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Photoelectron angular distributions from polarized Ne∗ atoms near threshold

P. O’Keeffe and P. Bolognesi
National Research Council–Institute of Inorganic Methodologies and Plasmas, Area della Ricerca di Roma 1,

I-00016 Monterotondo Scalo, Italy

A. Mihelič
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Photoelectron distributions of the polarized 2p53d Rydberg states of neon have been studied with a newly built
velocity map imaging analyzer. The atoms were polarized by absorption of synchrotron radiation and ionized
by an infrared laser. The asymmetry parameters β2 and β4 characterizing two-photon resonant ionization have
been extracted from the measured images and compared with the results of a quantum defect treatment. To
achieve a good theoretical description of the data, it is necessary to take into account the dependence of the
dipole transition matrix elements and phases of the partial waves on the angular momentum quantum numbers
pertaining to various continuum channels.
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I. INTRODUCTION

Photoionization of polarized atoms is a useful tool for prob-
ing detailed aspects of the photoionization process. This point
is underlined in the work of Klar and Kleinpoppen [1], who
pointed out that the measurement of the angular distribution
of photoelectrons emitted from polarized atoms can provide
the “complete” information on the ionization process. Here,
complete information signifies the measurement of a sufficient
number of experimental observables such that all other
unmeasured observables can be predicted. Obviously, any
experiment is “complete” only up to the level of approximation
of the theoretical model used to describe the process.

A possible way of preparing a polarized atomic target
is by photoexcitation with polarized light. The resulting
polarized atoms are then photoionized by another polarized
light source. One of the most important experimental methods
for these types of measurements involves the combination of
synchrotron and laser radiation sources. For extensive reviews
of this class of experiments see Refs. [2,3], which include
a historical evolution of these experiments with increasing
sophistication of synchrotron sources and detectors over the
last three decades. Either source can be used to photo-prepare

a polarized ensemble of atoms, which can then be ionized by
the second radiation source.

In the case where visible radiation is used in the first step,
the most common type of experiment is to excite alkali or alkali
earth metals with the laser, and to ionize the resulting excited
atom with relatively highly energetic synchrotron radiation (for
recent examples see Refs. [4–7] and the references therein).
This allows the inner-shell ionization of the atoms to be studied
by analyzing the kinetic energy of the electrons emitted. The
common methods used in this case are the measurement of
the linear alignment dichroism, linear magnetic dichroism in
the angular distribution, and circular magnetic dichroism, in
which the intensity is measured as a function of the relative
polarization of the two light sources.

However, experiments in which the synchrotron is used
as a pump and the laser radiation is used as a probe (e.g.,
Refs. [8–12]) are more relevant to the present work as the
atomic targets in this work are rare gas atoms, which do
not have low-lying excited states accessible to excitation by
visible laser light. Therefore, in this case, it is the synchrotron
radiation which is used to excite the atom into a Rydberg
state, and subsequently the atom is ionized by the laser light.
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In most experiments using this scheme, double-resonance
excitations have been studied, in which the laser induces a
second resonant transition to autoionizing states between the
spin-orbit split ionization thresholds of the rare gas atom.
These studies concentrated either on the spectroscopy of the
two-photon accessible Rydberg states [8,11,12] (not accessible
by single-photon excitation from the ground state due to the
selection rules), on the line shapes of these resonances [10],
or on the determination of the partial cross sections using
the variable polarization of both sources [9]. In these cases,
the total ion yield is measured as the experiments are targeted
at the measurement of the integral cross sections. Fewer
experiments of this type have been dedicated to the detection
of electrons and their angular distributions [13]. This may be
partially explained by the fact that the photons of the visible
laser light used in these studies usually have energies lower
than 3 eV, resulting in photoelectrons with a relatively low
kinetic energy, while most electron spectrometers used at
synchrotron sources are optimized for higher kinetic energy
electrons. Nonetheless, some studies exist in which electrons
were detected, a notable example of which is the work of
Mitsuke et al. [13]. They measured the angular distributions
of photoelectrons emitted from polarized Rydberg states of
Ar for a fixed laser wavelength. As will be explained in the
text, due to a difference in the geometry of the experimental
technique used in that study with respect to the present work,
more experimental parameters describing the photoionization
process can be extracted from the photoelectron angular
distributions (PADs) presented here.

In order to complete the background on this type of
photoionization experiments, it is also necessary to mention
experiments performed with high-order harmonic generation
(HHG) sources using femtosecond lasers to produce the
vacuum ultraviolet (VUV) light to excite the Rydberg atoms
[14] and the two-photon two-laser ionization of metastable
excited rare gas atoms generated in dc discharges [15–17].
The first of these sources have recently been employed to
investigate the PADs resulting from the photoionization of
the aligned He 1s3p and 1s4p 1P1 atoms [14]. Indeed, this
work, which employed the same experimental method and
geometry as is used in the present case for the measurement
of the PADs, showed the potential of the method to extract
detailed information on the photoionization process and as a
result provided complete information on the photoionization
process allowing theory to be tested fully [14]. However, due
to the limited tunability of the HHG sources, this method is not
applicable to the photoionization of a wide range of rare gas
Rydberg states. The second method, on the other hand, forms
the basis of a series of papers by Hotop and coworkers [15–17],
in which a beam of either metastable Ne (2p53s 3P2) or Ar
(3p54s 3P2) atoms produced in a dc discharge source are
excited by the first laser to form a polarized sample of Ne
(2p53p 3D3) or Ar (3p54p 3D3) atoms. These polarized atoms
are then photoionized by the second laser. This far reaching
series of papers provided deep insights into the photoionization
process in rare gas atoms.

From a theoretical point of view, the work of Baier et al. [18]
and the work of Cherepkov et al. [19] provide a solid basis
for the theoretical description of the angular distributions of
electrons emitted in the photoionization of polarized atoms.

These models (or more recent variants thereof; cf. Ref. [20])
have provided the theoretical basis for the description of many
of the experimental results described above.

In this paper, we concentrate on the use of the velocity
map imaging (VMI) technique to measure the PADs resulting
from the photoionization of the aligned Ne 2p53d Rydberg
states converging to the 2p3/2 and 2p1/2 ionization thresholds.
To our knowledge, it is the first time that this experimental
technique has been applied to synchrotron plus laser pump-
probe experiments. It will be shown here that there are
advantages of its use over methods traditionally used at
synchrotron sources. In particular, it will be shown that the
experimental geometry of velocity map imaging provides
access to more experimentally measurable parameters than
other fixed geometries (this point will be fully discussed in
Sec. IV C). The results will be compared with the angular
distributions calculated using the quantum defect theory.
Furthermore, the standard approximation of assuming that
the single-electron dipole matrix elements and phase shifts
only depend on the orbital angular momentum of the outgoing
electron waves will be tested.

II. EXPERIMENTAL SETUP AND DATA ANALYSIS

The experiments described in this work have been per-
formed at the branch line of the gas phase photoemission
beam line at the Italian synchrotron radiation source Elettra,
Trieste. A schematic view of the experimental setup is
shown in Fig. 1. The general layout and performance of
the beam line is described elsewhere [21]. We will therefore
concentrate principally on a description of the additional
apparatus necessary for the synchrotron plus laser velocity
map imaging experiments.

The details of the laser system in use on the beam
line have also been published previously [12], and only a
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FIG. 1. (Color online) Schematic view of the geometry of the
experimental setup. The polarization of the synchrotron light and the
polarization of the Ti:sapphire laser (double arrows) are parallel to
each other and the beams are counterpropagating. The electrodes are
labeled as follows: R, repeller; E, extractor; and G, ground. Details
of the setup can be found in the text.
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brief description is given here. The laser employed is a
commercial mode lockable Ti:sapphire oscillator (Tsunami,
Spectra Physics) tunable in the range of 670–1000 nm. In the
experiments reported here, the laser was used in a continuous
wave (cw) mode due to the relatively long lifetimes of the
intermediate states. In the multibunch mode used during these
experiments, the time between electron bunches in the storage
ring was 2 ns (this corresponds to the synchrotron radio
frequency of 500 MHz), and therefore, as the intermediate
states pumped by the synchrotron have a much longer lifetime
[22,23], no gain is achieved on passing from the cw to the
pulsed mode of the laser.

Both light sources are focused to the interaction region of a
newly built VMI spectrometer. The electrode dimensions and
spacings are similar to those of the VMI spectrometer reported
in Ref. [24], while the distance from the interaction region to
the position sensitive detector (PSD) is 210 mm. The focal
region of the synchrotron source in the interaction zone is a
circle with the diameter of about 300 µm, while the laser is
focused with a 50-cm focal-length lens, and thus we estimate
its diameter to be approximately 250 µm in the interaction
region. The neon gas is introduced into the interaction region
by an effusive jet at 90◦ with respect to the propagation
direction of the two light sources formed by a brass needle
of internal diameter of 250 µm (Fig. 1).

The PSD used in the VMI apparatus has been designed
and built by the Instrumentation and Detectors Laboratory at
Sincrotrone Trieste. Its details have been published previously
[25]. Briefly, the detector is based on the use of two delay-line
anodes placed behind two microchannel plates and has a spatial
resolution of approximately 70 µm. Furthermore, it has an
active area of dimensions 30 × 30 mm. A full description of
the entire VMI apparatus used in these experiments will be
given in a forthcoming publication [26].

In the experiment presented here, the synchrotron radiation
was tuned to excite either the Ne 2p5(2P3/2) 3d[3/2]1 or the Ne
2p5(2P1/2) 3d[3/2]1 state from the ground state with photon
energies equal to 20.0404 or 20.1395 eV, respectively. The jK-
coupling notation [K]J (see Ref. [27]) is used here to describe
the coupling of the 3d electron to the ionic core. Linearly
polarized laser light was then used to ionize these states with
a number of different wavelengths, thus probing different
parts of the continuum. It was also possible to scan the laser
wavelength while monitoring either the total electron or total
ion yield and verifying that the photoionization takes place into
a flat (nonresonant) continuum [12]. The bandwidths of the
synchrotron and the Ti:sapphire laser were narrow compared
to the energy splitting of the 2p53d (J = 1) intermediate states
and the energy differences between the resonance states in the
autoionization region (i.e., the energy region between the 2p3/2

and the 2p1/2 ionization thresholds). We were therefore able
to choose the energy of synchrotron radiation to selectively
excite the chosen intermediate state, and the energy of the
laser in such a way to avoid double-resonance excitation (and
subsequent ionization) in the autoionization region. For each
laser wavelength, an image was acquired for about 1 h. A back-
ground image was also taken in which only the synchrotron
light was allowed to pass through the interaction region.

The raw images were then inverted using the pBasex
routine introduced by Garcia et al. [28]. The pBasex method

works by reconstructing the original three-dimensional (3D)
distributions of the emitted electrons by fitting a set of
basis functions of known inverse Abel integral to the two-
dimensional (2D) projected image.

The two-photon PADs for photoionization using two lin-
early polarized photons with their electric field vectors parallel
to each other are completely described by the asymmetry
parameters β2 and β4 defined through [29]

dσ

d�
= σ

4π
[1 + β2P2(cos θ ) + β4P4(cos θ )], (1)

where dσ/d� is the differential photoionization cross section,
σ is the total (angle-integrated) cross section, and θ is the
angle between the polarization of the incident photons and
the direction of the ejected electron. It has been assumed in
Eq. (1) that the dipole approximation is valid: higher-order
transition amplitudes (quadrupole, octupole, etc.) are assumed
to be negligible in comparison with the dipole amplitude. The
asymmetry parameters β2 and β4 are extracted from the images
by the previously mentioned fitting procedure.

III. THEORETICAL DESCRIPTION OF THE
PHOTOIONIZATION OF POLARIZED ATOMS

The intermediate states we consider in the present
experiment are as follows: (1) Ne 2p5(2P1/2)3d[3/2]1 and
(2) Ne 2p5(2P3/2)3d[3/2]1. These states are each described
by a single configuration state function (weight � 95%) if the
jK-coupling scheme is used. As is customary, we indicate
the Jc = 1/2 core by a prime, and thus the two processes
investigated in this work can be described as

Ne 2p6 h̄ωS→ Ne 2p53d ′[3/2]1
h̄ωL→ Ne+2p5(2P1/2) + e−, (2)

and

Ne 2p6 h̄ωS→ Ne 2p53d[3/2]1
h̄ωL→ Ne+2p5(2P3/2) + e−. (3)

The energies of the synchrotron and laser photons are denoted
with h̄ωS and h̄ωL, respectively.

The aim of a theoretical description is to derive a
relationship between the measurable asymmetry parameters
describing the angular distribution and the radial matrix
elements and phases of the outgoing electron partial waves.
This goal can be achieved in two ways. The first method is to
calculate the radial matrix elements and phase differences and
then to calculate β2 and β4 directly. In this case there is no need
to reduce the number of parameters describing the process to a
number equal to or less than the experimental parameters, and
therefore fewer assumptions need to be made in describing
the process. The second method, on the other hand, is to
make a sufficient number of approximations, such that the
number of experimental parameters completely describes the
photoionization process, and then deduce directly the quantum
mechanical quantities from the experimental data. In this work,
we will adopt both approaches. The theoretical framework for
both methods is outlined in the following.

A. Quantum defect treatment

In this section, we derive the expressions for the asymmetry
parameters in terms of the dipole transition amplitudes and
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phase differences associated with various continuum channels.
As mentioned earlier, the energy h̄ωS is selected to excite a
given intermediate state, while the energy h̄ωL is chosen in
such a way as to avoid double-resonance excitation in the
autoionization region. This allows a rather simple theoretical
treatment in which the interaction between the channels with
different angular momenta of the atomic core Jc can be
neglected. Note that unlike the d resonances accessible by
one-photon excitation [23], the p and f resonance states are
narrow [12]. Consequently, the photon energies can be chosen
not to lie close to or on-resonance with the resonances in the
autoionization region (Jc = 1/2 discrete states embedded in
the Jc = 3/2 continuum), and the bound-continuum configu-
ration interaction is not considered.

In this case, the final state is described by the propagation
vector k, angular momentum of the atomic core Jc and its
projection Mc, and the projection ms of the spin s = 1/2 of
the photoelectron (Hartree atomic units are used):

|k; JcMcms〉 =
∑
l,ml

∑
K,Q

∑
J,M

ile−iσl e−iπµγ k−1/2Y ∗
l,ml

(k̂)

× (JcMclml|KQ)(KQsms |JM)|ε; γM〉.
(4)

In Eq. (4), γ is used to denote the quantum numbers Jc, l,
K , and J , while σl and µγ are the Coulomb phase shift of the
partial wave with orbital angular momentum l and the quantum
defect associated with the continuum electron, respectively.
The kinetic energy of the ejected electron is ε = k2/2. Note
that the decomposition used in Eq. (4) corresponds to jK

coupling (K = J c + l , J = K + s), which is exact when the
spin-orbit interaction between the orbital angular momentum
and spin of the continuum electron is negligibly small in
comparison with the spin-orbit interaction of the core (2p)
electrons. We are going to discuss this choice in the following.

The generalized differential two-photon ionization cross
section is written as [30]

dσ (2)

d�
= 2π (2πα)2ωSωLk

∑
Mc,ms

|T (2)(k)|2, (5)

where T (2)(k) = 〈k; JcMcms |D(2)|i〉 is a two-photon transition
amplitude connecting the ground state |i〉 and the final
continuum state. Since the energy of the synchrotron photons
ωS is chosen to lie on resonance with the intermediate states
in both cases considered here, the two-photon transition
amplitude is well approximated by taking into account a single
state in the sum over the intermediate states,

∑
Mc,ms

|T (2)|2 ≈
∑

Mc,ms

∣∣∣∣ 〈k; JcMcms |D|ν〉〈ν|D|i〉
Ei + ωS − Eν + i�ν/2

∣∣∣∣
2

= 4|〈ν|D|i〉|2
�2

ν

∑
Mc,ms

|〈k; JcMcms |D|ν〉|2, (6)

with ωS = Eν − Ei and ε = Ei + ωS + ωL − IJc
. The energy

and the radiative width of the 2p53d or 2p53d ′ intermediate
state |ν〉 are denoted by Eν and �ν , respectively, and D =
ê · (r1 + r2 + · · ·) is the dipole transition operator (with
polarization vector ê). IJc

is the energy of the corresponding
ionization threshold (I3/2 for 2p53d and I1/2 for 2p53d ′).

The polarization vectors of the synchrotron light and the
Ti:sapphire laser are parallel, and we choose our quantization
(z) axis along this direction. Since the total angular momentum
of the initial (ground) state is Ji = 0 and therefore Mi = 0,
the accessible intermediate states have Jν = 1 and Mν = 0,
and the nonzero dipole transition amplitudes 〈ε; γM|D|ν〉
[see Eqs. (4) and (6)] have M = 0 and J = 0 or J = 2.
By writing the final state in the form given by Eq. (4), we
assume that the angular momentum Jc of the final state is
well defined. Furthermore, we consider only those transitions
between the intermediate states and the final state for which Jc

remains unchanged. In the following we therefore omit explicit
dependence of the dipole matrix elements and quantum defects
on Jc.

The kinetic energy of the photoelectron measured in the
present experiment lies in the energy range up to about
70 meV. The quantities of relevance for the calculation of the
differential cross section—the quantum defects and the dipole
matrix elements pertaining to various channels—can thus be
obtained by extrapolation across the ionization thresholds.
The quantum defects µγ attributed to the components of the
continuum wave function in Eq. (4) have been obtained by
means of

Eγ = IJc
+ εγ = IJc

− 1

2(n − µγ,n)2
(for εγ < 0), (7)

by extrapolating the values of µγ into the continuum (εγ � 0).
The exact energies of the ground and 2p5nl (l = p,f ) excited
states converging to both ionization thresholds have been taken
from the NIST database [31]. In addition, bound-bound dipole
matrix elements for the transitions to the aforementioned
2p5nl states have been calculated with GRASP Dirac-Fock
codes [32]. The oscillator strength distribution has been
extrapolated from the discrete part of the spectrum across
the thresholds [33], and the values of the transition matrix
elements have been determined from the extrapolated values.
The resonances in the autoionization region have been treated
as purely bound in the extrapolation procedure.

The states used in the extrapolation are characterized by
the quantum numbers Jc, l, K , and J , and we therefore assign
these quantum numbers to the extrapolated quantum defects
and transition matrix elements. We treat these phase shifts πµγ

as the Lu-Fano eigenphase shifts [34–36]. In the description
introduced by Lu and Fano, the radial space is divided into
the inner region and the asymptotic (outer) region in which
the potential felt by an electron is only the screened Coulomb
potential. The wave function is then written in terms of close-
coupling channel functions used to describe the effects of the
short-range electron correlations in the inner region, and in
terms of collision channel functions which are used to describe
the Ne+ + e− complex in the asymptotic region. These two
types of channel functions are connected through a unitary
transformation.

In our case, we treat both the inner and outer region using
the jK-coupling scheme, and no transformation between the
functions describing the inner and outer region is needed. It
should be noted here again that the closed channels—which are
used to take into account the admixture of discrete components
of the resonance wave functions in the autoionization region—
have not been included in the description of the continuum
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TABLE I. The symmetry of the final states used in the extrap-
olation (n → ε) of the quantum defects and the oscillator strengths
across the ionization thresholds. Tabulated are the designations for
the dipole transition amplitudes (DJl,a or DJl,b for Jc = 3/2; D̄J l,a or
D̄J l,b for Jc = 1/2) and quantum defects (µJl,a or µJl,b for Jc = 3/2;
µ̄J l,a or µ̄J l,b for Jc = 1/2).

Channel 2p5(2PJc
) nl [K]J Amplitude Quantum defect

A 2p5(2P3/2) np [5/2]2 D2p,a µ2p,a

B 2p5(2P3/2) np [3/2]2 D2p,b µ2p,b

C 2p5(2P3/2) np [1/2]0 D0p,a µ0p,a

D 2p5(2P1/2) np [3/2]2 D̄2p,a µ̄2p,a

E 2p5(2P1/2) np [1/2]0 D̄0p,a µ̄0p,a

F 2p5(2P3/2) nf [3/2]2 D2f,a µ2f,a

G 2p5(2P3/2) nf [5/2]2 D2f,b µ2f,b

H 2p5(2P1/2) nf [5/2]2 D̄2f,a µ̄2f,a

wave function because the photon energy ωL is tuned to avoid
the resonances and since these resonances are very narrow.
Therefore, this situation corresponds to the case of the Lu-
Fano approach where all the considered channels are open
(see Ref. [35] for details).

By rearranging Eq. (6), it can be shown that

∑
Mc,ms

|〈k; JcMcms |D|ν〉|2 =
2∑

q=0

A2qP2q(cos θ ). (8)

Note that Eq. (8) follows directly from Eq. (6), where it
is assumed that the dipole approximation is valid also in
the second step of the two-photon process. Indeed, it has
been checked that this assumption is reasonable: The lowest
electric dipole (E1) oscillator strengths—in our case associated
with the transitions to the 2p5np Rydberg states used in the
extrapolation procedure—are more than an order of magnitude
larger than the highest electric quadrupole (E2) oscillator
strengths to the 2p5ng states.

The asymmetry parameters can thus be written as quotients:

β2 = A2/A0 and β4 = A4/A0. (9)

We express these quotients in terms of the dipole transition
amplitudes and quantum defects pertaining to the various final-
state channels. The amplitudes and the quantum defects are
characterized by the coupling of the core Jc, the orbital angular
momentum l, and the total momentum J . In the following, the
quantities pertaining to the Jc = 1/2 core will be denoted
with a bar, so that they differ from the analogous quantities
associated with the Jc = 3/2 core. Furthermore, an additional
label w = a,b will used to distinguish the channels with equal
Jc and l, but with different values of the resultant K . The
channels considered in the calculation and the corresponding
transition amplitudes DJl,w (D̄J l,w) and quantum defects µJl,w

(µ̄J l,w) are listed in Table I.
The coefficients A2q can be written in the form (J,J ′ = 0,2,

l,l′ = p,f , w,w′ = a,b):

Q̄J lw,J ′l′w′ = D̄J l,wD̄J ′l′,w′ cos(πµ̄J l,w − πµ̄J ′l′,w′ + σl − σl′)

(10)

for Jc = 1/2 and

QJlw,J ′l′w′ = DJl,wDJ ′l′,w′ cos(πµJl,w − πµJ ′l′,w′ + σl − σl′)

(11)

for Jc = 3/2. Henceforth, we will use a single letter (the
channel designation given in Table I) to denote the indices
J,l,w and J ′,l′,w′. For the core coupled to Jc = 1/2, the
coefficients are

A0 = 1

πk

1

4
(Q̄DD + Q̄EE + Q̄HH), (12)

A2 = 1

πk

(
1

4
Q̄DD +

√
2

2
Q̄DE −

√
6

14
Q̄DH

−
√

3

2
Q̄EH + 2

7
Q̄HH

)
, (13)

A4 = 1

πk

(
3

14
Q̄HH − 3

√
6

7
Q̄DH

)
, (14)

whereas for Jc = 3/2, we obtain

A0 = 1

πk

1

4
(QAA + QBB + QCC + QFF + QGG), (15)

A2 = 1

πk

(
1

5
QAA + 3

10
QAB − 3

√
5

10
QAC + 3

70
QAF

+ 3
√

6

35
QAG − 1

5
QBB −

√
5

10
QBC + 3

10
QBF

− 4
√

6

35
QBG − 3

√
5

10
QCF −

√
30

10
QCG + 1

5
QFF

+ 3
√

6

35
QFG + 11

70
QGG

)
, (16)

A4 = 1

πk

(
6

7
QAF + 3

√
6

14
QAG + 3

√
6

14
QBG

+ 3
√

6

14
QFG − 3

28
QGG

)
. (17)

Results of the theoretical treatment presented here will be
discussed in Sec. IV. In particular, Figs. 4 and 5 in Sec. IV B
present the calculated quantum defects and wave magnitudes
as a function of kinetic energy of the electrons.

In contrast to the theoretical approach employed by Hotop
et al. [15–17], we prefer the description of the continuum in
terms of the jK-coupled channel functions to the description
with the jj -coupled channel functions. Although, according to
our calculations, the weights of the leading configuration state
functions (CSFs) of the 2p5np and 2p5nf states are relatively
high using the jj coupling scheme (>∼ 90%), these states
are almost pure in jK coupling (the weights of the leading
CSFs being above 96% for n � 4). Since the extrapolation
procedure is used to determine the phase shifts and dipole
transition amplitudes (these are characterized by Jc, l, K , and
J ), it seems more natural to retain this description also for the
continuum channels. It is possible to provide a link between
the description of the continuum states used in this work with
that considered in the work of Hotop et al. if one considers
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that the final continuum state can also be expressed in terms
of the jj -coupled channel functions:

|k; JcMcms〉 =
∑
l,ml

∑
j

∑
J,M

ile−iσl k−1/2Y ∗
l,ml

(k̂)

×
∑
K,Q

(JcMclml|KQ)

× (KQsms |JM)Ubγ |ε; bM〉. (18)

In Eq. (18), b denotes the quantum numbers Jc,l,j , and
J , while γ denotes the quantum numbers in the jK-
coupling scheme. The coupling considered in this case is
j = l + s,J = J c + j . As before, Jc and J are used for
the angular momentum of the atomic core and for the total
angular momentum, whereas l and j are the orbital and the
total angular momentum associated with the continuum elec-
tron, respectively. The transformation matrix Ubγ connecting
the inner and outer region contains recoupling coefficients
for the transformation between the jj and jK-coupling
schemes:

Ubγ = (−1)Jc+l+s+J
√

2K + 1
√

2j + 1

{
K s J

j Jc l

}
. (19)

We have used the equality,

e−iπµγ |ε; γM〉 =
∑

j

Ubγ |ε; bM〉, (20)

which holds for the case where all the considered channels are
open [35].

B. Simplified model using reduced matrix elements

In the theoretical treatment of the photoionization process
presented earlier, there are five open channels (limits n → ε

of A, B, C, F , and G; see Table I) describing the 2p53d →
2p5(2P3/2)εp,εf ionization, and there are three channels (D, E ,
and H) describing the 2p53d ′ → 2p5(2P1/2)εp,εf ionization.
We assume in both cases that the photoionization with a
change in Jc is negligible. In order to be able to completely
characterize these channels, it would be necessary to have
access to nine and five experimental parameters, respectively,
even not counting the absolute cross section. In the experiments
performed here, it is not possible to extract such a large
number of parameters, and therefore some approximation is
necessary in order to be able to extract the transition amplitudes
and phase differences from the experimental results. Possible
approximations in the description of the photoionization
process will be implemented in this section, and their validity
will be discussed in Sec. IV.

A commonly applied approximation (e.g., see Refs. [15–
17]) is to neglect the spin-orbit interaction in the continuum
and to assume that the orbital shapes and the phase differences
do not depend on the total angular momentum (J ) associated
with the continuum channels. In order to derive simplified
versions of the expressions for β2 and β4, we first transform
the dipole matrix elements connecting the intermediate state
|ν〉 to the partial waves of the continuum wave function from

jK coupling to jj coupling, and then successively apply the
uncoupling formula [27]. For the present case, we obtain

Dν
J lK (ε)

= ei(σl+πµl )〈ε; [(Jc,l)K,s]JM|D|nν ; [(Jc,lν)Kν,s]JνM〉
(21a)

= (−1)J−M

(
J 1 Jν

−M 0 M

)
K̂K̂νĴ Ĵν

×
∑
j,jν

ĵ 2ĵ 2
ν (−1)3Jc+s+lν+Jν

{
K s J

j Jc l

}

×
{

Kν s Jν

jν Jc lν

}{
Jc j J

1 Jν jν

} {
l s j

jν 1 lν

}

× ei(σl+πµl )〈εl‖d‖nνlν〉. (21b)

The total (orbital + spin) angular momentum of the εl

and the 3d electron are denoted by j and jν , respectively,
and the notation q̂ = (2q + 1)1/2 has been introduced. The
reduced single-electron dipole matrix element is denoted by
〈εl‖d‖nνlν〉 = 〈εl‖rC1‖nνlν〉, where C1

q (r̂) = √
4π/3Y1q(r̂)

is the reduced spherical harmonic function. We took into
account that J and Jν are integers and that j and jν are
half-integers. It should be noted that the dipole matrix element
Dν

J lK contains the phase factor and that the reduced matrix
elements 〈εl‖d‖nνlν〉 and the total phase shifts σl + πµl are
independent of j , J , jν , and Jν . Note also that the dipole matrix
element on the right-hand side of Eq. (21a) represents one of
the transition amplitudes DJl,w or D̄J l,w. We can now express
β2 and β4 with the quantities:

R̄ = D̄p/D̄f ,

�̄ = σp − σf + πµ̄p − πµ̄f

}
Jc = 1/2, (22)

R = Dp/Df

� = σp − σf + πµp − µf

}
Jc = 3/2, (23)

where the single-electron reduced matrix elements associated
with the εp, εp′, εf , and εf ′ continuum orbitals are Dp =
〈εp‖d‖3d〉, D̄p = 〈εp′‖d‖3d ′〉, Df = 〈εf ‖d‖3d〉, and D̄f =
〈εf ′‖d‖3d ′〉, respectively. For Jc = 1/2, we obtain

β2 = 49R̄2 + 144
√

6R̄ cos �̄ + 96

119R̄2 + 84
, (24)

β4 = 24
√

6R̄ cos �̄ + 72

119R̄2 + 84
, (25)

while for Jc = 3/2, the result is

β2 = R2 + 4 + 6
√

6R cos �

5(R2 + 1)
, (26)

β4 = 0. (27)

These approximations have also been applied within the
general formalism introduced by Baier et al. [18] to describe
the angular distribution of photoelectrons generated from the
photoionization of aligned intermediate states. We will briefly
discuss this formalism as it both validates the theoretical
framework applied here and provides easy comparison to
results obtained using other experimental geometries. The
formalism of Baier et al. [18], which is very similar to the
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formalism of Cherepkov et al. [19], provides a generalized
treatment of the photoionization of aligned atoms as it
conveniently separates the contributions of the polarization of
the intermediate state, the dynamics of the photoionization
process, and the geometry of the experiment. Indeed the
angular distribution of photoelectrons is given by

dσ

d�
= σ (iso)

4π

[
1 +

∑
k0,k,kγ

Āk00βk0kkγ
Fk0kkγ

]
, (28)

where σ (iso) is the integral cross section for the photoionization
of unpolarized atoms, Āk00 are the reduced statistical tensors
which describe the alignment of the intermediate state, βk0kkγ

are the dynamical parameters which contain the information
on the photoionization process, and Fk0kkγ

are the kinematic
parameters which describe the experimental geometry and the
polarization state of the photons of the ionizing radiation.

The expressions for the dynamical parameters βk0kkγ
are

written in terms of reduced matrix elements 〈ξJcljJ‖D‖ξνJν〉
and their complex conjugates, where ξ and ξν represent
additional quantum numbers of the final and intermediate
states. These matrix elements can also be expressed in terms
of the reduced matrix elements Dp and Df (D̄p and D̄f ).
Indeed, this has recently been done (see Eq. (13) of Ref. [13])
by means of an expression analogous to Eq. (21b) for the case
where the final state is written using jj coupling.

The subsequent step involves summation over all possible
values of j and J , which is equivalent to the summation
over K and J in Eq. (4). This leads to an expression for the
βk0kkγ

parameters in terms of the reduced matrix elements
[see Eq. (15) of Ref. [13]]. We have used this approach,
together with the suitable expressions for the geometrical
parameters Fk0kkγ

for our geometry, and the values of Ā00

= 1 and Ā20 = −√
2 for the alignment of the intermediate

state in our geometry, to describe the PADs measured in our
experiments. Comparing the expression obtained in this way to
the expression for the angular distributions in terms of β2 and
β4 allows us to again derive the expressions for β2 and β4 in
terms of the reduced matrix elements and the phase differences
of the outgoing waves. As expected, implementing this
procedure for the intermediate states probed here reproduces
Eqs. (24)–(27), thus, in the limit of the assumptions used in the
present section, validating the theoretical description outlined
in Sec. III A.

IV. RESULTS AND DISCUSSION

The PADs of the electrons emitted in the processes (3)
and (2) have been measured at several fixed energies above the
respective ionization thresholds. A subset of the velocity map
images is shown in Fig. 2, where the raw data are shown on the
top half of each map and the inverted image using pBasex [28]
is shown in the bottom halves. The inversion process involves
the use of basis set functions of the form of Eq. (1) and thus
it is intrinsically assumed that the PAD has this form. The β2

and β4 parameters extracted from the entire data set of images
are listed in Tables II and III, where they are compared to the
values obtained using the theoretical framework of Sec. III A.
These results will be discussed further in Sec. IV B.

(a)

(b)

(c)

(d)

SR LASER

FIG. 2. (Color online) Photoelectron velocity map images for
the 2p5(2P1/2)3d[3/2]1 → 2p5(2P1/2)εp,εf excitation recorded at
(a) 23 meV and (b) 47 meV above the ionization threshold, and
images of the 2p5(2P3/2)3d[3/2]1 → 2p5(2P3/2)εp,εf excitation at
(c) 20 meV and (d) 45 meV above the threshold. The upper part of
each map contains the raw image, while the lower part shows the
pBasex inverted image. The polarization of the synchrotron and the
polarization of the laser are shown in (a).

The calculated and measured asymmetry parameters are
shown in Fig. 3. One point to note here is that β2 and β4 vary
smoothly (see Table III) also in the autoionization region due
to the suitably chosen energies of the Ti:sapphire laser. For the
lower two energy points (which lie in the energy region where
the energy spacing between the resonances is relatively large)
it has been easy to avoid the double resonance excitation by
suitably tuning the laser. For the higher kinetic energy value,
where the spacing between the 2p5nf resonances is of the
order of 2 meV, it was feared that the higher density of Rydberg
states would strongly perturb the PADs. However, this does
not appear to be the case. Furthermore, the 2p5np which are
interspersed between the 2p5nf resonances are approximately
two orders magnitude weaker than the nf resonances.

TABLE II. Experimental and theoretical asymmetry parameters
for the 2p5(2P1/2)3d[3/2]1 → 2p5(2P1/2)εp,εf excitation.

Experiment Theory

ε (meV) β2 β4 β2 β4

13 1.07 ± 0.06 0.81 ± 0.04 0.949 0.817
23 1.11 ± 0.07 0.87 ± 0.06 0.958 0.818
33 1.15 ± 0.08 0.81 ± 0.06 0.965 0.819
47 1.27 ± 0.06 0.94 ± 0.06 0.975 0.821
72 1.27 ± 0.06 0.92 ± 0.04 0.985 0.822
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TABLE III. Experimental and theoretical asymmetry parameters
for the 2p5(2P3/2)3d[3/2]1 → 2p5(2P3/2)εp,εf excitation.

Experiment Theory

ε (meV) β2 β4 β2 β4

20 0.84 ± 0.12 0.42 ± 0.04 0.843 0.348
45 0.87 ± 0.06 0.40 ± 0.04 0.867 0.350
70 0.93 ± 0.16 0.39 ± 0.08 0.880 0.352

A. Analysis of the angular distributions using simplified model

As outlined in Sec. III B, a common approach used to reduce
the number of independent parameters needed to describe the
photoionization process is to neglect the spin-orbit interaction
in the continuum and to assume that the continuum orbitals and
phase shifts do not depend on the quantum numbers associated
with various p and various f channels. In the case of ionization

FIG. 3. (Color online) The theoretical and experimental asym-
metry parameters β2 (open squares) and β4 (open circles) for
the photoionization of the (a) Ne 2p5(2P1/2)3d[3/2]1 and (b) Ne
2p5(2P3/2)3d[3/2]1 states. The experimental values are extracted from
the PADs, whereas the theoretical values (solid lines) were obtained
using the quantum defect treatment outlined in Sec. III A. The angular
distributions are depicted graphically as surfaces in the insets where
the distance from the origin to the surface is proportional to the
probability that the electron is emitted in that direction.

TABLE IV. Experimentally determined ratios of the radial dipole
matrix elements and cosine of their phase differences for the
2p5(2P1/2)3d2[3/2]1 → 2p5(2P1/2)εl (l = p,f ). The kinetic energy
of the emitted electrons is denoted by ε.

ε (meV) R̄ cos �̄

13 0.19+0.11
−0.19 0.03+0.10

−0.03

23 0.13+0.12
−0.12 0.01+0.03

−0.01

33 0.22+0.15
−0.21 −0.05+0.05

−0.11

47 0.05+0.10
−0.03 −0.004+0.004

−0.006

72 0.05+0.10
−0.03 −0.007+0.007

−0.003

of the 2p53d ′ intermediate state, this procedure reduces the
number of parameters describing the ionization process to
the number of experimentally accessible parameters. In other
words, Eqs. (24) and (25) represent a set of two equations with
two unknowns, and can therefore be inverted to give

R̄ = 2
√

3
√−4 − β2 + 6β4√−7 + 17β2 − 102β4

, (29)

cos �̄ = 14R̄ − 34β2 + 29β4R̄

−32
√

6 − 8
√

6β2 + 8
√

6β4

. (30)

Using these equations, it is now possible to extract the ratio R̄

and the cosine of the phase difference cos �̄. These extracted
values are listed in Table IV. The uncertainties have been
extracted by numerical propagation of the errors through
Eqs. (29) and (30) and taking only real values to form the
new error limits.

The overall conclusion is that the dominant outgoing wave
is an εf wave, which appears to increase in relative intensity as
the kinetic energy ε increases. Furthermore, it appears that the
phase difference goes through a π/2 value in the energy region
of interest. However, the quite large uncertainties resulting
from the error propagation hamper definitive conclusions.

The case is less clear for the Jc = 3/2 core, where it can be
seen from Eq. (27) that the β4 parameter is predicted to be zero
within the approximations outlined in Sec. III B. Clearly, in this
case, it is not possible to invert the equations and to extract the
values of R and cos � as there is only a single equation with
two unknowns. Moreover, the measured values of β4 point
to a breakdown of the theoretical model used to describe the
photoionization process (see Table III). This indicates that at
least one of the simplifying assumptions made does not hold.
The identification of which of the assumptions does not hold
will be investigated in the following section.

B. Analysis of the angular distributions using
the quantum defect theory

In the derivation of Eqs. (24)–(27), which connect the
asymmetry parameters to the partial-wave amplitudes and
phase differences, a number of approximations are made.
Some of them lead to incorrect results for the case of the
Jc = 3/2 core. On the other hand, the more general approach of
Sec. III A, in which no simplifying assumptions are made about
the dependence of the dipole matrix elements and phase shifts
on the channel quantum numbers, provides good agreement
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FIG. 4. (Color online) The extrapolated quantum defects of
2p5εp (left axis) 2p5εf (right axis) waves. The results for
Jc = 1/2 and Jc = 3/2 core are plotted with dashed and solid lines,
respectively. The labels A–H indicate the channels given in Table I.

with the values of β2 and β4 obtained experimentally for
photoionization of both intermediate states probed in this
work.

This agreement is shown in Fig. 3, and the values obtained
through the extrapolation procedure for different values of
the photoelectron kinetic energy ε are listed in Tables II
and III. In particular, β4, which is constrained to zero when
the single-electron matrix elements and the phase differences
are assumed to be independent of j and J , is now in good
agreement with the measured values. This clearly indicates
that the assumptions made are not valid for the ejection of
the electron into the continuum at least in the Jc = 3/2 case.
Although the spin-orbit coupling in the continuum is weak,
the dependence of the dipole transition amplitudes and phase
shifts on the quantum numbers describing various channels of
the continuum wave function must be retained.

The quantum defects µJl,w and µ̄J l,w and the magnitudes√
ωL|DJl,w| and

√
ωL|D̄J l,w| of the matrix elements obtained

with extrapolation are shown in Figs. 4 and 5. The extrapolated
dipole transition amplitudes show that the f -wave channels are
dominant for both couplings of the core, as can be seen from
Fig. 5. This result is consistent with Sec. IV A. As can be seen,
for both Jc = 1/2 and Jc = 3/2, the dominant contribution to
the cross section stems from the J = 2, K = 5/2 f -wave
channel (G and H). Furthermore, the largest contribution
stemming from the p-wave channels is J = 0, K = 1/2 (C
and E) for both core couplings.

From Figs. 4 and 5 it seems that channel-dependent dipole
matrix elements are necessary for the correct description of the
PADs. In order to check the role of the channel dependence of
the quantum defects, we performed a quick proof-of-principle
calculation with fixed values of µp = µ̄p = 0.8 and µf =
µ̄f = 6 × 10−3, but with channel-dependent dipole matrix
elements DJl,w and D̄J l,w. This yields approximately correct
β2 and β4 values; in particular, it gives β4 ≈ 0.35 also for
the case of the Jc = 3/2 core. The latter result indicates that
the channel-dependent matrix elements are indeed needed
for the correct description of the PADs in the present geometry.
This means that according to the present quantum defect
treatment it is the assumptions made about the single-electron
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FIG. 5. (Color online) The magnitude of the p wave (left axis)
and the f wave (right axis) extrapolated dipole transition amplitudes.
Given are

√
ωL|DJl,w| and

√
ωL|D̄J l,w| of the channels from Table I.

The matrix elements for the Jc = 1/2 and Jc = 3/2 core are plotted
with dashed and solid lines, respectively.

dipole matrix elements in Sec. IV A which result in the
incorrect β4 value for the case of the Jc = 3/2 coupling of the
2p electrons.

C. Comparison with other experimental geometries

In experiments combining synchrotron and laser radiation,
the most commonly used electron analyzers are hemispherical
(e.g., Refs. [13,37]) and cylindrical mirror analyzers (e.g.,
Refs. [38,39]). Indeed, these types of analyzers are particularly
suitable for detecting electrons with kinetic energy in the range
of 5–1000 eV. As a consequence, they are perfectly suited
to experiments in which the laser light is used to excite the
target and the synchrotron radiation is used to ionize the inner
shell of the resulting polarized target (e.g., Refs. [37–39])
since the resulting electrons have favorable kinetic energies
for detection by such analyzers. The situation is significantly
less favorable when the laser is used as the ionizing source
because the resulting electrons typically have very low kinetic
energy. Nonetheless, the hemispherical analyzer has been used
to detect photoelectrons from Ar atoms aligned by excitation
with synchrotron radiation [13]. The geometry adopted in that
experiment is shown in Fig. 6, where it can be seen that the
light sources propagate perpendicularly to each other, and the
electrons are detected along an axis which is perpendicular to
the direction of propagation of both the pump and probe light
sources.

The “angular distribution” of the electrons is measured
by keeping the electron detection axis fixed, but rotating the
electric field vector of the ionizing radiation with respect to the
detection axis. However, on examination of the geometrical
parameters Fk0kkγ

introduced by Baier et al. [18] for this
geometry it can be seen that this angular distribution only
depends on terms containing P2(cos ϑ), where ϑ is the
angle between the electric field vector of the ionizing laser
radiation and the axis along which the electrons are detected,
and therefore only a single experimental parameter can be
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e

FIG. 6. (Color online) Schematic view of the geometry of the
experimental setup used in Ref. [13]. In this case electrons are
detected along a single axis and ϑ is the angle between the
electric field vector of the laser radiation and this axis. See text for
discussion.

extracted from the angular distributions measured in this way.
In the geometry used here, the F242 geometrical term contains
a dependence on the P4(cos θ ) term (in this case, θ is the angle
between the electric field vector of the ionizing light and the
direction of emission of the photoelectron). As a result, two
parameters (β2 and β4) can be extracted from each velocity
map image.

Finally, it should be noted that the same parameters as
those extracted using the velocity map imaging geometry
are accessible using a hemispherical analyzer if either the
polarizations of both the synchrotron radiation and laser
are variable or if the detector axis can be rotated around
the direction of propagation of the radiation sources (in a
counterpropagating geometry). While both of these solutions
are possible, the first is not very common at synchrotron
radiation beam lines, while the second is often difficult to
implement due to the large physical size of analyzers used at
synchrotron beam lines. It should be noted that the second of
these experiments has been performed in a synchrotron + laser
setup for relatively fast electrons. In this case, the synchrotron
was used as the ionization radiation (e.g., Ref. [40]). In
comparison to the latter experimental approach, the velocity
map imaging geometry retains the significant advantage that
it has 4π solid angle detection, thus making also very weak
signal detectable. One final point to be mentioned is that the
VMI setup is limited to the detection of relatively low-energy
electrons in comparison to traditional analyzers. For example,
the highest kinetic energy electrons detected to date using is

this method are about 40 eV although simulations suggest
that electrons up to 100 eV will be accessible using this
technique [41,42]. Nonetheless, this type of analyzer should
be considered as complementary rather than an alternative to
traditional analyzers.

V. CONCLUSIONS

In this work, we present an experimental and theoretical
study of the angular distributions of photoelectrons ejected
from the Ne 2p5(2P1/2)3d[3/2]1 and Ne 2p5(2P3/2)3d[3/2]1

states. These polarized intermediate states are prepared by
photoexcitation using synchrotron radiation, and are subse-
quently ionized using linearly polarized light from a tunable
Ti:sapphire laser. One of the innovative aspects of this work is
that the angular distributions of the photoelectrons have been
measured using the velocity map imaging technique, which
has been combined with synchrotron radiation and laser exper-
iments for the first time. The β2 and β4 asymmetry parameters
extracted from the velocity map images are compared to the
results of a quantum defect approach. If the description of the
outgoing channels is simplified by introducing single-electron
reduced dipole matrix elements in order to fully describe
the ionization process in terms of only three parameters (the
p-wave transition amplitude, the f -wave transition amplitude,
and the phase difference between these waves), it is not
possible to reproduce the measured β4 values for the ion-
ization of the Ne 2p5(2P3/2)3d[3/2]1 intermediate state. Good
agreement is found only if dependence of the transition matrix
elements on the channel quantum numbers of the continuum
wave function is considered. Finally, the advantages of the
velocity map imaging detection scheme for the measurement
of the photoelectron angular distributions in pump-probe
experiments is discussed over previously used methods. In
particular, it is shown that the VMI geometry, which allows
the extraction of β2 and β4 from the measured PADs, provides
more information on the ionization process than geometries in
which fixed one-dimensional (1D) detectors are used and only
the polarization of the ionizing light is changed.
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