that
including a large number of pseudostates is not required to
achieve convergence at the low-energy resonance region. We
will concentrate here on the cross-section behavior outside the
resonance region.

The Debye length dependence of the integrated CS for
excitation of the 2s, 2p, 3s, 3p, and 3d states from the ground
state and the excitation of 2p, 3s, 3p, and 3d from 2s together
with TICS of the 1s and 2s states are presented in this section.
We find that cross sections for the Debye length D = 100a0

are practically the same as for the Coulomb (no screening)
potential. We therefore restrict calculations to D � 100a0 for
all transitions considered in this paper. The present results as
well as results for many more transitions will be made available
via the CCC database [28].

1. Excitation cross sections

Integrated CS for the 1s → 2s transitions for various Debye
lengths are presented in Fig. 4. We find that generally the

 1

 10

 100

 1000

 10000

 0  50  100  150  200  250

σ 
(u

ni
ts

 o
f a

02 )

Incident Energy (eV)

D=100a0
D=20a0
D=10a0

D=5a0

FIG. 9. (Color online) Integrated CS for the 2s → 2p transition
for the screened case under various Debye lengths.
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FIG. 10. (Color online) Integrated CS for the 2s → 3s transition
for the Coulomb and screened cases under various Debye lengths.

integrated CS decreases with a decrease of Debye length. The
sharp rise of the 1s → 2s integrated CS at the threshold is
present for all Debye lengths; however, with reduction of the
Debye length the cross-section maximum becomes smaller
and it broadens. From threshold to intermediate energies (∼8–
55 eV) we can see nonmonotonic behavior of the integrated
CS with change of Debye length (D > 10a0). This is a result
of the interplay of reduction of the cross-section maximum and
broadening of the cross section as the Debye length decreases.
Similar properties are also present in the 1s → 3s transition,
presented in Fig. 5.

Figures 6 and 7 present our results for the 1s → 2p and
1s → 3p optically allowed transitions. We find that for both
transitions the integrated CS decreases and its peak shifts
toward lower energies as the Debye length is decreased. The
reduction of the cross section is practically uniform across all
energies except for the small, close-to-the-threshold energy
region. In the latter region the reduction of the 1s → 2p,3p

excitation energies with decrease of Debye length leads to
nonmonotonic behavior.
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FIG. 11. (Color online) Integrated CS for the 2s → 3d transition
for the Coulomb and screened cases under various Debye lengths.
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FIG. 12. (Color online) Integrated CS for the 2s → 3p transition
for the Coulomb and screened cases under various Debye lengths.

For the 1s → 3d transition, presented in Fig. 8, we find
uniform reduction of the integrated CS as the Debye length is
decreased.

In Fig. 9 we present the 2s → 2p transition. For the
unscreened case, the integrated CS for this transition is infinite
due to the degeneracy of the hydrogen atom’s energy levels.
Debye screening eliminates the degeneracy of the hydrogen
atom bound states with the same principle quantum number.
This leads to finite excitation cross sections. Figure 9 shows
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and screened cases under various Debye lengths. The measurements
of Shah et al. [29] are compared with the Coulomb case.
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the uniform reduction of the 2s → 2p integrated CS with a
decrease of Debye length.

The behavior of the cross sections for optically prohibited
2s → 3s,3d transitions, presented in Figs. 10 and 11, and
optically allowed 2s → 3p transition, presented in Fig. 12, is
very similar to the corresponding ground state excitation cross
sections.
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FIG. 15. (Color online) TCS for the 1s state for the Coulomb and
screened cases under various Debye lengths.
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FIG. 16. (Color online) TCS for the 2s state for the screened case
under various Debye lengths.

2. Total and total ionization cross sections

The ground state TICS are presented in Fig. 13. For the
Coulomb case our results are in excellent agreement with
the experimental data of Shah et al. [29]. As Debye length
decreases, the TICS becomes larger, and its peak shifts to
lower energies. This is due to a combination of an increase
in the number of states merged into the continuum and the
decrease in the ionization energy of the ground state. In
particular, at Debye length D < 0.85a0 all excited states of the
hydrogen atom merge into the continuum. Note that behavior
of TICS with change of Debye length is opposite to the
behavior of excitation cross sections. In the CCC method
the TICS is calculated as a sum over integrated CS for all
positive-energy states. This means that with decrease of Debye
length D the TICS is constructed from an increasing number
of positive-energy-state integrated CS, which individually
decrease in value. When, with decrease of Debye length D, all
discrete spectrum states merge into the continuum (2p state at
Dc = 4.5a0 and 2s state at Dc = 3.2a0), any further decrease
of Debye length will lead to a corresponding decrease of the
TICS.

For the metastable 2s state TICS are presented in Fig. 14.
Similar to the scattering from the ground state, the TICS of
the 2s state increases with a decrease of Debye length. For
the Coulomb case our results are in good agreement with the
experimental data of Defrance et al. [30]. The TICS peak
shifts to lower energies with decrease of Debye length, and
monotonic behavior is observed across a whole range of
energies. The sharp rise in the TICS when Debye length D

decreases from 5a0 to 4a0 is primarily due to the transition of
the 2p state into the continuum.

The reduction of projectile-target interaction as Debye
screening increases (reduction of Debye length D) should lead
to a reduction of the total scattering cross section. This is,
indeed, the case, as can be seen from Figs. 15 and 16, where
TCS for the ground and metastable states are presented.

IV. CONCLUSION

In the present study we have investigated the effects of the
Debye-Hückel potential on the electron-hydrogen collision
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processes using the CCC method. The effects of such a
potential on the bound-state wave functions dramatically
affect the excitation and ionization collision processes over
the full incident-electron energy range. The TCS decrease
with a decrease of Debye length, which is consistent with
reduction of projectile-atom interaction as screening increases.
Similarly, we find that with the reduction of Debye length D the
excitation integrated CS decrease in magnitude, have a sharper
rise at threshold, and have a broadening of the cross-section
maximum. The TICS increases with increase of screening,
which is the result of a large transfer of flux from the discrete
spectrum to the continuum.

We hope that the calculated cross sections available via the
CCC database [28] will be helpful for modeling Debye plasma
transport and spectroscopy. In the future we are planning to
include the Debye screening in the study of electron-helium
scattering [31].
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